空间向量与立体几何复习最新版

合集下载

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

空间向量与立体几何知识点和习题(含答案)

空间向量与立体几何知识点和习题(含答案)

空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b .(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉;②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0;|a |2=a ·a ;|a ·b |≤|a ||b |.③空间向量的数量积的运算律:(λ a )·b =λ (a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c .(4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a 在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是 .)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ;②l ⊥m ⇔a ⊥b ⇔a ·b =0;③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ;⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ;⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然 ]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S ,)32,2,3(RS PQ =-= ∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD ,∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1). 由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1). ∴),1,0,2(),2,1,0(==CN AM 设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角.设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB ∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A ⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB a DC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a a AD a a a AC =-= 23||||cos 111==∴⋅AD AC ADAC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ .30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E .∵P A =AC =1,P A ⊥AC ,∴PC =BC =2,∴CD ⊥PB .∵EA ⊥PB , ∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DCEA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a 得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1). ∴⋅-=>=<⋅33||||,cos b a b a b a ∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP == ∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠⋅AE AD AEAD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2 (B)2 (C)5 (D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( )(A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n(B)θ >ϕ,m <n (C)θ <ϕ,m <n (D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000(B)3cm 38000(C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||. BA BM BA BM = 即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos 〉MS ,GB 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==⋅MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

《空间向量与立体几何》单元复习与巩固

《空间向量与立体几何》单元复习与巩固

《空间向量与立体几何》单元复习与巩固知识网络知识要点梳理知识点一:平面的法向量定义:已知平面,直线,取的方向向量,有,则称为为平面的法向量。

注意:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量。

已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量。

知识点二:用向量方法判定空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行。

(1)线线平行设直线,的方向向量分别是,,则要证明,只需证明,即。

(2)线面平行①设直线的方向向量是,平面的向量是,则要证明,只需证明,即。

②根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量。

③根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可。

(3)面面平行①由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可。

②若能求出平面,的法向量,,则要证明,只需证明。

知识点三:用向量方法判定空间的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直。

(1)线线垂直设直线,的方向向量分别为,,则要证明,只需证明,即。

(2)线面垂直①设直线的方向向量是,平面的向量是,则要证明,只需证明。

②根据线面垂直的判定定理转化为直线与平面内的两条相交直线垂直。

(3)面面垂直①根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直。

②证明两个平面的法向量互相垂直。

知识点四:利用向量求空间角(1)求异面直线所成的角已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则。

注意:两异面直线所成的角的范围为(00,900]。

空间向量与立体几何复习

空间向量与立体几何复习

解:建立如图所示空间坐标系,
则B→CD→1=B=(-(22,2,0,0,1)),.D→D1=(0,0,1),
O
y
设平面 BD1 的法向量 n=(x,y,z). x
n·D→B=2x+2y=0,
令x=1得
∴n·D|c→Dos1〈 =zn=,0B,→C1〉|=||B∴B→→CCn11=|·|nn(||1=,-52·1,02)=.
②求cos = cos CD, AB
二、直线AB和平面所成的角:
CD | AB |
定义:平面的垂线为AO,斜线AB与射影BO所成的角.
求斜线AB和平面所成的角 :
A
①求 AB和平面法向量 n
②求cos AB, n AB n AB | n |
③求sin cos AB, n
n
B
o
线面角正弦=斜线与法向量夹角余弦绝对值
(4)解方程组,令其中一个量的值求另外两个,
即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
B
l
a
m
D
平面 , 的法向量分别为
线线平行:
n1
, n2

l ∥ m AB ∥ CD AB kCD

x1 y1
=
A
x2
y2
=
b
C
x3 y3
线面平行
Aa B n
l ∥ AB n1 AB n1 0 ;
面面平行
∥ n1 ∥ n2 n1 kn2
n1
n2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
B
l
a
平面 , 的法向量分别为 n1 , n2 ,

空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。

立体几何和空间向量综合知识点(高中数学)

立体几何和空间向量综合知识点(高中数学)

立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。

2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。

3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。

(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。

(3)长方体外接球的直径是长方体的体对角线长222c b a ++。

《空间向量与立体几何》章末复习

《空间向量与立体几何》章末复习

[例 3] 已知空间四边形 OABC,M段 MN 上,且MGNG=2,设O→G=
xO→A+yO→B+zO→C,则 x、y、z 的值分别是
()
A.x=13,y=13,z=13
B.x=13,y=13,z=16
C.x=13,y=16,z=13
D.x=16,y=13,z=13
从而F→E=(-a3,b3,3c),A→C1=(-a,b,c), ∴F→E=13A→C1. 又 FE 与 AC1 不共线,所以直线 EF∥AC1.
(2)∵D1(0,0,c),B1(a,b,c),A1(a,0,c),B(a,b,0), ∴D→1B1=(a,b,0),A→1B=(0,b,-c). ∵EF 是两异面直线 B1D1,A1B 的公垂线, ∴FF→ →EE··DA→→11BB=1=00,,
2 a·2 a
因此,二面角
M-BN-C
的大小为
π-arccos
3 3.
[例7] 如图所示,在长方体OABC-O1A1B1C1中,OA =2,AB=3,AA1=2,E是BC的中点.
(1)求直线AO1与B1E所成角的大小; (2)作O1D⊥AC于D,求点O1到点D的距离.
[解析] 如图所示,建立空间直角坐标系. (1)由题设知,A(2,0,0),O1(0,0,2), B1(2,3,2),E(1,3,0)
∴E→F与D→B成的角为3π ∴EF 与平面 ACC1A1 所成的角为6π.
[例6] 如图所示,已知ABCD是正方形,过A作AP⊥平 面ABCD,,且AP=AB=a,M,N分别为BP、AC的中点.
(1)求证MN⊥CD; (2)求二面角M-BN-C的大小.
[解析] (1)证明:建立如图所示的空间直角坐标系, 则 A(0,0,0),B(a,0,0),D(0,a,0),P(0,0,a),C(a,a,0), M(a2,0,a2),N(a2,a2,0)

