中考专题:根的判别式
根的判别式中考常考解答题复习
一元二次方程根的判别式常考题型: 一、复习回顾:1、一元二次方程ax 2+bx+c=0(a ≠0)的求根公式为x=2、解下列关于x 的方程:①x 2-3x+3=0 ②x 2-2x+3=0③x 2-2x+1=0 ④x 2-3x-4=03、求抛物线y=x 2+5x-4与x 轴的交点。
然后说说判断抛物线与x 轴的交点个数怎么做简单。
4、小结:ax 2+bx+c=0(a ≠0) y=ax 2+bx+c (a ≠0)的根的个数 图像与x 轴交点个数△△△5、当抛物线y=x 2+2x+c 与x 轴有两个交点时,c 的取值范围是__________;有一个交点时(即顶点在x 轴上),c=_____;没有交点时,c 的取值范围是______二、精讲精练:1、已知抛物线y=(k-2)x 2-3x+1与x 轴有两个交点,求k 的取值范围练习:1、已知抛物线y=(2m-1)x 2-2x+1与x 轴有两个交点,求m 的取值范围。
例2、已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。
例3、已知关于X的方程2(2)20(0)mx m x m -++=≠。
(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值。
说说例2和例3的异同:练习:1、关于x 的一元二次方程(k-3)x 2-3x+2=0有两个不相等的实数根 (1)求k 的取值范围(2)求当k 取何正整数时,方程的两根均为整数。
2、关于x 的一元二次方程kx 2+2x+2-k=0 (1)若元方程有实数根,求k 的取值范围(2)当k 取哪些整数时,方程的两根均为整数;3、关于x 的一元二次方程(m-1)x 2-2mx+m-1=0 (1)求证:方程有两个不相等的实数根(2)m 为何整数时,此方程的两个根都为正整数? 4、5、23. 已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线 与此图象有两个公共点时,b 的取值范围.()12y x b b k =+<。
中考专题_一元二次方程根的判别式及根与系数的关系
一元二次方程根的判别式及根与系数的关系【重点、难点、考点】重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。
②掌握根与系数的关系及应用难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。
考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。
【经典范例引路】例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m<43B.m ≤43C.m>43且m ≠2 D.m ≥43且m ≠2(2001年山西省中考试题)【解题技巧点拨】 解 C①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形解题原理:对方程ax 2+bx +c =0 (a ≠0)方程有两实根Δ方程有两相等实根Δ方程有两不等实根Δ⇔≥⎭⎬⎫⇔=⇔>000Δ<0⇔方程没有实根注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。
例2 先阅读下列第(1)题的解答过程(1)已知αβ是方程x2+2x-7=0的两个实数根。
求α2+3β2+4β的值。
解法1 ∵α、β是方程x2+2x-7=0的两实数根∴α2+2α-7=0 β2+2β-7=0 且α+β=-2∴α2=7-2αβ2=7-2β∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2×(-2)=32解法2 由求根公式得α=-1+22β=-1-22∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22)=9-42+3(9+42-4-82)=32解法3 由已知得:α+β=-2 αβ=-7∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2+4α=B∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ①A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ②①+②得:2A=64 ∴A=32请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题(2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。
中考数学总复习——方程整数根
方程整数根主要讲解方程整数根,掌握带着字母解方程的思想,提高解题能力.1. 根的判别式为完全平方【练习1】已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.【练习2】已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.【练习3】关于x 的一元二次方程2(1)210m x mx m --++=.(1)求证:方程有两个不相等的实数根;(2)m 为何整数时,此方程的两个根都为正整数.【练习4】已知关于x 的一元二次方程04)15(22=+++-m m x m x .(1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于3,另一个小于8,求m 的取值范围;【练习5】已知关于x 的一元二次方程 23(1)230mx m x m -+++=.(1)如果该方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,当关于x 的抛物线23(1)23y mx m x m =-+++与x 轴交点的 横坐标都是整数,且4x <时,求m 的整数值.2.根的判别式为非完全平方【练习1】已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)当m为何整数时,原方程的根也是整数.【练习2】已知关于x的方程(k-1)x2+2kx+k+3=0.(1)若方程有两个不相等的实数根,求k的取值范围.(2)当方程有两个相等的实数根时,求关于y的方程y2+(a-4k)y+a+1=0的整数根(a为正整数)【练习3】已知:关于x的一元二次方程x2-2(2m-3)x+4m2-14m+8=0.(1)若m>0,求证:方程有两个不相等的实数根;(2)若12<m<40的整数,且方程有两个整数根,求m的值.【练习4】已知关于x的一元二次方程x2−ax+a+5=0.(1)无论a取任何值,该方程的根不可能为x=x0,写出x0的值,并证明.(2)若a为正整数,且该方程存在正整数解,求所有正整数a的值.【练习5】已知k为整数,若关于x的二次方程kx2+(2k+3)x+l=0有有理根,则k的值是________.。
走进中考看“根的判别式”
. (m-2) 一2m(m一1)
..
=一, 2—2, +4
的 取 值 不 唯 程变形为 x'+2x+1=0
.
2 则方
解得 - 一 1.
【评 注 】利 用根 的判 别式判 定含有 字母 系
主 矍 鬈:蓑 挈萼 靠
负性证明即可.
’ 。 一
‘ ~
. } 一 r
一
.
解 :’.‘△=(-7) 一4×(一2)=57>0,
· ..
方程
有两
个不相等的实数根.
故应选 :A.
【评 注 】本题 直接考 查 了一元二 次方程 根
的判别 式的知识 ,解答这 类问题的关键 是掌握
一 元 二次 方程 根 的判 别 式 (b2-4ac)与一 元二
次方程根 的情况之间的关 系.
A .
I一
定
不是
关
于
的
方
程 :+bx+。:0
的根
. B0一 定 不 是 关 于 的 方 程 :+bx+。:0 .
中考数学判断方程根
中考数学判断方程根中考数学中,判断方程根是一个重要的考查点。
方程是数学中的一个基本概念,而判断方程的解是正数、负数还是零,是方程题目中常见的考点。
在中考数学中,掌握判断方程根的方法和技巧,能够帮助学生更好地解题,提高考试得分。
判断方程根的方法主要有以下几种:1.利用判别式判断方程的根的情况。
对于一元二次方程ax+bx+c=0,其判别式Δ=b-4ac可以用来判断方程的根的情况。
若Δ>0,则方程有两个不相等的实根;若Δ=0,则方程有一个重根;若Δ<0,则方程没有实根,但有两个共轭复根。
2.对于一些简单的方程,可以直接套用公式求解。
例如,一元一次方程ax+b=0的解为x=-b/a。
3.变形法。
有时候,将方程进行一定的变形,可以更容易地判断方程的根的情况。
例如,对于方程x+px+q=0,如果将其变形为(x+p/2)=q-(p/2)的形式,就可以根据q-(p/2)的正负情况来判断方程的根的情况。
4.图像法。
将方程的左右两边表示成两个函数的图像,可以通过观察两个函数的交点来判断方程的根的情况。
例如,对于方程x-4x+3=0,可以将其表示成y=x-4x+3和y=0两个函数的交点,通过观察两个函数的交点来判断方程的根的情况。
在解决方程题目时,学生需要注意以下几点:1.明确方程的根的含义,即解方程的变量的取值范围。
2.根据题目中给出的条件和方程的类型,选用合适的方法来解决问题。
3.在进行计算时,要认真核对计算过程和结果,避免粗心和马虎导致答案错误。
4.对于不能直接求解的方程,学生可以采用逐步逼近、试错等方法来解决问题。
通过掌握判断方程根的方法和技巧,中考数学考生可以更好地解决方程题目,提高考试得分。
一元二次方程根的判别式和根与系数的关系
一元二次方程根的判别式和根与系数的关系(一)一元二次方程根的判别式和根系关系是中考的重点内容之一,即可以单独出现,又可能在代数综合题、几何综合题、应用题中出现,我们准备用两节课的时间,帮助同学们复习这一内容。
例1不解方程判断下列关于x的一元二次方程根的情况⑴3x2 2 2®⑵3x21恵X 2 2⑶ax2bx 0⑷x22mx 4m 4 解:运用判别式先要将方程化为一般形式⑴ 3x226x 2 0(2 .6)2 4 3 2 0方程有两个相等实数根、3x2(,2)2 4 3 2 2 8、3 0方程没有实数根⑶ 方程是一元二次方程a 0 c 02 2b 4 a 0 b 0方程有两个实数根⑷ x2 2mx 4(m 1) 02 2 2(2m) 4 1 4(m 1) 4m 16m 16 4(m 2) 0 方程有两个实数根2解:错误解法(2m) 4(m 1)(m 2)2 2=4m 4( m m 2)=4(m 2) 0m 2注意:应用一元二次方程判别式,首先方程应为一元二次方程,当二次项系数含有字母时,要加上二次项系数可为0这个限制条件。
m 1 0 m3正确解法0 m 2m 2 且m 12 2解:(3 m 1) 4m(2m 1) = m 2m 1m2 2m 1 1m2 2m 0m10 m2 2注意m 0 舍去m 0m 2例4已知关于x的方程(m 1)x2 2mx m 0有实数根,求m的取值范围。
解:注意本题并没有说方程是一元二次方程,也没有说方程有两个实数根。
一1⑴m 1 0 m 1方程为一兀一次方程2x 1 0有一个实根x 一2⑵ m 1 0 m 1方程为一元二次方程(2m)2 4m(m 1) 4m 0m 0且m 1时方程有两个实数根综上,当m 0时方程有实根。
小结:⑴ 应用判别式的条件是方程为一元二次方程,当二次项系数为字母时,注意系数不为o ;⑵应用判别式应将方程化为一般形式;⑶ 注意有实根和有两个实根的区别。
3.中考数学专题一元二次方程根的判别式、根与系数的关系母题题源系列(解析版)
专题01 一元二次方程根的判别式、根与系数的关系【母题来源一】【2019•河南】一元二次方程(x+1)(x-1)=2x+3的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解析】原方程可化为:x2-2x-4=0,∴a=1,b=-2,c=-4,∴Δ=(-2)2-4×1×(-4)=20>0,∴方程有两个不相等的实数根.故选A.【名师点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.【母题来源二】【2019•河北】小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根【答案】A【解析】∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得:c=3,故原方程中c=5,则b2-4ac=16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选A.【名师点睛】此题主要考查了根的判别式,正确得出c的值是解题关键.【母题来源三】【2019•荆州】若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【答案】A【解析】∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.故选A.【名师点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一次函数的性质.【母题来源四】【2019•包头】已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是A.34 B.30C.30或34 D.30或36【答案】A【解析】当a=4时,b<8,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34,故选A.【名师点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.【母题来源五】【2019•上海】如果关于x的方程x2-x+m=0没有实数根,那么实数m的取值范围是________.【答案】m1 4 >【解析】由题意知Δ=1-4m<0,∴m14 >.故答案为:m14 >.【名师点睛】总结:一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【母题来源六】【2019•衡阳】关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.【解析】(1)根据题意得Δ=(-3)2-4k≥0,解得k94≤.(2)k的最大整数为2,方程x2-3x+k=0变形为x2-3x+2=0,解得x1=1,x2=2,∵一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,∴当x=1时,m-1+1+m-3=0,解得m32 =;当x=2时,4(m-1)+2+m-3=0,解得m=1,而m-1≠0,∴m的值为32.【母题来源七】【2019•黄石】已知关于x的一元二次方程x2-6x+(4m+1)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根为x1、x2,且|x1-x2|=4,求m的值.【解析】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,∴Δ=(-6)2-4×1×(4m+1)≥0,解得:m≤2.(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【母题来源八】【2019•黄冈】若x1,x2是一元二次方程x2-4x-5=0的两根,则x1·x2的值为A.-5 B.5C.-4 D.4【答案】A【解析】∵x1,x2是一元二次方程x2-4x-5=0的两根,∴x1·x2ca==-5.故选A.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于ca是解题的关键.【母题来源九】【2019•广东】已知x1,x2是一元二次方程x2-2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12-2x1=0C.x1+x2=2 D.x1·x2=2【答案】D【解析】∵Δ=(-2)2-4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2-2x=0的实数根,∴x12-2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2-2x=0的两个实数根,∴x1+x2=2,x1·x2=0,选项C不符合题意,选项D符合题意.故选D.【名师点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.【母题来源十】【2019•淄博】若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是 A .x 2-3x +2=0 B .x 2+3x -2=0 C .x 2+3x +2=0 D .x 2-3x -2=0【答案】A【解析】∵x 12+x 22=5, ∴(x 1+x 2)2-2x 1x 2=5, 而x 1+x 2=3, ∴9-2x 1x 2=5, ∴x 1x 2=2,∴以x 1,x 2为根的一元二次方程为x 2-3x +2=0. 故选A .【名师点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a=. 【母题来源十一】【2019•江西】设x 1,x 2是一元二次方程x 2-x -1=0的两根,则x 1+x 2+x 1x 2=__________. 【答案】0【解析】∵x 1、x 2是方程x 2-x -1=0的两根, ∴x 1+x 2=1,x 1×x 2=-1, ∴x 1+x 2+x 1x 2=1-1=0. 故答案为:0.【名师点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2b a =-,x 1·x 2ca=.【母题来源十二】【2019•娄底】已知方程x 2+bx +3=0__________.【解析】设方程的另一个根为c ,c =3,∴c =-【名师点睛】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键. 【母题来源十三】【2019•十堰】已知于x 的元二次方程x 2-6x +2a +5=0有两个不相等的实数根x 1,x 2. (1)求a 的取值范围;(2)若x 12+x 22-x 1x 2≤30,且a 为整数,求a 的值.【解析】(1)∵关于x 的一元二次方程x 2-6x +2a +5=0有两个不相等的实数根x 1,x 2, ∴Δ>0,即(-6)2-4(2a +5)>0,解得a <2. (2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5, ∵x 1,x 2满足x 12+x 22-x 1x 2≤30, ∴(x 1+x 2)2-3x 1x 2≤30, ∴36-3(2a +5)≤30, ∴a 32≥-,∵a 为整数, ∴a 的值为-1,0,1.【名师点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用.【母题来源十四】【2019•鄂州】已知关于x 的方程x 2-2x +2k -1=0有实数根. (1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且2112x x x x +=x 1·x 2,试求k 的值. 【解析】(1)∵原方程有实数根, ∴b 2-4ac ≥0∴(-2)2-4(2k -1)≥0, ∴k ≤1.(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得: x 1+x 2=2,x 1·x 2=2k -1, 又∵2112x x x x +=x 1·x 2, ∴22121212x x x x x x +=⋅⋅, ∴(x 1+x 2)2-2x 1x 2=(x 1·x 2)2, ∴22-2(2k -1)=(2k -1)2,解之,得:1222k k ==-.经检验,都符合原分式方程的根,∵k ≤1,∴k =. 【名师点睛】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.【命题意图】这类试题主要考查一元二次方程根的判别式,常与一次函数、等腰三角形等知识结合考查.一元二次方程根与系数的关系. 【方法总结】1.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根; (2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根; (3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.2.(1)应用根的判别式时必须先将一元二次方程化成一般形式,然后确定a ,b ,c 的值;(2)此判别式只适用于一元二次方程,当无法判断方程是不是一元二次方程时,应对方程进行分类讨论;(3)当240b ac -=时,方程有两个相等的实数根,不能说成方程有一个实数根. 3.一元二次方程根的判别式的应用主要有以下三种情况: (1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围; (3)应用判别式证明方程根的情况. 4.根与系数关系对于一元二次方程20ax bx c ++=(其中a b c ,,为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12cx x a=.5.一元二次方程根与系数的关系的应用(1)不解方程,求关于方程两根的代数式的值; (2)已知方程一根,求方程的另一根及方程中字母的值; (3)已知方程两根的关系,求方程中字母的值; (4)与根的判别式相结合,解决一些综合题. 6.与一元二次方程两根有关的几个代数式的变形(1)()()22222121122*********x x x x x x x x x x x x +=++-=+-;(2)12121211x x x x x x ++=; (3)12x x -==(4)()222121221211212122x x x x x x x x x x x x x x +-++==; (5)()()221212124x x x x x x -=+-;(6)()()()2121212x k x k x x k x x k ++=+++.1.【天津市滨海新区2019届中考一模数学试题】下列方程中,有两个不相等的实数根的方程是 A .28170x x +=- B .26100x x -=-C .290x +=-D .2440x x +=-【答案】B【解析】A .Δ=(-8)2-4×1×17=-4<0,故方程没有实数根,该选项不符合题意, B .Δ=(-6)2-4×1×(-10)=76>0,故方程有两个不相等的实数根,该选项符合题意, C .Δ=(-2-4×1×9=-4<0,故方程没有实数根,该选项不符合题意, D .Δ=(-4)2-4×1×4=0,故方程有两个相等的实数根,该选项不符合题意, 故选B .【名师点睛】本题考查一元二次方程根的情况与判别式Δ的关系:Δ>0时,方程有两个不相等的实数根;Δ=0时,方程有两个相等的实数根;Δ<0时,方程没有实数根.2.【2019年河南省第二届名校联盟中考数学模拟试卷(5月份)】若关于x 的一元二次方程mx 2-2x +1=0有两个实数根,则实数m的取值范围是A.m≤1B.m≤-1C.m≤1且m≠0D.m≥1且m≠0【答案】C【解析】根据题意得m≠0且Δ=(-2)2-4m≥0,解得m≤1且m≠0.故选C.【名师点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.3.【山东省诸城市部分学校2019届中考模拟(6月)数学试题】已知a、b、c为正数,若关于x的一元二次方程ax2+bx+c=0有两个实数根,则关于x的方程a2x2+b2x+c2=0解的情况为A.有两个不相等的正根B.有一个正根,一个负根C.有两个不相等的负根D.不一定有实数根【答案】C【解析】∵关于x的一元二次方程ax2+bx+c=0有两个实数根,∴Δ=b2-4ac≥0.又∵a、b、c为正数,∴b2-4ac+2ac=b2-2ac>0,b2+2ac>0.∵方程a2x2+b2x+c2=0的根的判别式Δ=b4-4a2c2=(b2+2ac)(b2-2ac)>0,∴该方程有两个不相等的实数根.设关于x的方程a2x2+b2x+c2=0的两个实数根为x1,x2,则x1+x2=22ba<0,x1x2=22ca>0,∴关于x的方程a2x2+b2x+c2=0有两个不相等的负根.故选C.【名师点睛】本题考查了根的判别式以及根与系数的关系,利用根的判别式及根与系数的关系,找出关于x的方程a2x2+b2x+c2=0有两个不相等的负根是解题的关键.4.【2019年四川省内江市中考数学模拟试卷(三)】关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是A.1 B.-1C.1或-1 D.2【答案】B【解析】依题意Δ>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴3122a aa a++-=1-a,解得:a=±1,又a≠1,∴a=-1.故选B.【名师点睛】此题考查了根的判别式,根与系数的关系,以及一元二次方程的定义,一元二次方程中根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程没有实数根.5.【2019年山东省潍坊市中考数学一模试卷】已知关于x的方程x2+(k2-4)x+k-1=0的两实数根互为相反数,则k=__________.【答案】-2【解析】设方程的两根分别为x1,x2,∵x2+(k2-4)x+k-1=0的两实数根互为相反数,∴x1+x2,=-(k2-4)=0,解得k=±2,当k=2,方程变为:x2+1=0,Δ=-4<0,方程没有实数根,所以k=2舍去;当k=-2,方程变为:x2-3=0,Δ=12>0,方程有两个不相等的实数根;∴k=-2.故答案为:-2.【名师点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba;x1·x2=ca.也考查了一元二次方程的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.【2019年江西省南昌市十校联考中考数学模拟试卷(5月份)】已知α、β是一元二次方程x2-2019x+1=0的两实根,则代数式(α-2019)(β-2019)=__________.【答案】1【解析】∵α、β是一元二次方程x2-2019x+1=0的两实根,∴α+β=2019,αβ=1,∴(α-2019)(β-2019)=αβ-2019(α+β)+22019=1.故答案为:1.【名师点睛】本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.7.【河南省2019年中考数学模试题(一)】已知关于x的一元二次方程ax2-(a+2)x+2=0有两个不相等的正整数根时,整数a的值是__________.【答案】1【解析】∵方程ax2-(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵Δ=(a+2)2-4a×2=(a-2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1、x2,∴x1·x2=2a,∵x1、x2均为正整数,∴2a为正整数,∵a为整数,a≠2且a≠0,∴a=1,故答案为:1.【名师点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:①找出Δ=(a-2)2≥0;②找出x1·x2=2a为正整数.本题属于中档题,难度不大,解决该题型题目时,由方程的两根均为整数确定a的值是难点.8.【2019年江苏省盐城市建湖县中考数学二模试卷】已知关于x方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1=2x2,求m的值.【解析】(1)∵关于x方程x2-6x+m+4=0有两个实数根,∴Δ=(-6)2-4×1×(m+4)≥0,解得:m≤5.(2)∵关于x方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6,x1x2=m+4.又∵x1=2x2,∴x2=2,x1=4,∴4×2=m+4,∴m=4.【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)根据根与系数的关系结合x1=2x2,求出x1,x2的值.9.【2019年江苏省泰州市兴化市中考数学二模试卷】已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【解析】(1)∵Δ=[-(m+2)]2-4×2m=(m-2)2≥0,∴不论m为何值,该方程总有两个实数根.(2)∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB·AC=2m,∵ΔABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2-2AB·AC=BC2,即(m+2)2-2×2m=32,解得:m∴m的值是又∵AB•AC=2m,m为正数,∴m【名师点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.10.【湖北省黄石市河口中学2019届九年级中考模拟考试三数学试题】已知x1、x2是一元二次方程(a-6)x 2+2ax +a =0的两个实数根.(1)求实数a 的取值范围;(2)若x 1、x 2满足x 1x 2-x 1=4+x 2,求实数a 的值.【解析】(1)∵一元二次方程(a -6)x 2+2ax +a =0有两个实数根,∴(2a )2-4(a -6)×a ≥0,a -6≠0, 解得,a ≥0且a ≠6.(2)∵x 1、x 2是一元二次方程(a -6)x 2+2ax +a =0的两个实数根,∴x 1+x 2=26a a -,x 1·x 2=x 1·x 2=6a a -, ∵x 1x 2-x 1=4+x 2, ∴x 1x 2=4+x 2+x 1,即6a a -=4+26a a -, 解得,a =24.【名师点睛】本题考查的是一元二次方程根的判别式、根与系数的关系,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a ,x 1x 2=c a,反过来也成立. 11.【北京市石景山区2019届九年级统一练习暨毕业考试数学试题】关于x 的一元二次方程2(3)x m x-+20m ++=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.【解析】(1)依题意,得()()224[3]42b ac m m ∆=-=-+-+ 26948m m m =++--()21m =+.∵2(1)0m +≥,∴0∆≥.∴方程总有两个实数根.(2)由2320x m x m -+++=().可化为:[](1)(2)0x x m --+=, 得1212x x m ==+,,∵方程的两个实数根都是正整数,m+≥.∴21m≥-.∴1-.∴m的最小值为1【名师点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.。
一元二次方程根的判别式和根与系数的关系
中考专题复习〈〈一元二次方程根的判别式和根与系数的关系》1、根的判别式及应用(△ = b2 一4ac):(1)判定一元二次方程根的情况。
(2)确定字母的值或取值范围。
2、根与系数的关系(韦达定理)的应用:韦达定理:如果一元二次方程ax2+bx+c=0(a乒0)的两根为x i、X2,b c贝U X i+X2=—— , x i X2=—。
a a(1) 已知一根求另一根及未知系数;(2) 求与方程的根有关的代数式的值;(3) 已知两根求作方程;(4) 已知两数的和与积,求这两个数;(5)确定根的符号:(x1、x2是方程两根)。
3、应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把求作方程的二次项系数设为1,即以x「乂2为根的一元二次方程为x2-(x〔+x2)x+x〔x2= 0 ;求字母系数的值时,需使二次项系数a乒0,同时满足^> 0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和x1 +x2, ?两根之积x1x2的代数式的形式,整体代入。
1.一元二次方程根的判别式:关于x的一元二次方程a顶4bx+c=0a#0 )的根的判别式为.(1) b2 -4ac>0u 一元二次方程ax2+bx + c =0(a #0)有两个实数根.(2) 史—4ac=0U 一元二次方程有相等的实数根,即x1 = x2= ^(3) b2—4ac<0u 一元二次方程ax2+bx+c = 0(a #0 实数根.2.一元二次方程根与系数的关系若关于x的一元二次方程ax2 +bx + c =0(a , 0)有两根分别为x1, x2,那么x1 + x2=,2 2x1 x2 = ^变形:x1 +x2 =, x1 -x2 =。
至十兰=。