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

第七章立体几何与空间向量基础知识默写课件-2025届高三数学一轮复习

第七章立体几何与空间向量基础知识默写课件-2025届高三数学一轮复习

球的接、切问题3
4.球心到正三棱柱两底面的距离相等,正三棱柱两底面中心连线的中点
为其外接球球心.R2=
.
5. R=
的半径). 6.R2= 的半径).
(R 是圆柱外接球的半径,h 是圆柱的高,r 是圆柱底面圆 (R是圆锥外接球的半径,h是圆锥的高,r是圆锥底面圆
1.基本事实
空间点线面位置关系1
①过
.{a,b,c}叫做空间的一个基底.
2.空间位置关系的向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2 l1⊥l2
n1∥n2⇔ (λ∈R) n1⊥n2⇔ .
直线l的方向向量为n,平面α的法 l∥α
向量为m,l⊄α
l⊥α
n⊥m⇔ n∥m⇔n=
. (λ∈R)
平面α,β的法向量分别为n,m
α∥β α⊥β
把不规则的几何体分割成规则的几何体,或者把不规则的 几何体补成规则的几何体 通过选择合适的底面来求几何体体积的一种方法,特别是 三棱锥的体积
1.正方体与球
球的接、切问题1
①内切球:内切球直径2R=正方体的
.
②棱切球:棱切球直径2R=正方体的
.
③外接球:外接球直径2R=正方体体的
.
2.长方体与球
外接球直径 2R=
简单几何体2
3.柱、锥、台、球的表面积和体积
几何体
名称
表面积
柱体
S表=S侧+2S底
体积 V=___
锥体
S表=S侧+S底
V=_____
台体 球
S表=S侧+S上+S下 S表=_____
V=_____________ V=_____
简单几何体3
4.求空间几何体的体积的常用方法 规则几何体的体积,直接利用公式

第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。

空间向量及立体几何复习资料

空间向量及立体几何复习资料

空间向量及立体几何复习资料一、知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:(1)根据定义——证明两平面没有公共点;(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。

⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。

4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π⎡⎤⎢⎥⎣⎦,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角α-l -β的平面角(记作θ)通常有以下几种方法:(1) 根据定义;(2) 过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ ; (3) 利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB =θ 或∠ACB =π-θ;(4) 设A 为平面α外任一点,AB ⊥α,垂足为B ,AC ⊥β,垂足为C ,则∠BAC =θ或∠BAC =π-θ;(5) 利用面积射影定理,设平面α内的平面图形F 的面积为S ,F 在平面β内的射影图形的面积为S ',则cos θ=SS '.5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.求距离的一般方法和步骤是:一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值.此外,我们还常用体积法求点到平面的距离.6.棱柱的概念和性质⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱 正棱柱”这一系列中各类几何体的内在联系和区别。