x1 %3.易错知识辨析:1) 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.2) 应用一元二次方程根与系数的关系时,应注意:①根的判别式b2 -4ac芝0 ;②二次项系数a#0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系^一、【典型示例】【例1】当k为何值时,方程x2-6x + k-1=0 , (1)两根相等;(2)有一根为0 ;(3)两根为倒数【例2】已知关于x的方程x2 +2(a—1)x+a2—7a—4=0,(1) 若方程有两个不相等的实数根,求a的取值范围;(2) 若方程的有两个实数根为x〔、x2 ,且x; +x;=32,求a的值。
一元二次方程根的判别式、根与系数关系
四、不解方程,求与根有关的代数式的值 例2 若a、b为互不相等的实数,且a 2-3a+1=0,b 2-3b+1=0 求a 2-ab+b 2的值 分析:要求一个含字母a、b的代数式的值,常规的解法就是 先求出a、b的值,然后代入求解.本题若按这个思路计算将 会涉及到解一元二次方程及二次根式的运算,运算量非常 大.但如果考虑a、b的关系,把a、b看作某个一元二次方程 的两个根,利用根与系数的关系得到a、b的关系式,再利用 a、b的关系式整体代入,问题将会变得简便. 解:根据题意知a、b是方程x 2-3x+1=0的两个根由根 与系数关系得a+b=3,ab=1. 点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
;企业老板电话名单 企业老板电话名单 ; 2019.1 ;
们大意了,可恶,俺们被戮申殿算计了.”阔怜元老低沉の声音嘶吼.如果无暇善尊一直留在城市之内,那么就算戮申殿攻打无暇城,可要破开无暇城の防御也需要事间.再不济,无暇城の守护大阵也能顶一点事间.就算可能仍然等不到玄月商楼の救援,但也起码会比现在强.在城市之外, 戮申殿直接就能够对无暇善尊动手.“阔怜元老,现在俺们该怎么办?无暇善尊此事
中考复习——一元二次方程的根的判别式(解析版)
中考复习——一元二次方程的根的判别式一、选择题1、一元二次方程2x2-3x+1=0的根的情况是().A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根答案:B解答:∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.2、已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是().A. k<14B. k≤14C. k>4D. k≤14且k≠0答案:B解答:∵关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,∴Δ=b2-4ac≥0,∵a=1,b=-(2k+1),c=k2+2k,∴[-(2k+1)]2-4×1×(k2+2k)≥0,∴-4k≥-1,∴k≤14.选B.3、若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定答案:A解答:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.选A.4、关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是().A. m≤12B. m≤12且m≠0C. m<1D. m<1且m≠0答案:B解答:∵Δ=[2(m-1)]2-4m2=-8m+4≥0,∴m≤12.∵x1+x2=-2(m-1)>0,x1x2=m2>0,∴m<1,m≠0,∴m≤12且m≠0.5、关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,且α2+β2=12,那么m的值为().A. -1B. -4C. -4或1D. -1或4答案:A解答:由题意知α+β=-2(m-1)=2-2m,αβ=m2-m,且Δ=[2(m-1)]2-4(m2-m)≥0,4(m2-2m+1)-4m2+4m≥0,4m2-8m+4-4m2+4m≥0,-4m≥-4,m≤1,由α2+β2=12可有(α+β)2-2αβ=12,(2-2m)2-2(m2-m)=12,4m2-8m+4-2m2+2m-12=0,2m2-6m-8=0,m2-3m-4=0,(m-4)(m+1)=0,解得m1=-1,m2=4,∵m ≤1故m =-1. 故答案为:A.6、关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1.其中正确结论的个数是( ).A. 0个B. 1个C. 2个D. 3个答案:D解答:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1·x 2=2n >0,y 1·y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,这两个方程的根都为负根,①正确; ②由根判别式有:Δ=b 2-4ac =4m 2-8n ≥0,Δ=b 2-4ac =4n 2-8m ≥0, ∵4m 2-8n ≥0,4n 2-8m ≥0,∴m 2-2n ≥0,n 2-2m ≥0,m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1、y 2均为负整数,故(y 1+1)(y 2+1)≥0,故2m -2n ≥-1,同理可得:2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1,得2n -2m ≥-1,即2m -2n ≤1,故③正确. 7、若关于x 的不等式x -2a<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ). A. 有两个相等的实数根 B. 有两个不相等的实数根C. 无实数根D. 无法确定答案:C解答:解不等式x -2a <1得x <1+2a , 而不等式x -2a<1的解集为x <1, 所以1+2a=1,解得a =0, 又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.8、已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( ).A. b=-1B. b=2C. b=-2D. b=0答案:A解答:Δ=b2-4,由于当b=-1时,满足b<0,而Δ<0,方程没有实数解,所以当b=-1时,可说明这个命题是假命题.9、在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=0答案:B解答:设3个函数的判别式分别为Δ1=a2-4,Δ2=b2-8,Δ3=c2-16,∵b2=ac,∴c=2ba,A选项,若M1=2,M2=2,则Δ1=a2-4>0,Δ2=b2-8>0,∵a>2,b2>8,∴c=2ba与4无法比较大小,∴Δ3=c2-16无法确定,故A错误;B选项,若M1=1,M2=0,则Δ1=a2-4=0,Δ2=b2-8<0,∴a=2,0<b2<8,∴c=282ba<=4,∴Δ3=c2-16<0,∴M3=0,故B正确;C选项,若M1=0,M2=2,则Δ1=a2-4<0,Δ2=b2-8>0,∴0<a<2,b2>8,∴C =2b a>4,∴Δ3=c 2-16>0, ∴M 3=2,故C 错误; D 选项,若M 1=0,M 2=0, 则Δ1=a 2-4<0,Δ2=b 2-8<0, ∴0<a <2,0<b 2<8,∴c =2b a与4无法比较大小,∴Δ3=c 2-16无法确定,故D 错误. 选B.10、已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个公共点. 有下列结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx +c +2=0无实数根; ③a -b +c ≥0; ④a b cb a++-的最小值为3.其中,正确结论的个数是( ).A. 1个B. 2个C. 3个D. 4个答案:D解答:∵b >a >0, ∴-2ba<0, 所以①正确;∵抛物线与x 轴最多有一个交点, ∴b 2-4ac ≤0,∴关于x 的方程αx 2+bx +c +2=0中,Δ=b 2-4a (c +2)=b 2-4ac -8a <0, 所以②正确;∵a >0及抛物线与x 轴最多有一个交点, ∴x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0, 所以③正确;· 当x =-2时,4a -2b +c ≥0 a +b +c ≥3b -3a a +b +c ≥3(b -a )a b cb a++-≥3,所以④正确. 选D. 二、填空题11、若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是______. 答案:n ≥0解答:∵关于x 的一元二次方程(x +2)2=n 有实数根, ∴x 2+4x +4-n =0有实数根, ∴Δ=b 2-4ac =16-4(4-n )=4n ≥0, ∴n ≥0, 故答案为:n ≥0.12、已知关于x 的一元二次方程x 2+k =0有两个相等的实数根,则k 值为______. 答案:3解答:∵关于x 的一元二次方程x 2+k =0有两个相等的实数根,∴Δ=()2-4k =0,∴12-4k =0,解得k =3.13、已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为______. 答案:-1解答:设另一个根为t , 根据题意得4+t =3, 解得t =-1, 即另一个根为-1.14、若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是______(写出一个即可). 答案:3解答:若一元二次方程x2+4x+c=0有两个不相等的实数根,则Δ=42-4c>0,故c<4.15、若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是______.答案:k≤5且k≠1解答:∵一元二次方程(k-1)x2+4x+1=0有实数根,∴k-1≠0,且b2-4ac=16-4(k-1)≥0,解得:k≤5且k≠1.16、已知关于x的一元二次方程x2-4x+m-1=0的实数根x1,x2,满足3x1x2-x1-x2>2,则m 的取值范围是______.答案:3<m≤5解答:由一元二次方程根与系数的关系,得x1x2=m-1,x1+x2=4,代入3x1x2-x1-x2>2,得3(m-1)-4>2,解得m>3,又Δ=16-4(m-1)≥0,解得m≤5,综上可知:3<m≤5.17、已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1和x2,且(x1-2)(x1-x2)=0,则k的值是______.答案:-2或-9 4解答:∵(x1-2)(x1-x2)=0,∴x1-2=0或x1-x2=0.①如果x1-2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,整理,得k2+4k+4=0,解得k=-2.②如果x1-x2=0,那么(x1-x2)2=(x1+x2)2-4x1x2=[-(2k+1)]2-4(k2-2)=4k+9=0,解得k=-94.又∵Δ=(2k+1)2-4(2k+1)≥0.解得:k≥-94.所以k的值为-2或-94.18、关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=______.答案:0解答:∵方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,∴x1+x2=2m-1,x1x2=m2-1,∵x12+x22=(x1+x2)2-2x1x2=(2m-1)2-2(m2-1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴Δ=(2m-1)2-4(m2-1)≥0,既m≤5 4∴m2=2(不合题意,舍去),∴m=0.19、关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是______(填序号).答案:①③解答:当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故答案为∶①③.20、对于函数y=x n+x m,我们定义y’=nx n-1+mx m-1(mn为常数).例如y=x4+x2,则y’=4x3+2x.已知:y=13x3+(m-1)x2+m2x.(1)若方程y’=0有两个相等实数根,则m的值为______.(2)若方程y’=m-14有两个正数根,则m的取值范围为______.答案:(1)1 2(2)m≤34且m≠12解答:(1)y’=x2+2(m-1)x+m2=0方程有两个相等的实数根,则Δ=0,即Δ=4(m-1)2-4m2=-8m+4=0,则m=12.(2)y’=x2+2(m-1)x+m2=m-14,∴x2+2(m-1)x+m2-m+14=0.要使方程有两个实数根,则Δ=4(m-1)2-4(m2-m+14)≥0,∴m≤34.要使方程有正根,则当x=0时x2+2(m-1)x+m2-m+14>0,∴m≠12.答案为m≤34且m≠12.三、解答题21、已知关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,求m的取值范围.答案:m>0且m≠1.解答:∵一元二次方程有两个不等实根,∴Δ=22-4(m-1)×(-1)>0,即m>0,又m-1≠0,∴m≠1,∴m>0且m≠1.22、已知关于x的一元二次方程x2-3x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围.(2)当x1=1时,求另一个根x2的值.答案:(1)m<9 4(2)2解答:(1)由题意得:Δ=(-3)2-4×1×m=94m0,解得:m<94.(2)∵x1+x2=-ba=3,x1=1,∴x2=2.23、已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.答案:(1)k≤54.(2)k=-2.解答:(1)有两个实数根x1,x2,∴Δ=b2-4ac=(2k-1)2-4(k2-1)=-4k+5,∴-4k+5≥0,∴k≤54.(2)∵x12+x22=(x1+x2)2-2x1x2,∴(x1+x2)2-2x1x2=16+x1x2,∴(2k-1)2=16+3(k2-1)k2-4k-12=0,∴k=-2或k=6(舍),∴k=-2.24、已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围.(2)若x1,x2满足3x1=|x2|+2,求m的值.答案:(1)m的取值范围为m≤5.(2)符合条件的m的值为4.解答:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴Δ=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1·x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4.当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.25、已知:一元二次方程12x2+kx+k-12=0.(1)求证:不论k为何实数时,此方程总有两个实数根.(2)设k<0,当二次函数y=12x2+kx+k-12的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式.(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?答案:(1)证明见解答.(2)此二次函数的解析式是y=12x2-x-32.(3)-2≤m≤2.解答:(1)∵Δ=k2-4×12×(k-12)=k2-2k+1=(k-1)2≥0,∴关于x的一元二次方程12x2+kx+k-12=0,不论k为何实数时,此方程总有两个实数根.(2)令y=0,则12x2+kx+k-12=0,∵x A+x B=-2k,x A·x B=2k-1,∴|x A-x B=2|k-1|=4,即|k-1|=2,解得k=3(不合题意,舍去),或k=-1,∴此二次函数的解析式是y=12x2-x-32.(3)由(2)知,抛物线的解析式是y =12x 2-x -32, 易求A (-1,0),B (3,0),C (1,-2),∴AB =4,AC,BC, 显然AC 2+BC 2=AB 2,得△ABC 是等腰直角三角形,AB 为斜边,∴外接圆的直径为AB =4,∴-2≤m ≤2.26、设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若11x +21x =1,求132m-的值. (2)求111mx x -+221mx x --m 2的最大值. 答案:(1(2)当m =-1时,最大值为3.解答:(1)∵方程有两个不相等的实数根,∴Δ=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1,结合题意知:-1≤m <1.∵x 1+x 2=-2(m -2),x 1x 2=m 2-3m +3 ∴11x +21x =1212x x x x +=()22233m m m ---+=1 解得:m 1=12,m 2=12(不合题意,舍去) ∴132m-. (2)111mx x -+221mx x --m 2 =()()1212121221m x x mx x x x x x +--++-m 2=-2(m-1)-m2=-(m+1)2+3.当m=-1时,最大值为3.。
根的判别式与韦达定理
第3讲 一元二次方程根的判别式和韦达定理一、根的判别式21.4022.02043.,22ac b b ac b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪-±--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为。
时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为 【典型例题】1.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根; (3)没有实根。
2.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
3.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。
【课堂练习】一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
二、选择题:1、下列方程中,无实数根的是( )A 、011=-+-x xB 、 762=+yy C 、021=++x D 、0232=+-x x2、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43<m B 、m ≤43 C 、43>m 且m ≠2 D 、m ≥43且m ≠2 3、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定 一、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。
专题2.3根的判别式【十大题型】-2024-2025学年九年级数学上册[含答案]
专题2.3根的判别式【十大题型】【北师大版】【题型1判断不含参数的一元二次方程的根的情况】【题型2判断含参数的一元二次方程的根的情况】【题型3由一元二次方程的根的情况确定字母的值或取值范围】【题型4证明一元二次方程的根的情况】【题型5由根的判别式求代数式的取值范围】【题型6根的判别式与三角形的综合运用】【题型7根的判别式与四边形的综合运用】【题型8根的判别式与不等式、分式、函数等知识的综合】【题型9一元二次方程中的新定义问题】【题型10 一元二次方程中的多结论问题】知识点1:一元二次方程根的判别式一元二次方程根的判别式:24b acn.=-①当240n时,原方程有两个不等的实数根;=->b ac②当240=-=n时,原方程有两个相等的实数根;b ac③当240n时,原方程没有实数根.b ac=-<【题型1判断不含参数的一元二次方程的根的情况】【例1】(23-24九年级·浙江宁波·期末)1.关于一元二次方程2320+-=根的情况,下列说法正确的是()x xA.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【变式1-1】(23-24九年级·广东广州·期末)2.方程240x-=的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根【变式1-2】(23-24九年级·河南许昌·期末)3.设一元二次方程20x bx c ++=.在下面的三组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2b =,1c =;②5b =,6c =;③4b =,2c =-.【变式1-3】(23-24九年级·河南安阳·期中)4.下列一元二次方程中,没有实数根的是( )A .220x x -=B .2440x x +-=C .()2230x --=D .2320x +=【题型2 判断含参数的一元二次方程的根的情况】【例2】(23-24九年级·贵州毕节·期末)5.关于x 的方程2(2)0x k x k +--=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【变式2-1】(23-24九年级·浙江温州·期末)6.已知一元二次方程20x bx c ++=.(1)当2b =时,若方程的一个根为3-,求c 的值以及方程的另一个根;(2)当2114c b +=时,请判别方程根的情况.【变式2-2】(23-24九年级·安徽合肥·期末)7.一元二次方程2470x x +-=的根的情况是( )A .无实数根B .有一个实根C .有两个相等的实数根D .有两个不相等的实数根【变式2-3】(23-24九年级·浙江台州·期末)8.对于一元二次方程()200ax bx c a ++=¹,下列说法不正确的是( )A .若=1x -是方程的解,则0a b c -+=B .若0c =,则方程20ax bx c ++=必有两个不相等的实数根C .若0ac <,则方程20ax bx c ++=必有两个不相等的实根D .若0a c +=,则方程20ax bx c ++=必有两个不相等的实数根【题型3 由一元二次方程的根的情况确定字母的值或取值范围】【例3】(23-24·四川广安·中考真题)9.若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ¹-B .0m ³C .0m £且1m ¹-D .0m <【变式3-1】(23-24九年级·浙江绍兴·期末)10.若方程240x x c -+=有两个相等的实数根,则c 的值是( )A .2B .3C .4D .8【变式3-2】(23-24九年级·安徽亳州·期末)11.关于x 的一元二次方程2240x x m ++=的根的判别式的值为24,则m = .【变式3-3】(23-24九年级·四川眉山·期末)12.关于x 的方程()21104k x x --+=有两个不相等的实根,则k 的取值范围是( )A .2k ³B .2k £且1k ¹C .2k >D .2k <且1k ¹【题型4 证明一元二次方程的根的情况】【例4】(23-24九年级·四川泸州·期末)13.已知:关于x 的一元二次方程()()2120x x m ---=.求证:无论m 取何值,该方程总有两个不相等的实数根.【变式4-1】(23-24九年级·北京顺义·期末)14.关于x 的一元二次方程210x mx m ++-=.(1)求证:方程总有两个实数根;(2)若方程的一个根小于2-,求m 的取值范围.【变式4-2】(23-24九年级·江苏泰州·期末)15.已知关于x 的一元二次方程223210x mx m m -++-=.(1)当2m =时,解这个方程;(2)试判断方程根的情况,并说明理由.【变式4-3】(23-24九年级·福建泉州·期末)16.已知关于x 的一元二次方程22430x mx m -+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的积为12,求m 的值.【题型5 由根的判别式求代数式的取值范围】【例5】(23-24九年级·安徽·期末)17.若实数a ,b 满足22240a ab ab -++=,则a 的取值范围是 .【变式5-1】(23-24九年级·浙江宁波·期末)18.已知实数,m n 满足223m mn n -+=,设22P m mn n =+-,则P 的最大值为( )A .3B .4C .5D .6【变式5-2】(23-24九年级·浙江温州·期中)19.已知关于x 的一元二次方程2230x x m -+=有实数根,设此方程的一个实数根为t ,令2241y t t m =-++,则y 的取值范围为.【变式5-3】(23-24九年级·江西景德镇·期末)20.设实数,,x y z 满足22227x y z xy yz zx ++---=,则y z -的最大值为 .【题型6 根的判别式与三角形的综合运用】【例6】(23-24九年级·四川眉山·期末)21.已知关于x 的一元二次方程()2232220x m x m m -+++=.(1)求证:无论m 取何值时,这个方程总有实数根;(2)若ABC V 的两边,AB AC 的长是这个方程的两个实数根,第三边BC 的长为3,当ABC V 是等腰三角形时,求m 的值.【变式6-1】(23-24九年级·山西晋城·期末)22.关于x 的方程22220-++=x cx a b 有两个相等的实数根,若a ,b ,c 是ABC V 的三边长,则这个三角形一定是( ).A .等边三角形B .直角三角形C .钝角三角形D .等腰直角三角形【变式6-2】(23-24九年级·河南驻马店·期末)23.已知关于x 的方程,()2220x k x k -++=.(1)求证:无论k 为任意实数值方程,总有实数根;(2)若等腰三角形ABC 的一边1a =,另两边b 、c 恰是这个方程的两个根,求三角形ABC 的周长.【变式6-3】(23-24·广东惠州·二模)24.已知关于x 的一元二次方程x 2﹣(2k +1)x +2k =0.(1)求证:方程总有两个实数根;(2)记该方程的两个实数根为x 1和x 2若以x 1,x 2,3为三边长的三角形是直角三角形,求k 的值.【题型7 根的判别式与四边形的综合运用】【例7】(23-24九年级·安徽黄山·期末)25.已知关于x 的一元二次方程()2350x k x k --+-=.(1)求证:无论k 取什么实数值,该方程总有两个不相等的实数根;(2)当11k =时,该方程的两个根分别是菱形ABCD 的两条对角线的长,求菱形ABCD 的面积.【变式7-1】(23-24九年级·湖南·阶段练习)26.已知ABCD Y 的两对角线AC ,BD 的长是关于x 的方程21024m x mx -+-=的两个实数根.(1)若AC 的长为1,求m 的值;(2)当m 为何值时,ABCD Y 是矩形.【变式7-2】(23-24九年级·广西崇左·期末)27.已知正方形ABCD 的对角线AC ,BD 的长是关于x 的方程202mx mx -+=的两个实数根.(1)求m 的值;(2)求正方形的面积.【变式7-3】(23-24·四川成都·二模)28.已知矩形的长和宽分别为a 和b ,如果存在另外一个矩形,它的周长和面积分别是已知矩形的三分之一,则a ,b 应该满足的条件为 .【题型8 根的判别式与不等式、分式、函数等知识的综合】【例8】(23-24九年级·重庆万州·期中)29.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( )A .2B .3C .4D .5【变式8-1】(23-24·广东汕头·三模)30.一元二次方程2240x x --=有两个实数根a ,b ,那么一次函数(1)y ab x a b =-++的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【变式8-2】(23-24九年级·安徽亳州·阶段练习)31.已知不等式组01312x a x ->ìïí-<ïî有且仅有4个整数解,则关于x 的方程()2210ax a x a +-+=的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断【变式8-3】(23-24·山东菏泽·模拟预测)32.已知关于x y 、的方程组2223,234x y m n xy n m n -=-ìí=-++î对每一个实数n 都有实数解,那么正整数m 的值为.【题型9 一元二次方程中的新定义问题】【例9】(23-24九年级·浙江宁波·期末)33.新定义:《a ,b ,c 》为一元二次方程20ax bx c ++=(其中0,,,a a b c ¹为实数)的“共同体数”,如:2210x x +-=的“共同体数”为《1,2,1-》,以下“共同体数”中能让一元二次方程20ax bx c ++=有两个不相等的实数根的是( )A .《3,2,1》B .《3,4,5》C .《1n +,2n ,1n -》D .1,,+《》m m m m【变式9-1】(23-24九年级·浙江金华·期末)34.对于实数a ,b 定义新运算:2a b b ab =-△,若关于x 的方程6x k =△有两个相等实数根,则k 的值为.【变式9-2】(23-24九年级·辽宁沈阳·阶段练习)35.定义一种新运算“a b V ”,对于任意实数a ,b ,231a b ba a =+-△,如23443331=´+´-△,若0x k =△(k 为实数)是关于x 的一元二次方程,并且该方程有实数根,则k 的取值范围是( )A .94k £-B .94k £-且0k ¹C .94k ³-D .94k ³-且0k ¹【变式9-3】(23-24·四川达州·一模)36.阅读下列材料:我们发现,关于x 的一元二次方程()200ax bx c a ++=¹,如果24b acD =-的值是一个完全平方数时,一元二次方程的根不一定都为整数,但是如果一元二次方程的根都为整数,D 的值一定是一个完全平方数.定义:两根都为整数的一元二次方程()200ax bx c a ++=¹称为“全整根方程”,代数式244ac b a-的值为该“全整根方程”的“最值码”,用(),,Q a b c 表示,即()24,,4ac b Q a b c a -=;若另一关于x 的一元二次方程()200px qx r p ++=¹也为“全整根方程”,其“最值码”记为(),,Q p q r ,当满足()(),,,,Q a b c Q p q r c -=时,则称一元二次方程()200ax bx c a ++=¹是一元二次方程()200px qx r p ++=¹的“全整根伴侣方程”.(1)“全整根方程”2320x x -+=的“最值码”是______;(2)关于x 的一元二次方程()2221230x m x m m --+--=(m 为整数、且415m <<)是“全整根方程”,请求出该方程的“最值码”;(3)若关于x 的一元二次方程()2120x m x m +-+-=是()210x n x n +--=(m ,n 均为正整数)的“全整根伴侣方程”,求m n -的值.【题型10 一元二次方程中的多结论问题】【例10】(23-24九年级·浙江绍兴·期末)37.已知()1a a >是关于x 的方程20x bx b a -+-=的实数根.下列说法:①此方程有两个不相等的实数根;②当1a t =+时,一定有1b t =-;③b 是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有( )A .①②B .②③C .①③D .③④【变式10-1】(23-24九年级·湖北武汉·阶段练习)38.关于x 的一元二次方程20ax bx c ++= 0a ¹() ,下列说法:①若420a b c -+=,则关于x 的方程20ax bx c ++=必有一个根为2x =;②当22c b +£(a ) (时,则关于x 的方程20ax bx c ++=必有实数根;③若260b ac ->,则方程一定有两个不相等的实数根;④若200ax bx c a ++=¹()和200cx bx a c +=+¹()有一个相同的根,那么这个根一定是1.其中正确的是(填序号)【变式10-2】(23-24九年级·河北石家庄·阶段练习)39.已知关于x 的一元二次方程()200ax bx c a ++=¹,下列说法正确的有( )①若0ac >,则方程20ax bx c ++=必有两个不相等的实根;②若0a b c ++=,则240b ac -³;③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;④若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+.A .1个B .2 个C .3个D .4 个【变式10-3】(23-24九年级·浙江舟山·期中)40.对于一元二次方程20(a 0)++=¹ax bx c ,有下列说法:①若方程20ax c +=有两个不相等的实数根,则方程20(a 0)++=¹ax bx c 必有两个不相等的实数根;②若方程20(a 0)++=¹ax bx c 有两个实数根,则方程20cx bx a ++=一定有两个实数根;③若c 是方程20(a 0)++=¹ax bx c 的一个根,则一定有10ac b ++=成立;④若0x 是一元二次方程20(a 0)++=¹ax bx c 的根,则2204(2)b ac ax b -=-其中正确的有( )A .1个B .2个C .3个D .4个1.A【分析】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)0D >,方程有两个不相等的实数根;(2)0D =,方程有两个相等的实数根;(3)0D <,方程没有实数根.