(完整word版)高考数学空间向量与立体几何总复习

(完整word版)高考数学空间向量与立体几何总复习

空间向量与立体几何总复习一、知识网络构建二、课标及考纲要求2三、知识要点及考点精析(一)空间向量及其运算 1.空间向量的概念在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模. 还需要掌握的几个相关的概念包括相等向量、零向量、共线向量等. 2.空间向量的线性运算(1)空间向量的加法、减法和数乘运算平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b+a ;②结合律,即()()+=+a +b c a b+c ;③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). (2)空间向量的基本定理① 共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使λa =b .② 共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b .③ 空间向量基本定理:如果三个向量a , b , c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b +c .其中{},,a b c 是空间的一个基底,a , b , c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合). (3)两个向量的数量积两个向量的数量积是a •b= |a||b|cos<a , b >,数量积有如下性质: a , b , c ① a •e= |a|cos<a , e >(e 为单位向量); ② a ⊥a ⇔a •b=0; ③ a •a=|a|2;④ |a •b|≤| a||b|. 数量积运算满足运算律: ①交换律,即a •b= b •a ;②与数乘的结合律,即(λa )•b=λ(a •b ); ③分配律,即(a+b )•c =a •c +b •c . 3.空间向量的坐标运算(1)给定空间直角坐标系xyz O -和向量a ,存在惟一的有序实数组使123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作123()a a a ,,a =. (2)空间向量的直角坐标运算律①若123123()()a a a b b b ,,,,,a =b =,则a +b 112233()a b a b a b =+++,,,-a b 112233()a b a b a b =---,,,123()a a a λλλλ=,,a ,a •b ),,(332211b a b a b a =.112233()a b a b a b λλλλ⇔===∈R ,,a b ∥,1122330a b a b a b ⇔++=a b ⊥.②若111222()()A x y z B x y z ,,,,,,则212121()AB x x y y z z =---u u u r,,.即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标. 4.直线的方向向量与向量方程(1)位置向量:已知向量a ,在空间固定一个基点O ,作向量OA =u u u ra ,则点A 在空间的位置被a 所惟一确定,a 称为位置向量.(2)方向向量与向量方程:给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量t AP =a ,则此向量方程称为动点P 对应直线l 的参数方程,向量a 称为直线l 的方向向量. 典型例题分析:例1.若=(x 2,1,3),=(1,-y 2,9),如果与为共线向量,则( )4A .1=x ,1=yB .21=x ,21-=y C .61=x ,23-=y D .61-=x ,23=y答案: C例2.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( )A . 1B . 51C . 53D . 57 答案: D例3.已知=(2,2,1),=(4,5,3),求平面ABC 的单位法向量.解:设平面ABC 的法向量n =(x,y,1),则n ⊥AB 且n ⊥,即n ·AB =0,且n ·=0,即⎩⎨⎧=++=++,0354,0122y x y x 即⎪⎩⎪⎨⎧-==,1,21y x ∴n =(21,-1,1),单位法向量n =±(31,-32,32).(二)立体几何中的向量方法1.利用向量法确定直线、平面间的平行、垂直等位置关系设直线1l 的方向向量是1u 111()=,,a b c ,直线2l 的方向向量是2u 222()a b c =,,,平面α的法向量是1v 111()x y z =,,,平面β的法向量是2v 222()x y z =,,,则有如下结论成立: (1)12∥l l ⇔u 1∥u 2⇔u 1=k 2u 212121,,kc c kb b ka a ===⇔; (2)12l l ⊥⇔12120⊥⇔=·u u u u 1212120⇔++=a a b b c c ; (3)1l ∥⇔α11110⊥⇔=·u v u v 1111110⇔++=a x b y c z ;(4)1l ⊥⇔α111⇔=∥u v u k 1v 111111,,kz c ky b kx a ===⇔; (5)121αβ⇔⇔=∥∥v v v k 2v 121212⇔===,,x kx y ky z kz ; (6)12120αβ⊥⇔⊥⇔=·v v v v 1212120x x y y z z ⇔++=. 第一部分:平行问题① 利用空间向量解决线线平行问题(06山东模拟)已知直线OA ⊥平面α,直线BD ⊥平面α,O B ,为垂足.求证:OA BD ∥.证明:以点O 为原点,以射线OA 为非负z 轴,如图1,建立空间直角坐标系O xyz -,,,i j k 为沿,,x y z 轴的单位向量,且设BD u u u r()x y z =,,.BD α⊥u u u r ∵,BD ⊥u u u r∴i ,BD ⊥u u u r j ,()(100)0BD x y z x ===u u u r ,,,,i ∴··, BD u u u rj ·()(010)0x y z y ===,,,,·.(00)BD z =u u u r ,,∴,BD z =u u u r k ∴·.BD u u u r k ∴∥,即OA BD ∥.