根据根的判别式即可求出答案.【详解】解:由△2(3)41(2)170D =--´´-=>,\一元二次方程2320x x --=有两个不相等的实数根.故选:A 2.C【分析】本题主要考查了一元二次方程根的判别式.利用一元二次方程根的判别式,即可求解.【详解】解:∵()240414160b ac D =-=-´´-=>,∴方程有两个不相等的实数根,故选:C3.选②,方程的解为12x =-,23x =-;选③,方程的解为12x =,22x =-【分析】本题考查了一元二次方程根的判别式,以及解一元二次方程,解题的关键是掌握当方程有两个不相等的实数根时,判别式0D >.先根据判别式得出可选择的组,然后解方程即可.【详解】解:Q 使这个方程有两个不相等的实数根,240b ac \->,即24b ac>\②③均可,当选②解方程时:2560x x ++=,()()230x x ++=,20x +=或30x +=,12x \=-,23x =-;当选③解方程时:2420x x +-=,24424x x ++=+,()226x +=,2x +=,12x \=,22x =.4.D【分析】本题考查一元二次方程根的判别式与实数根之间的关系,注意根的判别式的各量是一般式的各项系数,根的判别式D 与实数根的情况之间的关系如下:0D >,一元二次方程有两个不相等的实数根;=0D ,一元二次方程有两个相等的实数根;0D <,一元二次方程无实数根.【详解】解:A 选项()2Δ241040=--´´=>,则A 选项有两个不等实数根,不符合题意;B 选项1616320D =+=>,则B 选项有两个不等实数根,不符合题意;C 选项方程的一般式为:2410x x -+=,则164120D =-=>,则C 选项有两个不等实数根,不符合题意;D 选项方程=0432240D -´´=-<,则D 选项没有实数根,符合题意.故选:D .5.A【分析】本题考查了一元二次方程根的判别式,配方法.先计算出方程的判别式,根据判别式的符号即可判断方程根的情况.【详解】解:关于x 的方程2(2)0x k x k +--=,∵1a =,2b k =-,=-c k ,∴2224(2)41()40b ac k k k -=--´´-=+>,所以关于x 的一元二次方程2(2)0x k x k +--=有两个不相等的实数根,故选:A .6.(1)3c =-,方程另外一个根为1x =(2)原方程有两个不相等的实数根【分析】本题主要考查了根的判别式以及解一元二次方程等知识点, (1)将2b =和方程的一个根为3-代入方程求出c 值,再解方程即可;(2)根据2114c b +=判断出D 的取值范围,进而进行判断即可;熟练掌握根的判别式以及解一元二次方程是解决此题的关键.【详解】(1)2b =Q 时,若方程的一个根为3-,()()23230c \-+´-+=解得:3c =-,\得到方程为2230x x +-=,解得13x =-或21x =,3c \=-,方程另外一个根为1x =;(2)2114c b +=Q ,∴2114c b =-222221Δ4414404b c b b b b æö\=-=--=-+=>ç÷èø,\原方程有两个不相等的实数根.7.D【分析】本题考查了根的判别式:先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵2470x x +-=,∴1,4,7a b c ===-,()24164171628440b ac D =-=-´´-=+=>,故选:D .8.B【分析】此题主要考查了解一元二次方程,一元二次方程的解,一元二次方程根的情况与判别式D 的关系:Δ0Û>方程有两个不相等的实数根;Δ0=Û方程有两个相等的实数根,Δ0Û<方程没有实数根.根据解一元二次方程的方法,判别式的意义,一元二次方程的解的定义逐项判断即可.【详解】解:A 、将x =―1代入方程20(a 0)++=¹ax bx c 可得:0a b c -+=,∴本选项说法正确,不符合题意;B 、若0c =,则方程为20ax bx +=,∴2240b ac b D =-=³,∴程20ax bx c ++=必有两个的实数根,故原说法错误,符合题意;C 、∵0ac <,∴240b ac D =->,∴方程20ax bx c ++=必有两个不相等的实数根,原说法正确,不符合题意;D 、∵方程20ax bx c ++=中,0a c +=,∵222440b ac b a D ==+->,∴方程20ax bx c ++=有两个不相等的实数根,故原说法正确,不符合题意;故选:B .9.A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +-+=两个不相等的实数根,可得0D >且10m +¹,解此不等式组即可求得答案.【详解】解:Q 关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,∴()()22410m D =--+>,解得:0m <,10m +¹Q ,1m \¹-,m \的取值范围是:0m <且1m ¹-.故选:A .10.C【分析】本题主要考查解一元二次方程根的判别式,掌握根的判别式是解题的关键.本题有两个相等的实数根,即240b ac D =-=,代入数值计算求解即可.【详解】解:∵该方程有两个相等实根,∴()2440c D =--=,解得4c =;故答案为:C .11.1-【分析】本题考查一元二次方程根的判别式.掌握一元二次方程()200ax bx c a ++=¹的根的判别式为24b ac D =-是解题关键.根据一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程2240x x m ++=的根的判别式的值为24,∴22444224b ac m D =-=-´=,解得:1m =-.故答案为:1-.12.D【分析】本题考查了根的判别式以及一元二次方程的定义,牢记“当0D >时,方程有两个不相等的实数根”是解题的关键.根据二次项系数非零及根的判别式0D >,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的方程()21104k x x --+=有两个不相等的实根,∴()()210114104k k -¹ìïí=--´->ïîV ,解得:2k <且1k ¹.故选:D .13.见解析【分析】本题考查了根的判别式,一元二次方程()200ax bx c a ++=¹的根与24b ac D =-有如下关系:当0D >时,方程有两个不相等的实数根;当0D =时,方程有两个相等的实数根;当0D <时,方程无实数根.根据根的判别式得出()()22234241m m D =---=+,然后说明0D >即可.【详解】证明:由()()2120x x m ---=得22320x x m -+-=,则()()22234241m m D =---=+,∵无论m 取何值,都有20m ³,∴24110m +³>,即0D >,∴无论m 取何值,原方程总有两个不相等的实数根.14.(1)见解析(2)3m >【分析】本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,解一元一次不等式.熟练掌握一元二次方程根的判别式,因式分解法解一元二次方程,解一元一次不等式是解题的关键.(1)根据()()222414420m m m m m D =--=-+=-³,证明即可;(2)由210x mx m ++-=,可得()()110x m x +-+=,解得,1x m =-或1x =-,由方程的一个根小于2-,可得12m -<-,计算求解即可.【详解】(1)证明:∵210x mx m ++-=,∴()()222414420m m m m m D =--=-+=-³,∴方程总有两个实数根;(2)解:∵210x mx m ++-=,∴()()110x m x +-+=,解得,1x m =-或1x =-,∵方程的一个根小于2-,∴12m -<-,解得,3m >.15.(1)123x x ==(2)有两个实数根,理由见解析【分析】本题考查解一元二次方程,由一元二次方程的判别式判断其根的情况.掌握解一元二次方程的方法和一元二次方程20(a 0)++=¹ax bx c 的根的判别式为24b ac D =-,且当0D >时,该方程有两个不相等的实数根;当0D =时,该方程有两个相等的实数根;当0D <时,该方程没有实数根是解题关键.(1)当2m =时,原方程为2690x x -+=,即()230x -=,再直接解方程即可;(2)根据方程可求出()()()2223412120m m m m D =--´´+-=-³,即可得出原方程有两个实数根.【详解】(1)解:当2m =时,原方程为223222210x x -´+´+-=,即为2690x x -+=,∴()230x -=,∴123x x ==;(2)解:由题意可知1a =,3b m =-,221c m m =+-,∴()()()222243412120b ac m m m m D =-=--´´+-=-³,∴原方程有两个实数根.16.(1)见解析(2)2m =【分析】此题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的判别式及一元二次方程的解法是解本题的关键.(1)表示出根的判别式,判断其值大于等于0即可得证;(2)利用因式分解法可得12,3x m x m ==,再由“该方程的两个实数根的积为12”可求得2312m =,计算即可求出m 的值.【详解】(1)证明:21,4,3a b m c m ==-=Q ,22224(4)4134b ac m m m \D =-=--´´=,Q 无论m 取何值时,240m ³,即0D ³,\原方程总有两个实数根;(2)解:22430x mx m -+=Q ,即:()()30x m x m --=,12,3x m x m \==,Q 该方程的两个实数根的积为122312m \=,2m \=±,0m >Q ,2m \=.17.80a -£<【分析】由实数a ,b 满足22240a ab ab -++=得到关于b 的一元二次方程22240ab ab a -++=,由根的判别式24320a a D =--³且20a ¹,得到不等式组,解不等式组即可得到a 的取值范围.【详解】解:∵实数a ,b 满足22240a ab ab -++=,∴关于b 的一元二次方程22240ab ab a -++=中,()()2224244320a a a a a D =--´+=--³且20a ¹,即()80a a +£且0a ¹,∴080a a >ìí+£î或080a a <ìí+³î,解得80a -£<,即a 的取值范围是80a -£<.故答案为:80a -£<【点睛】此题考查了一元二次方程根的判别式、一元一次不等式组的解法等知识,由根的判别式24320a a D =--³且20a ¹得到不等式组是解题的关键.18.C【分析】由原式得,223P m =-.将223m mn n -+=看成关于n 的一元二次方程,根据方程有实数解,所以()22Δ430m m =--³,可得24m £,进而得出结论.【详解】解:将两个等式相加得:232P m +=,则223P m =-.要求P 的最大值,只需求出2m 的最大值.将223m mn n -+=看成关于n 的一元二次方程,整理得:2230n mn m -+-=.根据方程有实数解,所以()22Δ430m m =--³.可得24m £,即2m 的最大值为4.所以当24m =时,P 的最大值为5.故选:C【点睛】本题考查等式性质,一元二次方程根的判别式,将含有多个参数的等式理解为含参数的一元二次方程,从而运用方程的知识解决问题是解题的关键.19.4y £【分析】由一元二次方程根的判别式先求解3m £,根据一元二次方程的解的定义得出223t t m -=代入代数式,进而即可求解.【详解】解:Q 关于x 的一元二次方程2230x x m -+=有实数根,244120b ac m \=-=-³V ,解得:3m £,设此方程的一个实数根为t ,223t t m\-=-\2241y t t m =-++341m m =-++1m =+3m £Q14m \+£ 即4y £故答案为:4y £.【点睛】本题考查的是一元二次方程根的判别式,一元二次方程的解的定义,不等式的性质,熟练的运用一元二次方程根的判别式与根与系数的关系是解本题的关键.20.6【分析】先将已知等式配成一个完全平方的形式,再令x y a y z b -=ìí-=î,将完全平方式转化为一个只含a 和b 的等式,然后将问题转化为已知一元二次方程的根的情况,求未知参数问题,最后利用根的判别式求解即可.【详解】22227x y z xy yz zx ++---=两边同乘以2得:2222()54x y z xy yz zx ++---=整理得:222()()()54x y y z x z -+-+-=①令x y ay z b -=ìí-=î,则x z a b-=+代入①得:222()54a b a b +++=化简得:22270a bab ++-=由题意可知,关于a 的一元二次方程22270a ba b ++-=有实数根则方程的根的判别式224(27)0b b D =--³解得:6b £,即6y z -£所以y z -的最大值为6故答案为:6.【点睛】本题是一道难题,考查了求代数式的极值的知识,在已知条件转换变形后,将其看成一个一元二次方程的实数根的情况来分析是解题关键.21.(1)见解析(2)m 的值为12【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程:(1)利用一元二次方程根的判别式,即可求解;(2)利用因式分解法求出方程的两根,1x m =,222x m =+,再根据等腰三角形的定义,即可求解.【详解】(1)解:()()22324122m m m D =-+-´´+éùëû22912488m m m m =++--244m m =++()220m =+³,∴无论m 取何值时,这个方程总有实数根.(2)解:()2232220x m x m m -+++=()()220x m x m ---=∴1x m =,222x m =+,当3m =时,三边为3,3,8(舍),当223m +=时, 12m =,三边为12,3,3,∴m 的值为12.22.B【分析】由关于x 的方程22220-++=x cx a b 有两个相等的实数根,可得()()222240c a b =--+=V ,整理得222c a b =+,根据勾股定理逆定理判断ABC V 的形状即可.【详解】解:∵关于x 的方程22220-++=x cx a b 有两个相等的实数根,∴()()222240c a b =--+=V ,整理得222c a b =+,∴ABC V 是直角三角形,故选:B .【点睛】本题考查了一元二次方程根的判别式,勾股定理逆定理.解题的关键在于对知识的熟练掌握与灵活运用.23.(1)证明见解析(2)5【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,等腰三角形的定义和构成三角形的条件:(1)根据一元二次方程根的判别式进行求解即可;(2)分当等腰三角形的腰长为1时,则1x =是方程()2220x k x k -++=的一个根,当底边长为1时,则原方程有两个相等的实数根,两种情况求出k 的值进而求出另一个根,再根据构成三角形的条件求解即可.【详解】(1)证明:由题意得,()228k k D =-+-éùëû 2448k k k =++-244k k =-+()220k =-³,∴无论k 为任意实数值方程,总有实数根;(2)解:当等腰三角形的腰长为1时,则1x =是方程()2220x k x k -++=的一个根,∴()1220k k -++=,∴1k =,∴原方程为2320x x -+=,解得1x =或2x =,∴底边长为2,∵112+=,∴此时不能构成三角形,不符合题意;当底边长为1时,则原方程有两个相等的实数根,∴()220k D =-=,∴2k =,∴原方程为2440x x -+=,解得122x x ==,∵122+>,∴此时能构成三角形,∴ABC V 的周长为2215++=.24.(1)见详解;(2)k 【分析】(1)先把方程变为一元二次方程一般式,然后确定()1212a b k c k ==-+=,,,再计算()22=4210b ac k D -=-³即可;(2)将方程因式分解得()()210x k x --=,得出方程的解1221x k x ==,,然后分两种情况2k <3与2k >3,分别根据勾股定理建构方程求解即可.