点评:由向量的共线的充要条件知,只要证明OA BD λ=u u u r u u u r即可.② 利用空间向量解决线面平行问题(06山西模拟)已知111ABC A B C -是正三棱柱,D 是AC 的中点,求证:1AB ∥平面1DBC . 证法1:建立如图2的空间直角坐标系A xyz -.设正三棱柱的底面边长为a ,侧棱长为b , 则1133(000)0(0)00222a a a A B a C a b B a b D ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,,,. 设平面1DBC 的法向量为()x y z =,,n ,则113300022a a AB a b BD a DC b ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r u u u r u u u u r ,,,,,,,,. 由BD ⊥u u u r n ,1DC ⊥u u u u r n ,得13002BD ax a DC y bz ⎧=-=⎪⎪⎨⎪=+=⎪⎩u u u r u u u u r ,,n n ··02x a z y b =⎧⎪⎨=-⎪⎩,.∴ 取得1y =,得012a b ⎛⎫=- ⎪⎝⎭,,n . 由1301022a a AB a b b ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r ,,,,n ··, 得1AB ⊥u u u u rn ,即1AB ∥平面1DBC .证法2:如图3,记1AB AC AA ===u u u r u u u r u u u r,,a b c , 则1111122AB DB AB AD DC DC CC =+=-=-=+=u u u u r u u u r u u u r u u u r u u u ur u u u r u u u u r ,,b +c a c a b .11DB DC AB +=+=u u u r u u u u r u u u u r a c ∴,11DB DC AB u u u r u u u u r u u u u r ,,∴共面. 又1B ∉∵平面1C BD ,1AB ∴∥平面1DBC .点评:用向量证明线面平行问题通常有两种方法:①向量p 与两个不共线的向量,a b 共面6的充要条件是存在惟一的有序实数对(),x y ,使x y =+p a b .利用共面向量定理可证明线面平行问题,如证法2.②设n 为平面α的法向量,要证明α∥a ,只需证明0=a n ·,如证法1.③ 利用空间向量解决面面平行问题例题:已知正方体1AC 的棱长为1,E F G ,,分别为1AB AD AA ,,的中点,求证:平面EFG ∥平面11B CD .证明:建立空间直角坐标系D xyz -,则111(100)(110)(010)(000)(101)(111)(001)A B C D A B D ,,,,,,,,,,,,,,,,,,,,. 得111100010222E F G ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,.设1111()x y z =,,n 为平面EFG 的法向量,设2222()x y z =,,n 为平面11B CD 的法向量. 空间计算:12(111)(111)=----,,,,,n n . 由12=n n ,得平面EFG ∥平面11B CD .点评:设12,n n 分别为平面αβ,的法向量,要证αβ∥,只需证明:存在一个非零常数λ,满足12n n λ=,则αβ∥.其实本题也可转化为线线平行,则面面平行.即用向量先证明1u u u u r u u u r ∥D C GE ,11D B EF u u u u r u u u r∥,则有线面平行,从而平面EFG ∥平面11B CD .第二部分:垂直问题① 利用空间向量解决线线垂直问题(2003年高考题)已知正四棱1111ABCD A B C D -,112AB AA ==,,点E 为1CC 中点,点F 为1BD 中点.证明:EF 为1BD 与1CC 的公垂线. 证明:如图1,在以C 为的原点的空间直角坐标系中, 1111(010)(102)(002)(001)122B D C E F ⎛⎫ ⎪⎝⎭,,,,,,,,,,,,,,.由11022EF ⎛⎫= ⎪⎝⎭u u u r ,,,11(002)(112)CC BD ==-u u u ur u u u u r ,,,,,, 得111100EFBD EF CC EF BD EF CC ==⇒⊥⊥u u u r u u u u r u u u r u u u u r ,,··. EF ∴为1BD 与1CC 的公垂线.点评:把推理论证(1EF CC ⊥)用向量运算(10EFCC =u u u r u u u u r·)来代替,减少了构造辅助图形,降低了思维量.② 利用空间向量解决线面垂直问题(2005年高考题)如图2,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,312AB BC PA E ===,,,为PD 的中点,在侧面PAB 内找一点N ,使NE ⊥面PAC解:如图2,在以A 为原点的空间直角坐标系中, 1(310)(010)(002)012C D P E ⎛⎫ ⎪⎝⎭,,,,,,,,,,,.设11(310)(002)2NE x z AC AP ⎛⎫=--== ⎪⎝⎭u u u r u u u r u u u r ,,,,,,,,.由NE ⊥面PAC ,得00NE AC NE AP ⎧=⎪⎨=⎪⎩u u u r u u u r u u u r u u u r,,·· 即13302101x x z z ⎧⎧-+==⎪⎪⇒⎨⎨⎪⎪-==⎩⎩,,. 301N ⎛⎫ ⎪ ⎪⎝⎭,,∴. 点评:按照传统方法,要构造三条辅助线,多解两个三角形,画图、看图以及计算都增加了难度.用空间向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了难度. ③ 利用空间向量解决面面垂直问题(07北京海淀)如图3,在正方体1111ABCD A B C D -中,O 为AC 与BD 的交点,G 为1CC 的中点,求证:平面1A BD ⊥平面GBD . 分析:要证明平面1A BD ⊥平面GBD ,只要证明平面内的一条直线1A O 垂直于平面GBD 中的两条相交直线即可,而从图中观察,证11AO BD AO OG ⊥⊥,较容易成功. 