【详解】解:(1)∵关于x 的一元二次方程x 2﹣(2k +1)x +2k =0.∴()1212a b k c k ==-+=,,,∴()()2222=4=-21412441210b ac k k k k k D -+-´´=-+=-³éùëû,∴方程总有两个实数根;(2)将方程因式分解得()()210x k x --=,解得1221x k x ==,,∵以2k ,1,3为三边长的三角形是直角三角形,∴当2k <3时,则()2221+23k =,解得k k ==舍去);当2k >3时,则()2221+32k =,解得k k ==舍去);以1,2k ,3为三边长的三角形是直角三角形,k 【点睛】本题考查一元二次方程根的判别式,因式分解法和直接开平方法解一元二次方程,勾股定理,掌握一元二次方程根的判别式,因式分解法和直接开平方法解一元二次方程,勾股定理是解题关键.25.(1)详见解析(2)3ABCD S =菱形【分析】(1)根据根的判别式的范围即可证明;(2)求出一元二次方程的两个根,根据菱形的面积公式进行解答即可;此题考查菱形的性质、一元二次方程根的判别式和解一元二次方程,熟练掌握一元二次方程根的判别式和一元二次方程的解法是解题的关键.【详解】(1)证明:()()()222Δ3415102954k k k k k éù=---´´-=-+=-+ëû,0\D >,\无论k 取什么实数值,该方程总有两个不相等的实数根.(2)当11k =时,原方程为2860x x -+=,1,8,6a b c ==-=,()2Δ841640=--´´=,∴4==x∴1244x x =+=-14432ABCD S \=´+´-=菱形((26.(1)32m =(2)1【分析】本题考查一元二次方程的解,根的判别式,矩形的判定.(1)将1x =代入方程,求出m 的值即可;(2)根据对角线相等的平行四边形为矩形,得到方程有两个相等的实数根,得到0D =,进行求解即可.【详解】(1)解:∵ABCD Y 的两对角线AC ,BD 的长是关于x 的方程21024m x mx -+-=的两个实数根,∴当AC 的长为1时,211024m m -+-=,解得:32m =;(2)∵ABCD Y 的两对角线AC ,BD ,∴当AC BD =时,ABCD Y 是矩形,\方程21024m x mx -+-=有两个相等的实数根,214024m m æö\D =--=ç÷èø,解得121m m ==,即m 的值为1.27.(1)2;(2)12.【分析】(1)先根据正方形的性质可得AC BD =,再利用一元二次方程根的判别式即可得;(2)先解一元二次方程可得1AC BD ==,再利用正方形的面积公式即可得.【详解】解:(1)在正方形ABCD 中,AC BD =,由题意得:关于x 的方程202m x mx -+=的根的判别式等于0,即220m m -=,解得122,0m m ==,0AC BD =>Q ,20m \=舍去,故m 的值为2;(2)由(1)得:方程为2210x x -+=,解得121x x ==,1AC BD \==,则正方形的面积为11111222AC BD ×=´´=.【点睛】本题考查了一元二次方程的几何应用、正方形的性质等知识点,熟练掌握一元二次方程根的判别式是解题关键.28.22+10a b ab³【分析】因为矩形的长和宽分别为a 、b ,所以其周长和面积分别为2(a +b )和ab ,设所求矩形的长为x ,则宽为13(a +b )-x ,其面积为x [13(a +b )-x ],根据题意得:x [13(a +b )-x ]=13ab ,因为存在另外一个矩形,使它的周长和面积分别是已知矩形的三分之一,故该方程有解,即△≥0,得出不等式即可求解.【详解】解:设所求矩形的长为x ,则宽为13(a +b )-x ,其面积为x [13(a +b )-x ],根据题意得:x [13(a +b )-x ]=13ab ,即()211-++=033x a b x ab ,∵存在该矩形,使它的周长和面积分别是已知矩形的三分之一∴方程有解,∴△=21()1433ab a b éù-ú´+êëû=221214++-9993a ab b ab =221101-+999a ab b ≥0∴22-10+0a ab b ³∴22+10a b ab³故答案为:22+10a b ab ³.【点睛】本题考查了一元二次方程解的判别式,解题的关键是根据题意,列出方程,把问题转化为求△的问题.29.B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0,∴31122a -££且a≠2,∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3,当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.30.D【分析】根据根与系数的关系即可求出ab 与a b +的值,然后根据一次函数的图象与性质即可求出答案.【详解】解:由根与系数的关系可知:2a b +=,4ab =-,∴15ab -=∴一次函数解析式为:52y x =+,故一次函数的图象一定不经过第四象限.故选:D .【点睛】本题考查了一元二次方程,解题的关键是熟练运用根与系数的关系以及一次函数的图象与性质.31.C【分析】本题考查解含参数的一元一次不等式组、不等式的性质及利用判别式确定一元二次方程根的情况等知识,先解一元一次不等式,再根据方程组解的情况得到34a £<,再结合一元二次方程的判别式,由不等式的性质确定0D <即可得到答案,熟练掌握含参数的一元一次不等式组的解法及判别式与一元二次方程根的情况是解决问题的关键.【详解】解:01312x a x ->ìïí-<ïî①②由①得x a >;由②得8x <;Q 不等式组01312x a x ->ìïí-<ïî有且仅有4个整数解,\34a £<;Q 关于x 的方程()2210ax a x a +-+=中,()2221441a a a D =--=-+,1511\-<D £-,即0D <,。
中考专项复习--一元二次方程根与判别式
一元二次方程根的判别式 精典例题: 【例1】当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根;(3)没有实根。
【例2】求证:无论m 取何值,方程03)7(92=-++-m x m x 都有两个不相等的实根。
【例3】当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m 有实根。
探索与创新:【问题一】已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x ,问是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由。
【问题二】如图,某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪(如图CDEF ,CD <CF )已知整修旧围栏的价格是每米1.75元,建新围栏的价格是每米4.5元。
(1)若计划修建费为150元,能否完成该草坪围栏修造任务?(2)若计划修建费为120元,能否完成该草坪围栏修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由。
跟踪训练:一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
3、如果二次三项式k x x 2432+-在实数范围内总能分解成两个一次因式的积,则k 的取值范围是 。
问题二图 F E D C B A4、在一元二次方程02=++c bx x 中)(c b ≠,若系数b 、c 可在1、2、3、4、5中取值,则其中有实数解的方程的个数是 。
二、选择题:1、下列方程中,无实数根的是( )A 、011=-+-x xB 、762=+y yC 、021=++xD 、0232=+-x x2、若关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实根,则m 的取值范围是( )A 、43<mB 、m ≤43C 、43>m 且m ≠2D 、m ≥43且m ≠2 3、在方程02=++c bx ax (a ≠0)中,若a 与c 异号,则方程( )A 、有两个不等实根B 、有两个相等实根C 、没有实根D 、无法确定三、试证:关于x 的方程1)2(2-=+-x m mx 必有实根。
2024北京中考数学专题训练01根的判别式(解析版)
2024北京中考数学专题训练01:根的判别式一.选择题(共11小题)1.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.9【分析】若一元二次方程有两个相等的实数根,则根的判别式Δ=b2﹣4ac,建立关于m 的等式,即可求解.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4m=0,解得m=.故选:C.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.2.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.C.D.4【分析】根据根的判别式的意义得到12﹣4m=0,然后解一次方程即可.【解答】解:根据题意得Δ=12﹣4m=0,解得m=.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.3.(2023秋•丰台区期末)若一元二次方程x2+mx+1=0有两个相等的实数根,则m的值是()A.2B.±2C.±8D.【分析】根据一元二次方程x2+mx+1=0有两个相等的实数根,得出Δ=m2﹣4=0,解关于m的方程,即可得出答案.【解答】解:∵一元二次方程x2+mx+1=0有两个相等的实数根,∴Δ=m2﹣4=0,解得:m=±2,故B正确.故选:B.【点评】本题主要考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0),当Δ=0时方程有两个相等的实数解,Δ<0时,无实数解,Δ>0时,有两个不相等的实数解.4.(2023秋•大兴区期末)关于一元二次方程x2﹣3x﹣1=0的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】根据根的判别式即可求出答案.【解答】解:∵Δ=(﹣3)2﹣4×1×(﹣1)=13>0,∴方程x2﹣3x﹣1=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3)Δ<0,方程没有实数根.5.(2023•大兴区一模)若关于x的一元二次方程x2+2x+m=0有实数根,则实数m的取值范围为()A.m<1B.m≤1C.m>1D.m≥1【分析】根据判别式的意义得到Δ=22﹣4m≥0,然后解关于m的不等式即可.【解答】解:根据题意得Δ=22﹣4m≥0,解得m≤1,故选:B.【点评】本题考查了根的判别式,掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根是解题的关键.6.(2023•平谷区一模)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<1【分析】根据方程的系数结合根的判别式Δ>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相同的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<1.故选:D.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.7.(2023•西城区一模)若关于x的方程mx2+3x﹣1=0有两个不相等的实数根,则实数m 的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0【分析】根据一元二次方程的定义和根的判别式与一元二次方程根的关系列出不等式组,解答即可.【解答】解:∵关于x的方程mx2+3x﹣1=0有两个不相等的实数根,∴Δ=32﹣4m•(﹣1)>0且m≠0,解得m>﹣且m≠0.故选:C.【点评】本题主要考查了一元二次方程的定义和根的判别式,熟练掌握一元二次方程的定义和根的判别式与一元二次方程根的关系是解决问题的关系.8.(2023•海淀区一模)若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,则m 的值是()A.﹣1B.0C.1D.2【分析】由关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,即可得判别式Δ=0,即可得方程4﹣4m=0,解此方程即可求得答案.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣2)2﹣4×1×m=4﹣4m=0,∴m=1.故选:C.【点评】此题考查了一元二次方程判别式的知识.此题难度不大,注意若一元二次方程有两个相等的实数根,则可得Δ=0.9.(2023•丰台区一模)若关于x的方程x2﹣x+a=0有两个相等的实数根,则实数a的值是()A.B.C.4D.﹣4【分析】若一元二次方程有两个相等的实数根,则根的判别式Δ=b2﹣4ac=0,建立关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2﹣x+a=0有两个相等的实数根,∴Δ=b2﹣4ac=1﹣4a=0,解得a=.故选:A.【点评】本题考查了根的判别式,掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根是解题的关键.10.(2023•顺义区一模)若关于x的一元二次方程x2﹣4x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m<4B.m<﹣4C.m>4D.m>﹣4【分析】根据判别式的意义得到Δ=22﹣4×1×3m>0,然后解不等式即可.【解答】解:根据题意得Δ=(﹣4)2﹣4×1×(﹣m)>0,解得m>﹣4.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.11.(2023•北京一模)若关于x的一元二次方程x2+2x+m=0有实数根,则m的值不可能是()A.2B.1C.﹣1D.﹣2【分析】根据方程有实数根结合根的判别式,即可得出Δ=4﹣4m≥0,解之即可得出m 的取值范围,再比照四个选项即可得出结论.【解答】解:∵关于x的一元二次方程x2+2x+m=0有实数根,∴Δ=4﹣4m≥0解得:m≤1.故选:A.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.二.填空题(共9小题)12.(2020•北京)关于x的方程x2+2x+k=0有两个相等的实数根,则k的值为1.【分析】根据根的判别式Δ=0,即可得出关于k的一元一次方程,解之即可得出k值.【解答】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴Δ=22﹣4×1×k=0,解得:k=1.故答案为:1.【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.13.(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴Δ=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.14.(2023•西城区)若关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值为9.【分析】根据关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根得Δ=36﹣4c=0,进行计算即可得.【解答】解:∵关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,∴Δ=36﹣4c=0,∴c=9.故答案为:9.【点评】本题考查了一元二次方程根的个数与根的判别式的关系,解题的关键是掌握一元二次方程的个数与根的判别式的关系.15.(2023•石景山区一模)若关于x的一元二次方程x2+4x+m=0有两个不相等的实数根,则实数m的取值范围是m<4.【分析】由方程有两个不相等的实数根可知,b2﹣4ac>0,代入数据可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:Δ=b2﹣4ac=42﹣4×1×m=16﹣4m>0,解得:m<4.故答案为:m<4.【点评】本题考查了根的判别式,解题的关键是得出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.16.