证明:设11111A B A D A A ===u u u u r u u u u r u u u r,,a b c . 则000a b b c a c ===,,···.而11111()()22c a b =+=++=++u u u u r u u u r u u u r u u u r u u u r u u u r AO A A AO A A AB AD , b a =-=-u u u r u u u r u u u rBD AD AB ,11111()()2222a b c =+=++=+-u u u r u u u r u u u r u u u r u u u r u u u u r OG OC CG AB AD CC ,1=u u u u r u u u r A O BD ∴·221()02c b c a b a -+-=··,1u u u u r u u u r A O OG ∴·22211()042=+-=a b c .1AO BD ⊥∴,1AO OG ⊥. 又BD OG O =I ∵,1AO ⊥∴平面BDG . 又1AO ⊂平面1A BD ,8∴平面1A BD ⊥平面GBD .点评:向量a 垂直于向量b 的充要条件是a •b 0=,据此可以证明直线与直线垂直,进而还可证明直线与平面垂直及两个平面垂直.在证明一对向量垂直时,往往用一组基底先表示这一对向量,再考虑它们的数量积是否为零. 2.利用空间向量解决空间距离问题 (1)利用空间向量求线线距离如图1,若CD 是异面直线a b ,的公垂线段,A B ,分别为a b ,上的任意两点. 则两异面直线a b ,间的距离为AB d =u u u rn n·(其中n 与a b ,垂直,A B ,分别为两异面直线上的任意两点). 例题:如图2,在正方体1111ABCD A B C D -中,E 为11A B 的中点.求异面直线1D E 和1BC 间的距离?解析:设正方体棱长为2,以1D 为原点,建立如图2所示的空间直角坐标系, 则11(210)(202)D E C B ==u u u u r u u u u r,,,,,. 设1D E 和1BC 公垂线段上的向量为(1)λμ=,,n , 则1100D E C B ⎧=⎪⎨=⎪⎩u u u u ru u u u r,,··nn 即20220λμ+=⎧⎨+=⎩,,21λμ=-⎧⎨=-⎩,.∴ (121)=--,,∴n .又11(020)D C =u u u u u r ,,,11266D C ==u u u u u r n n ·∴, 所以异面直线1D E 和1BC 间的距离为26. (2)利用空间向量求点面距离如图3,已知AB 为平面α的一条斜线段,n 为平面α的法向量. 则点A 到平面α的距离AB AC =u u u r u u u rn n·.例题:如图4,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.求 点C 到平面1AB D 的距离.解析:11ABB A ∵为正方形,11A B AB ⊥∴.易得平面1AB D ⊥平面11ABB A , 1A B ⊥∴面1AB D ,1A B u u u r∴是平面1AB D 的一个法向量.设点C 是平面1AB D 的距离为d ,则111()0cos60222AC A B AC A A AB a a d a a a A B ++⨯⨯====u u u r u u u r u u u r u u u r u u u r u u u r ··° (3)利用空间向量求线面、面面距离注意:利用空间向量求线面、面面距离的问题显然可以转换成利用空间向量求点面距离的问题例题:如图5,已知边长为42的正三角形ABC 中,E F ,分别为BC 和AC 的中点,PA ⊥面ABC ,且2PA =,设平面α为PF 且与AE 平行.求AE 与平面α间的距离?解析:设APAE EC u u u r u u u r u u u r,,的单位向量分别为123,,e e e ,选取{}123e e e ,,作为空间向量的一个基底.易知1213230e e e e e e ===···,123123122622()2622e e e e e e ====++=-++u u u r u u u r u u u r u u u r u u u r u u u r u u u r,,,AP AE EC PF PA AE EC .设123n e e e =++x y 是平面α的一个法向量, 则n n ⊥⊥u u u r u u u r ,AE PF .00n n⎧=⎪⎨=⎪⎩u u u ru u u r,.·∴·AE PF 即222221232602620y e x e y e e ⎧=⎪⎨-++=⎪⎩,02y x =⎧⎪⇒⎨=⎪⎩,,132n e e =+∴. ∴直线AE 与平面α间的距离11322132222322e e e AP n ne e ⎛⎫+ ⎪⎝⎭===+u u u rd ··. 例题:如图6,在棱长为1的正方体1111-ABCD A B C D 中.求平面1AB C 与平面11AC D 间的距离.解析:建立如图所示的空间直角坐标系,易知平面1AB C 与平面11AC D 平行. 设平面11AC D 的一个法向量(1)xy =,,n ,10 则1100DA DC ⎧=⎪⎨=⎪⎩u u u u r u u u u r ,,··n n ,即(1)(101)01(1)(011)01x y x x y y ==-⎧⎧⇒⎨⎨==-⎩⎩,,,,,,,,,,,·· (111)=--,,∴n .∴平面1AB C 与平面11AC D 间的距离2223(1)(1)1AD d ===-+-+u u u r,,,,··n n. 3.利用空间向量解决空间角问题 (1)利用空间向量求线线角设两异面直线a b ,所成的角为θ,,a b 分别是a b ,的方向向量,注意到异面直线所成角的范围是(]090,°°,则有cos cos θ==,a b a b a b·.(2006广东模拟)已知正方形ABCD 和矩形ACEF 所在平面互相垂直,21AB AF ==,.试在线段AC上确定一点P ,使得PF 与CD 所成的角是60°.如图1,建立空间直角坐标系C xyz -,则(200)(221)CD F =u u u r,,,,,. 设(0)(02)P t t t ,,≤≤,得(221)PF t t =--u u u r,,. 又PF ∵和CD 所成的角是60°, 22(2)2cos60(2)(2)12t t t -=-+-+··.解得2t =或32t =(舍去),即点P 是AC 的中点. 