(2023•门头沟区一模)如果关于x的方程x2+4x+2m=0有两个不相等的实数根,那么m 的取值范围是m<2.【分析】要使方程x2+4x+2m=0有两个不相等的实数根,只需Δ>0.即可得到关于m 的不等式,从而求得m的范围.【解答】解:∵方程x2+4x+2m=0有两个不相等的实数根,∴Δ=16﹣8m>0,即m<2.【点评】本题考查了一元二次方程根的判别式的应用,正确记忆根的判别式是解题关键.17.(2023•房山区一模)关于x的一元二次方程ax2+4x+c=0有两个相等的实数根,写出一组满足条件的实数a,c的值:a=1(答案不唯一),c=4(答案不唯一).【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣4ac=0,取a=1找出c值即可.【解答】解:∵关于x的一元二次方程ax2+4x+c=0(a≠0)有两个相等的实数根,∴Δ=42﹣4ac=0,∴ac=4,即当a=1时,c=4.故答案为:1(答案不唯一);4(答案不唯一).【点评】本题考查了根的判别式,熟练掌握“当Δ=0时,方程有两个相等的实数根”是解题的关键.18.(2023•朝阳区一模)关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为9.【分析】根据一元二次方程根的判别式的意义,方程x2+6x+m=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+6x+m=0有两个相等的实数根,∴Δ=0,即62﹣4×1×m=0,解得m=9.故答案为:9.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.19.(2023•朝阳区二模)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出Δ=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴Δ=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.20.(2023•房山区二模)若关于x的一元二次方程x2+6x+m=0有两个实数根,则实数m的取值范围是m≤9.【分析】根据一元二次方程根的判别式的意义得到Δ=62﹣4m≥0,然后解不等式即可.【解答】解:根据题意得Δ=62﹣4m≥0,解得m≤9,即实数m的取值范围是m≤9.故答案为:m≤9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.三.解答题(共21小题)21.(2021•北京)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.【分析】(1)根据方程的系数,结合根的判别式可得出Δ=4m2,利用偶次方的非负性可得出4m2≥0,即Δ≥0,再利用“当Δ≥0时,方程有两个实数根”即可证出结论;(2)方法一:利用因式分解法求出x1=m,x2=3m.由题意得出m的方程,解方程则可得出答案.方法二:利用根与系数的关系可求出答案.【解答】(1)证明:∵a=1,b=﹣4m,c=3m2,∴Δ=b2﹣4ac=(﹣4m)2﹣4×1×3m2=4m2.∵无论m取何值时,4m2≥0,即Δ≥0,∴原方程总有两个实数根.(2)解:方法一:∵x2﹣4mx+3m2=0,即(x﹣m)(x﹣3m)=0,∴x1=m,x2=3m.∵m>0,且该方程的两个实数根的差为2,∴3m﹣m=2,∴m=1.方法二:设方程的两根为x1,x2,则x1+x2=4m,x1•x2=3m2,∵x1﹣x2=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,∴(4m)2﹣4×3m2=4,∴m=±1,又m>0,∴m=1.【点评】本题考查了根的判别式、偶次方的非负性以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)利用因式分解法求出方程的解.22.(2019•北京)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.23.(2018•北京)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算根的判别式的值得到Δ=a2+4,则可判断Δ>0,然后根据根的判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到Δ=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)根据题意得a≠0,∵Δ=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,而a2>0,∴Δ>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴Δ=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.24.(2017•北京)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【分析】(1)根据方程的系数结合根的判别式,可得Δ=(k﹣1)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,Δ=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.【点评】本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k的一元一次不等式.25.(2016•北京)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)由方程有两个不相等的实数根即可得出Δ>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴Δ=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.【点评】本题考查了根的判别式、解一元一次不等式以及用因式分解法解一元二次方程,解题的关键是:(1)根据根的个数结合根的判别式得出关于m的一元一次不等式;(2)选取m的值.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.26.(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【分析】(1)先计算判别式的值得到Δ=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m 的值.【解答】(1)证明:∵m≠0,Δ=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.27.(2023秋•东城区期末)已知关于x的一元二次方程x2﹣(2m+1)x+m2﹣2=0.(1)当该方程有两个不相等的实数根时,求m的取值范围;(2)当该方程的两个实数根互为相反数时,求m的值.【分析】(1)根据关于x的一元二次方程x2﹣(2m+1)x+m2﹣2=0有两个不相等的实数根,则Δ>0,列出不等式,即可求出m的取值范围.(2)利用根与系数的关系得到2m+1=0,解关于m的方程即可求解.【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m2﹣2=0有两个不相等的实数根,∴[﹣(2m+1])2﹣4(m2﹣2)>0,解得:m>﹣.∴m的取值范围是m>﹣.(2)根据题意得2m+1=0,解得m=﹣,故m的值为﹣.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.也考查了根的判别式.28.(2024•海淀区)已知关于x的方程x2﹣2mx+m2﹣n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的2倍,求m的值.【分析】(1)根据一元二次方程的根的判别式,建立关于n的不等式,求出n的取值范围;(2)由题意可得n=1,设该方程的根是a,2a,根据根与系数的关系列方程求解即可.【解答】解:(1)∵关于x的方程x2﹣2mx+m2﹣n=0有两个不相等的实数根,∴Δ=(﹣2m)2﹣4(m2﹣n)=4m2﹣4m2+4n>0,∴n>0;(2)∵n为符合条件的最小整数,n>0,∴n=1,∴原方程为:x2﹣2mx+m2﹣1=0,设该方程的根是a,2a,∴a+2a=2m,a•2a=m2﹣1,解得a=2,m=3或a=﹣2,m=﹣3(不合题意,舍去),∴m的值为3.【点评】本题考查了一元二次方程根的判别式和根与系数的关系,熟知一元二次方程的根的判别式和根与系数的关系是解题的关键.29.(2023秋•朝阳区期末)关于x的一元二次方程x2﹣(m+4)x+3(m+1)=0.(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m的取值范围.【分析】(1)先计算根的判别式的值得到Δ=(m﹣2)2,则Δ≥0,然后根据根的判别式的意义得到结论;(2)先利用求根公式解方程得到x1=m+1,x2=3,则根据题意得到m+1<0,然后解不等式即可.【解答】(1)证明:∵Δ=(m+4)2﹣4×3(m+1)=m2﹣4m+4=(m﹣2)2≥0,∴该方程总有两个实数根;(2)解:x=,解得x1=m+1,x2=3,∴m+1<0,解得m<﹣1,即m的取值范围为m<﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.30.(2023秋•大兴区期末)已知关于x的一元二次方程x2﹣x+2m﹣2=0有两个实数根.(1)求m的取值范围;(2)当m取最大整数值时,求方程的根.【分析】(1)根据根与系数的关系列不等式即可得到结论;(2)根据题意解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣x+2m﹣2=0有两个实数根,∴Δ=(﹣1)2﹣4×1×(2m﹣2)=1﹣8m+8=9﹣8m,∴9﹣8m≥0,∴解得;(2)∵,m为最大整数,∴m=1,∴x2﹣x=0,解得:x1=0,x2=1.【点评】本题考查了解一元二次方程﹣公式法,熟练掌握解一元二次方程的步骤是解题的关键.31.(2023•西城区)已知关于x的一元二次方程x2﹣(m+2)x+m+1=0,(1)求证:此方程总有两个实数根;(2)若此方程的一根是另一根的2倍,求m的值.【分析】(1)先计算根的判别式的值得到Δ=m2,则Δ≥0,然后根据根的判别式的意义得到结论;(2)方程的一根为t,则另一根为2t,利用根与系数的关系得到t+2t=m+2,t•2t=m+1,先消去m得到2t2﹣3t=﹣1,解方程求出t,然后计算对应的m的值即可.【解答】(1)证明:∵Δ=[﹣(m+2)]2﹣4(m+1)=m2≥0,∴此方程总有两个实数根;(2)解:方程的一根为t,则另一根为2t,根据题意得t+2t=m+2,t•2t=m+1,∴2t2﹣3t=﹣1,整理得2t2﹣3t+1=0,解得t1=1,t2=,当t=1时,1+2=m+2,解得m=1,当t=时,+1=m+2,解得m=﹣,综上所述,m的值为﹣或1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.分类讨论是解决问题的关键.32.(2023•延庆区一模)已知关于x的一元二次方程x2+mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)如果方程有一个根为正数,求m的取值范围.【分析】(1)先计算判别式的意义得到Δ=(m﹣2)2≥0,然后根据判别式的意义得到结论;(2)先利用求根公式解方程得x1=﹣1,x2=﹣m+1,再根据题意得到﹣m+1>0,从而得到m的范围.【解答】(1)证明:∵Δ=m2﹣4(m﹣1)=m2﹣4m+4=(m﹣2)2≥0,∴方程总有两个实数根;(2)x=,解得x1=﹣1,x2=﹣m+1,∵方程只有一个根是正数,∴﹣m+1>0,∴m<1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.33.(2023•北京二模)已知关于x的一元二次方程x2﹣4x+m+2=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,求此时方程的根.【分析】(1)根据方程的系数结合根的判别式Δ=b2﹣4ac>0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由(1)的结论结合m为正整数,即可得出m=1,将其代入原方程,再利用因式分解法解一元二次方程,即可求出原方程的解.【解答】解:(1)∵关于x的一元二次方程x2﹣4x+m+2=0有两个不相等的实数根∴Δ=b2﹣4ac=(﹣4)2﹣4×1×(m+2)>0,解得:m<2,∴m的取值范围为m<2.(2)∵m为正整数,∴m=1,∴原方程为x2﹣4x+3=0,即(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴若m为正整数时,方程的根为1和3.【点评】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当Δ>0时,方程有两个不相等的实数根”;(2)利用因式分解法求出方程的两个根.34.(2023•大兴区二模)已知关于x的方程x2﹣(m+4)x+4m=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于1,求m的取值范围.【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可.【解答】(1)证明:∵Δ=b2﹣4ac=[﹣(m+4)]2﹣4×4m=m2﹣8m+16=(m﹣4)2≥0,∴此方程总有两个实数根.(2)解:用因式分解法解此方程x2﹣(m+4)x+4m=0,可得(x﹣4)(x﹣m)=0,解得x1=4,x2=m,若该方程有一个根小于1,则m<1.【点评】本题考查了一元二次方程ax2+bx+c=0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.35.(2023•顺义区二模)已知关于x的方程x2﹣bx+2b﹣4=0.(1)求证:方程总有两个实数根;(2)若b为正整数,且方程有一个根为负数,求b的值.【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可.【解答】(1)证明:∵Δ=(﹣b)2﹣4×(2b﹣4)=b2﹣8b+16=(b﹣4)2.∵(b﹣4)2≥0,∴方程总有两个实数根.(2)解:用因式分解法解此方程x2﹣bx+2b﹣4=0,可得(x﹣2)(x﹣b+2)=0,解得x1=2,x2=b﹣2,若方程有一个根为负数,则b﹣2<0,故b<2,∵b为正整数,∴b=1.【点评】本题考查了一元二次方程ax2+bx+c=0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.36.(2023•丰台区二模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:该方程总有两个不相等的实数根;(2)选择一个m的值,使得方程至少有一个正整数根,并求出此时方程的根.【分析】(1)先计算根的判别式的值得到Δ>0,从而利用根的判别式的意义得到结论;(2)m可以取0,然后利用直接开平方法解方程.【解答】(1)证明:∵Δ=(﹣2m)2﹣4(m2﹣4)=16>0,∴该方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2﹣4=0,解得x1=2,x2=﹣2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.37.(2023•石景山区二模)已知关于x的一元二次方程x2﹣2mx+m2﹣1=0(1)求证:该方程总有两个不相等的实数根;(2)若m>1,且该方程的一个根是另一个根的2倍,求m的值.【分析】(1)先计算出根的判别式的值得到Δ=4>0,然后根据根的判别式的意义得到结论;(2)设方程的一个根为t,则另一个根为2t,利用根与系数的关系得t+2t=2m,t•2t=m2﹣1,消去t得到m2﹣9=0,然后解关于m的方程,从而得到满足条件的m的值.【解答】(1)证明:∵Δ=(﹣2m)2﹣4(m2﹣1)=4>0,∴该方程总有两个不相等的实数根;(2)解:设方程的一个根为t,则另一个根为2t,根据根与系数的关系得t+2t=2m,t•2t=m2﹣1,∴t=m,∴2×(m)2=m2﹣1,整理得m2﹣9=0,解得m1=3,m2=﹣3,∵m>1,∴m的值为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则x1+x2=﹣,x1x2=.也考查了根的判别式.38.(2023•昌平区二模)关于x的一元二次方程x2﹣kx+k﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于0,求k的取值范围.【分析】(1)根据判别式即可求出答案;(2)根据因式分解法可求出方程的两根,然后列出不等式即可求出k的范围.【解答】(1)证明:由题意可知:Δ=k2﹣4k+4=(k﹣2)2≥0,∴方程总有两个实数根;(2)解:∵x2﹣kx+k﹣1=0,∴(x﹣k+1)(x﹣1)=0,∴x=k﹣1或x=1,∵方程有一个根小于0,∴k﹣1<0,∴k<1.【点评】本题考查一元二次方程,熟练运用一元二次方程的解法是解题的关键.39.(2023•西城区二模)关于x的方程x2﹣3x+m+1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围,求得m=1,进而解方程得出答案.【解答】解:∵关于x的方程x2﹣3x+m+1=0有实数根,∴b2﹣4ac=9﹣4(m+1)≥0,∴﹣4m+5≥0,解得:m≤,∵m为正整数,∴m=1,∴原方程可化为x2﹣3x+2=0,解得:x1=2,x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.40.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.【分析】(1)通过计算根的判别式进行推理证明;(2)将x=1代入该方程,通过求解关于k的一元二次方程进行求解.【解答】(1)证明:∵a=1,b=﹣2k,c=k2﹣1,∴b2﹣4ac=(﹣2k)2﹣4×1×(k2﹣1)=4k2﹣4k2+4=4>0,∴方程有两个不相等的实数根;(2)由题意得12﹣2k×1+k2﹣1=0,整理,得k2﹣2k=0,解得k1=0,k2=2,∴k的值为0或2.【点评】此题考查了一元二次方程的求解和根的判别式的应用能力,关键是能准确理解并运用以上知识进行正确地求解.41.(2023•海淀区二模)已知关于x的一元二次方程x2﹣2x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为﹣1,求m的值和方程的另一个根.【分析】(1)求出b2﹣4ac的值,再根据根的判别式判断即可;(2)把x=﹣1代入方程,求出m的值,再设方程的另一个根为x2,根据根与系数的关系求出x2的值即可.【解答】解:(1)方程有两个不相等的实数根.∵关于x的一元二次方程x2﹣2x+m=0中,a=1,b=﹣2,c=m,∴b2﹣4ac=(﹣2)2﹣4×1×m=4﹣4m,∵m<0,∴4﹣4m>0,∴原方程有两个不相等的实数根.(2)∵﹣1是方程的一个根,∴(﹣1)2﹣2×(﹣1)+m=0,∴m=﹣3;设方程的另一个根为x2,∵﹣1+x2=2,∴x2=3.∴m=﹣3,方程的另一个根为3.【点评】本题考查了解一元二次方程、根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系是解此题的关键.第21页(共21页)。
中考数学专题讲练04 一元二次方程根的判别式的参数问题(原卷版)
查补易混易错04 一元二次方程根的判别式的参数问题一元二次方程根的判别式不仅是《一元二次方程》章节中的重要考点,也是二次函数求交点个数问题的重要方法。
中考数学中对该考点的考察中,一个特别重要的题型就是引入参数,由一元二次方程解的情况,求解方程中参数的取值范围;逆向考察亦可。
中考五星高频考点,在全国各地中考试卷中基本都有考察,难度中等偏上。
易错01:一元二次方程02=++c bx ax 根的判别式的几种情况:①042>ac b - 2个不相等的实数根;②042=-ac b 2个相等的实数根③042<ac b - 方程无实数根易错02:1.一元二次方程解的情况无论是什么,都必须先满足 0≠a ;2. 如果题目中出现方程02=++c bx ax 有实数根,则可以是一元一次方程,即不要求0≠a ;3. 有些一元二次方程根的判别式问题会和韦达定理一起考,出现方程的解为21x x 、时,注意联系韦达定理。
【中考真题练】1.(2022•淮安)若关于x 的一元二次方程x 2﹣2x ﹣k =0没有实数根,则k 的值可以是( )A .﹣2B .﹣1C .0D .12.(2022•内蒙古)对于实数a ,b 定义运算“⊗”为a ⊗b =b 2﹣ab ,例如3⊗2=22﹣3×2=﹣2,则关于x 的方程(k ﹣3)⊗x =k ﹣1的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定3.(2022•巴中)对于实数a ,b 定义新运算:a ※b =ab 2﹣b ,若关于x 的方程1※x =k 有两个不相等的实数根,则k 的取值范围( )A.k>﹣B.k<﹣C.k>﹣且k≠0D.k≥﹣且k≠0 4.(2022•西藏)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.(2022•营口)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为()A.m<4B.m>﹣4C.m≤4D.m≥﹣4 6.(2022•辽宁)下列一元二次方程无实数根的是()A.x2+x﹣2=0B.x2﹣2x=0C.x2+x+5=0D.x2﹣2x+1=0 7.(2022•包头)若x1,x2是方程x2﹣2x﹣3=0的两个实数根,则x1•x22的值为()A.3或﹣9B.﹣3或9C.3或﹣6D.﹣3或6 8.(2022•东营)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是.9.(2022•扬州)请填写一个常数,使得关于x的方程x2﹣2x+=0有两个不相等的实数根.10.(2022•十堰)已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.【中考模拟练】1.(2023•佛冈县校级二模)关于x的一元二次方程2x2+4x+a=0没有实数根,则实数a的取值范围是()A.B.a<0C.a>2D.a≥4 2.(2023•嘉定区二模)下列关于x的方程一定有实数解的是()A.x2+1=0B.x2﹣x+1=0C.x2﹣bx+1=0(b为常数)D.x2﹣bx﹣1=0(b为常数)3.(2023•北京一模)若关于x的一元二次方程x2+2x+m=0有实数根,则m的值不可能是()A.2B.1C.﹣1D.﹣2 4.(2023•东城区校级一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根5.(2023•文山市一模)关于x的一元二次方程kx2﹣4x+2=0有两个实数根,则k的取值范围是()A.k>4B.k≤2C.k<4且k≠0D.k≤2且k≠0 6.(2023•西城区一模)若关于x的方程mx2+3x﹣1=0有两个不相等的实数根,则实数m 的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0 7.(2023•临朐县一模)若关于x的方程x2﹣x=k有两个不相等的实数根,则k的取值范围是.8.(2023•房山区一模)关于x的一元二次方程ax2+4x+c=0有两个相等的实数根,写出一组满足条件的实数a,c的值:a=,c=.9.(2023•工业园区一模)已知关于x的一元二次方程x2﹣2mx+2m﹣1=0.(1)若该方程有一个根是x=2,求m的值;(2)求证:无论m取什么值,该方程总有两个实数根.10.(2023•鼓楼区校级模拟)已知关于x的一元二次方程x2﹣(2k+2)x+2k+1=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于3,求k的取值范围.。
中考专题一元二次方程根的判别式及根与系数的关系
一元二次方程根的判别式及根与系数的关系【重点、难点、考点】重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。
②掌握根与系数的关系及应用难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。
考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。
【经典范例引路】例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m<43B.m ≤43C.m>43且m ≠2D.m ≥43且m ≠2(20XX 年山西省中考试题)【解题技巧点拨】 解 C①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形解题原理:对方程ax 2+bx +c =0 (a ≠0)方程有两实根Δ方程有两相等实根Δ方程有两不等实根Δ⇔≥⎭⎬⎫⇔=⇔>000Δ<0⇔方程没有实根注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。
例2 先阅读下列第(1)题的解答过程(1)已知αβ是方程x2+2x-7=0的两个实数根。
求α2+3β2+4β的值。
解法1 ∵α、β是方程x2+2x-7=0的两实数根∴α2+2α-7=0 β2+2β-7=0 且α+β=-2∴α2=7-2αβ2=7-2β∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2×(-2)=32解法2 由求根公式得α=-1+22β=-1-22∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22)=9-42+3(9+42-4-82)=32解法3 由已知得:α+β=-2 αβ=-7∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2+4α=B∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ①A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ②①+②得:2A=64 ∴A=32请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题(2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。
一元二次方程根的判别式及根与系数的关系
2021年中考专题复习一元二次方程根的判别式和根与系数的关系回忆与思考1.一元二次方程ax2+bx+c = 0(a≠0)的根的情况可由△=b2-4ac来判定:(1)当b2–4ac>0时,方程有实数根,即x1=,x2=.当b2–4ac=0时,方程有实数根,即x1=x2=.当b2–4ac<0时,方程实数根.我们把b2-4ac叫做一元二次方程ax2+bx+c = 0(a≠0)的根的判别式.(2)一元二次方程根的判别式的应用:①不解方程,判别根的情况,特别是判别含有字母系数的一元二次方程根的情况,可通过配方法把b2–4ac变形为±(m±h)2+k的形式,由此得出结论,无论m为何值,b2–4ac≥0或b2–4ac<0,从而判定一元二次方程根的情况.一般步骤是:先计算△,再用配方法将△恒等变形,然后判断△的符号,最后得出结论.②根据方程的根的情况,求待定系数的取值范围;③进展有关的证明.(3)关于根的判别式的应用:①对于数字系数方程,可直接计算其判别式的值,然后判断根的情况;②对于字母系数的一元二次方程,假设知道方程根的情况,可以确定判别式大于零、等于零还是小于零,从而确定字母的取值范围;③运用配方法,并根据一元二次方程根的判别式可以证明字母系数的一元二次方程的根的有关问题.(4)应用根的判别式须注意以下几点:①要用△,要特别注意二次项系数a≠0这一条件.②认真审题,严格区分条件和结论,譬如是△>0,△≥0还是要证明△<0.③要证明△≥0或△<0,需用配方法将△恒等变形为±(m±h)2+k的形式,从而得到判断.2.一元二次方程的根与系数的关系(1)如果方程ax2+bx+c = 0(a≠0)的根是x1和x2,那么x1+x2=,x1x2=.特别低,如果方程x2+px+q = 0的根是x1和x2,那么x1+x2=,x1x2=.(2)一元二次方程根与系数关系的应用.①验根.验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:一要先把一元二次方程化成标准型,二不要漏除二次项系数a≠0;三还要注意–ba中的符号.②方程一根,求另一根.③不解方程,求与根有关的代数式的值.一般步骤:先求出x1+x2,x1x2的值,再将所求代数式用x1+x2,x1x2的代数式表示,然后将x1+x2,x1x2的值代入求值.④两个数,求作以这两个数为根的一元二次方程:以x1,x2为根的一元二次方程可写成x2-(x1+x2)x+x1x2=0.(3)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2–4ac≥0;②二次项系数a≠0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.(4)求方程两根所组成的代数式的值,关键在于把所求代数式变形为两根的和与两根的积的形式.(5) 常见的形式:3.二次三项式的因式分解:ax2+bx+c=a(x-x1)(x-x2).其中x1,x2是关于x的方程ax2+bx+c=0的两个实数根.【例1】不解方程,判定关于x的方程根的情况(1)2x2–9x+8=0 (2)9x2+6x+1=0 (3) 16x2+8x=–3 (4)x2=7x+18(5)2x2–(4k+1)x+2k2–1=0 (6)x2+(2t+1)x+(t–2)2=0【例2】(1)关于x的一元二次方程kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.(2)假设关于x的一元二次方程(a–2)x2–2ax+a+1=0没有实数解,求ax+3>0的解集〔用含a 的式子表示〕.【例3】(1)关于x的方程x2–mx+m–2=0,求证:方程有两个不相等的实数根(2)求证:方程(m2+1)x2–2mx+(m2+4)=0没有实数根.【例4】(1)方程x2–5x–6=0的根是x1和x2,求以下式子的值:①(x1–3)(x2–3) ②x12+x22+x1x2③x1x2+x2x1(2)利用根与系数的关系,求一个一元二次方程,①使它的根分别是方程3x2–x–10=0各根的3倍;②使它的根分别是方程3x2–x–10=0各根的负倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题:根的判别式及相关运算
1.已知关于x的方程mx2+(3﹣2m)x+m﹣3=0,其中m>0.求证:方程总有两个不相等的实数根
2. 已知关于x的方程x2﹣(k+2)x+2k﹣1=0.
(1)求证:方程总有两个不相等的实数根;
(2)如果方程的一个根为x=3,求k的值及方程的另一根.
3. 已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求证:无论k为何值时,该方程总有实数根;
(2)若两个实数根平方和等于5,求k的值.
4. 已知关于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求证:此一元二次方程恒有实数根.
(2)无论k为何值,该方程有一根为定值,请求出此方程的定值根.
5. 已知关于x的方程mx2+(3﹣2m)x+m﹣3=0,其中m≠0.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根都是整数,求整数m的值.
6. 已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).
7. 已知关于x的一元二次方程x2﹣(k+2)x+(2k﹣1)=0.
(1)求证:该方程由两个不相等的实数根.
(2)若此方程有一个根是1,请求出方程的另一个根,并求出以此两根为边长的等腰三角形的周长.
8. 已知关于x的方程(x﹣1)(x﹣3)=m2,求证:无论m取何值时方程总有两个不相等的实数根;a,b是此方程的两根且a2+b2=12,求m的值.
9.已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根.
(1)求证:无论k为何值时,方程总有两个不相等的实数根.
(2)k为何值时,△ABC是以BC为斜边的直角三角形.
10. 已知关于x的一元二次方程x2﹣4x+m=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.。