点评:采用传统的平移法求异面直线所成角的大小,免不了要作辅助线和几何推理.这里运用向量法,没有了这些手续,显得便当快捷. (2)利用空间向量求线面角如图2,点P 在平面α外,M 为α内一点,斜线MP 和平面α所成的角为θ,n 为α的一个法向量,注意到斜线和平面所成角的范围是(090),°°,则有π2MP θ=-u u u r ,n ,结合向量的夹角公式便可求θ. (05山东模拟)在正三棱柱111ABC A B C -中,已知1AB D =,在棱1BB 上, 且1BD =,若AD 与平面11AAC C 所成的角为α,则sin α=( )A.23 B.22 C. 410 D. 46 解:取AC 中点E ,连结BE ,则BE AC ⊥,如图3,建立空间直角坐标系B xyz -,则310(001)2A D ⎛⎫ ⎪ ⎪⎝⎭,,,,,,则3112AD ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,. ∵平面ABC ⊥平面11AAC C ,BE AC ⊥,BE ⊥∴平面11AAC C .300BE ⎛⎫= ⎪ ⎪⎝⎭u u u r ,,∴为平面11AACC 的一个法向量. 6cos AD BE =-u u u r u u u r ,∴. π6sin sin 2AD BE α⎛⎫=-= ⎪⎝⎭u u u r u u u r ,∴,选(D). 点评:利用向量法求空间角,其操作只须按步骤进行,数值计算十分简单,对空间想象力和几何的逻辑推理能力要求不高,显得简洁明了.(3)利用空间向量求面面角注意:求面面角的问题关键还是转化成求线线角,一般来说求二面角有两种方法: 如图4,OA O B ',分别在二面角l αβ--的两个面内且垂直于棱,,m n 分别是αβ,的一个法向量,则可利用向量的夹角公式结合以下角度关系之一求二面角的大小:方法一:'u u u r u u u u r ,OAO B 等于二面角的平面角;方法二:,m n 与二面角的平面角相等或互补.(05云南一模)如图5,在三棱锥-S ABC 中,ABC △是边长为4的正三角形,平面SAC ⊥平面ABC ,23SA SC ==,M N ,分别为AB SB ,的中点,求二面角N CM B --的余弦值. 解:取AC 中点O ,连结OS OB ,.SA SC AB BC ==,∵,AC SO ⊥∴,且AC BO ⊥.又∵平面SAC ⊥平面ABC ,SO ⊥∴平面ABC ,SO BO ⊥∴.12 如图5所示,建立空间直角坐标系O xyz -.则(200)(0(200)(00A B C S -,,,,,,,,(0M N CM =u u u u r,(10MN =-u u u u r ,设()x y z =,,n 为平面CMN 的一个法向量,则300CM x MNx ⎧==⎪⎨=-=⎪⎩u u u u r u u u u r ,,··n n 取1z =,则x ==则=n .又(00OS =u u u r ,为平面ABC 的一个法向量, 1cos 3n OS OS OS ==u u u r u u u r u u u r ,n n ·∴. ∴二面角N CM B --的余弦值为31. 点评:利用向量法求空间角的大小,经常用到平面的法向量.求法向量的方法主要有两种: ① 求平面的垂线的方向向量;② 利用法向量与平面内两个不共线向量数量积为零列方程组求.4.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中涉及的点、线、面,从而把立体几何问题转化为向量问题(几何问题向量化);(2)通过向量运算,研究点、线、面之间的位置关系以及它们之间的距离和夹角等问题(进行向量运算);(3)把向量的运算结果“翻译”成相应的几何意义(回归几何问题).四、易错点分析1.类比平面向量,是掌握空间向量的最好方法,平面向量的加、减、数乘等坐标运算公式及运算律对空间向量仍然成立.虽然共面向量定理由两个约束条件变为三个约束条件,坐标由两个有序实数推广到三个有序实数,但其运算规律实质上是一样的.例如线段的定比分点坐标公式(包括中点坐标公式、重心坐标公式)在空间直角坐标系中依然适用,有向线段表示向量的坐标仍然是终点减去始点坐标,平行、垂直的充要条件,夹角、距离公式等仍然适用.2.用向量知识证明立体几何问题,仍然离不开立体几何定理.如要证明线面平行,只需要证明平面外一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需要证明λ=(R ∈λ)即可.90的角,因此,如果按照公式求出来的向量的数量3.空间两条直线之间的夹角是不超过ο积是一个负数,则应当取其绝对值,使之变为正值,这样求得的角为锐角.4.利用法向量求二面角时,要注意法向量的方向问题,结合二面角的大小,这样最后确定所求得的角到底是二面角还是二面角的补角.5.在具体应用空间向量解决立体几何问题时要注意以下几点:(1)平行问题⇒向量共线,注意重合(2)垂直问题⇒向量的数量积为零,注意零向量(3)距离问题⇒向量的模,注意向量的垂直(4)求角问题⇒向量的夹角,注意角范围的统一6.解决立体几何问题的三种方法的比较解决立体几何中的问题,可用综合法、向量法和坐标法.一般我们遵循的原则是:以综合法为基础、以向量法为主导、以坐标法为中心.(1)综合法是以逻辑推理为工具,利用立体几何的知识,运用空间观念解决问题的方法,其显著特点是在证题时经常需要构造辅助线、辅助面、逻辑思维量大,要求具有比较强的空间想象能力.(2)向量法是根据空间向量的基本定理,运用向量的几何意义及向量数量积的概念解决立体几何的方法,是几何问题代数化的重要体现.其显著特点是可以避开纷繁复杂的逻辑推理,使解题过程变的明快、简捷.(3)坐标法是通过建立空间直角坐标系,设出点的坐标,利用向量的坐标运算来解决立体几何问题的方法.坐标法关键是在于构建合适的空间直角坐标系.注:构建空间直角坐标系主要有四种途径:①利用共顶点的两两垂直的三条不共面的直线构建直角坐标系;②利用线面垂直的位置关系构建直角坐标系;③利用面面垂直的位置关系构建直角坐标系;④利用正多边形的中心与几何体高所在直线构建直角坐标系.五、作者寄语用向量研究立体几何问题是立体几何研究思路的一场革命.由于向量兼俱数和形的双重特征,使得立体图形中的位置关系转化为代数中的数量关系如同探囊取物,特别是据题目条件可以建立空间直角坐标系时,这种优越性便发挥的淋漓尽致,求解思路也将有效地避开立体几何中繁琐的位置关系的演化,而变得直截了当,变得清晰、自然和流畅.可以毫不客气地说:“只要建立了空间直角坐标系,剩下的便是纯属运算的问题了.”14。

第一章 空间向量与立体几何 单元复习讲义 易错题型(解析版)

第一章 空间向量与立体几何    单元复习讲义  易错题型(解析版)

第一章 空间向量与立体几何 单元复习讲义 易错题易错点一:空间向量的加减运算1.已知正方体ABCD -A1B1C1D1中,AC1的中点为O,则下列命题中正确的是( ) A .OA OD +与11OB OC +是一对相等向量 B .OB OC -与11OA OD -是一对相反向量 C .1OA OA -与1OC OC -是一对相等向量D .OA OB OC OD +++与1111OA OB OC OD +++是一对相反向量【详解】A. 取AD,11B C的中点M,N ,则:2OA OD OM +=,112OB OC ON =+,两者不是一对相等向量; B. OB OC CB -=,1111OA O A D D =-,两者是一对相等向量; C. 11OA OA AA =-,11OC O C C C -=,两者是一对相反向量;D.设底面1111,ABCD A B C D 的中心分别为P,Q ,则:OA OB OC OD OP ++=+,1111OA OB OC OD OQ ++=+, 两者是一对相反向量;故选:D.2.已知在正方体1111ABCD A B C D -中,P ,M 为空间任意两点,如果1111764PM PB BA AA AD=++-,那么点M 必( )A .在平面1BAD 内 B .在平面1BA D 内C .在平面11BA D内 D .在平面11AB C 内【详解】因为1111111176464PM PB BA AA A D PB BA BA A D =++-=++-11116PB B A BA =++-11111146()4()A D PA PA PB PD PA =+---111164PA PB PD =--,所以M ,B ,1A ,1D 四点共面 故选:C.3.已知平行六面体ABCD -A'B'C'D',则下列四式中:①AB CB AC -=;①''''AC AB B C CC =++;①''AA CC =;①'''AB BB BC C C AC +++=. 其中正确的是_____.【详解】由题意得AB CB AB BC AC -=+=,①正确;'''''AB B C CC AB BC CC AC ++=++=,①正确;①显然正确;因为''AB BB BC AC ++=,所以①不正确. 故答案为①①①易错点二:空间向量的数量积1.平行六面体(底面为平行四边形的四棱柱)1111ABCD A B C D -所有棱长都为1,且1160,45,A AD A AB DAB ︒∠=∠=∠=︒则1BD =( )A .31-B .21-C .32-D .32-【详解】 如图:由11,BD AD AB AA =-+2211()BD AD AB AA ∴=-+222111222AB AD AA AB AD AB AA AD AA =++-⋅-⋅+⋅21111211cos 45cos60c 12161os 0︒︒︒-⨯⨯=⨯+++-⨯⨯⨯⨯⨯⨯ 32=-,13||2BD ∴=-, 故选:C2.在空间直角坐标系O xyz -中,(0,0,0),(22,0,0),(0,22,0)O E F ,B 为EF 的中点,C 为空间一点且满足||||3CO CB ==,若1cos ,6EF BC <>=,,则OC OF ⋅=( ) A .9 B .7 C .5 D .3【详解】设(,,)C x y z ,(2,2,0)B , (,,)OC x y z =,(2,2,)BC x y z =--,(22,22,0)EF =-,由(22,22,0)(2,2,)1cos ,436EF BC x y z EF BC EF BC⋅-⋅--===⋅⋅,整理可得:22x y -=-, 由||||3CO CB ==,得2222(2)(2)x y x y +=-+-, 化简得2x y +=,以上方程组联立得232,44x y ==,则()(,,)0,22,0223OC OF x y z y =⋅==.故选:D.3.设a b c ,,是单位向量,且0⋅=a b ,则()()a cbc -⋅-的最小值为__________.【详解】 ·0=a b ,且a b c ,,均为单位向量, ①()22222211202+=+=++⋅=++⨯=a b a b a b a b ,|c |=1,21=c ,①()()()()21-⋅-=⋅-++⋅-⋅=+a c b c a b a b c c a b c.设a b +与c 的夹角为θ, 则()()1cos 12cos θθ-⋅-=-+=-a c b c a b c .故()()a cbc -⋅-的最小值为1 2.-故答案为:1 2.-易错点三:用空间基底表示向量1.在三棱柱111A B C ABC-中,D 是四边形11BB C C的中心,且1,,AA a AB b AC c ===,则1A D =( )A .111222a b c ++ B .111222a b c -+ C .111222a b c +- D .111222a b c-++【详解】由于D 是四边形11BB C C的中心()11111111111111()22222A D A B AC A A A B AC a b c =+=++=-++. 故选:D2.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c-+ B .a b c +- C .a b c -+ D .1122a b c -+- 【答案】A 【详解】()11112222OD OA AD OA AC OA OC OA OA OC=+=+=+-=+, 因此,11112222BD OD OB OA OB OC a b c=-=-+=-+. 故选:A.3.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.【详解】MN MA AB BN =++ 11111()22222OA OB OA OC OB OA OB OC =+-+-=-++13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC=++133,,888x y z ∴===即78x y z ++=故答案为:78易错点四:空间向量的坐标运算1.已知点A(3,3,-5),B(2,-3,1),C 为线段AB 上一点,且23AC AB =,则点C 的坐标为( ) A . 715(,,)222- B . 3(,3,2)8- C . 7(,1,1)3-- D . 573(,,)222-【详解】设C 的坐标是(x ,y ,z ) ①A(3,3,-5),B(2,-3,1),①166,335AB AC x y z =--=--+(,,)(,,) ①23AC AB =,①2335166,3x y z --+=--(,,)(,,)由此解得7,1,1,3x y z ==-=- ,故选C.2.已知()1,1,2P -,()23,1,0P 、()30,1,3P ,则向量12PP与13PP 的夹角是( ) A .30 B .45 C .60 D .90【详解】设向量12PP与13PP 的夹角为θ, ()()()123,1,01,1,22,2,2PP =--=-,()()()130,1,31,1,21,2,1PP =--=-,则12131213cos 0PP PP PP PP θ⋅==⋅,所以,90θ=,故选D.3.如图,在长方体ABCD -A1B1C1D1中,E ,F 分别为D1C1,B1C1的中点,若以{}1,,AB AD AA 为基底,则向量AE 的坐标为___,向量AF 的坐标为___,向量1AC 的坐标为___.【详解】因为11112AE AD DD D E AB AD AA =++=++,所以向量AE 的坐标为1,1,12⎛⎫ ⎪⎝⎭. 因为11112AF AB BB B F AB AD AA =++=++, 所以向量AF 的坐标为1112⎛⎫ ⎪⎝⎭,,. 因为11AC AB AD AA =++,所以向量1AC 的坐标为(1,1,1).故答案为:1,1,12⎛⎫ ⎪⎝⎭;1112⎛⎫ ⎪⎝⎭,,;(1,1,1)易错点五:空间向量运算的坐标表示1.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法判定【详解】由题意,点()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -, 可得()3,1,6AD =--,()2,0,1BC =, 又由()()2310610AD BC ⋅=⨯+-⨯+-⨯=, 所以AD BC ⊥,所以直线AD 与BC 垂直.故选:B.2.已知A(1,2,3),B(2,1,2),C(1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA ·DB 取最小值时,点D 的坐标为( )A .444,,333⎛⎫ ⎪⎝⎭B .848,,333⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .884,,333⎛⎫ ⎪⎝⎭【详解】设OD =t OC =(t ,t ,2t ),t≥0,①A (1,2,3)、B (2,1,2)、C (1,1,2),O 为坐标原点,点D 在直线OC 上运动, ①DA =(1﹣t ,2﹣t ,3﹣2t ),DB =(2﹣t ,1﹣t ,2﹣2t ), ①DA •DB =(1﹣t )×(2﹣t )+(2﹣t )×(1﹣t )+(3﹣2t )(2﹣2t ) =6t2﹣16t+10=6(t ﹣43)2+269,当t=43时,DA •DB 取最小值,此时D (448333,,).故答案为:C .3.已知AB =(1,5,-2),BC =(3,1,z),若AB ⊥BC ,BP =(1x -,y ,-3),且BP ⊥平面ABC ,则实数x y +=________.【详解】由题意,可得,,AB BC BP AB BP BC ⊥⊥⊥,利用向量的数量积的运算公式,可得()352015603130z x y x y z ⎧+-=⎪-++=⎨⎪-+-=⎩解得407x =,157y =-,4z =,①401525777x y +=-=.易错点六:空间位置关系的向量证明1.已知正方体1111ABCD A B C D -,E 是棱BC 的中点,则在棱1CC 上存在点F ,使得( )A .1//AF D EB .1AF D E ⊥C .//AF 平面11CDE D .AF ⊥平面11C D E【详解】建立如图所示的空间直角坐标系,设正方体棱长为1,则(1,0,0)A ,1(0,0,1)D ,1(,1,0)2E ,设(0,1,)F z ((01)z ≤≤,则11(,1,1)2D E =-,(1,1,)AF z =-,因为11211≠-,所以1,AF D E 不可能平行,即1,AF D E不可能平行,又11102AF D E z ⋅=-+-=,12z =,因此1,AF D E 可以垂直,即AF 与1D E 可能垂直. 1(0,1,1)C ,11(0,1,0)DC=, 设平面11C D E的一个法向量为(,,)n x y z =, 则1110102n D C y n D E x y z ⎧⋅==⎪⎨⋅=+-=⎪⎩,取2x =,则(2,0,1)n =, AF 与n 不可能平行,因此AF 与平面11C D E 不可能垂直,2[2,1]AF n z ⋅=-+∈--,因此AF 与n 不可能垂直,因此AF 与平面11C D E 不可能平行,故选:B .2.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=23a,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.不能确定【详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量(0,1,0)n=.①A1M=AN=23a,①M233a aa⎛⎫⎪⎝⎭,,,N2233a aa⎛⎫⎪⎝⎭,,,①233a aMN⎛⎫=- ⎪⎝⎭,,.①0MN n⋅=,①MN①平面BB1C1C,故选:B.3.若直线l1的方向向量为1u=(1,3,2),直线l2上有两点A(1,0,1),B(2,-1,2),则两直线的位置关系是_____.【详解】因为AB=(1,-1,1), 直线l1的方向向量为1u=(1,3,2),1u·AB=(1,3,2)·(1,-1,1)=0,所以两直线位置关系为垂直.易错点七:异面直线夹角的向量求法1.如图所示,在三棱锥P–ABC中,PA①平面ABC,D是棱PB的中点,已知PA=BC=2,AB=4,CB①AB,则异面直线PC,AD所成角的余弦值为A.3010-B.305-C.305D.3010【详解】因为PA①平面ABC,所以PA①AB,PA①BC.过点A作AE①CB,又CB①AB,则AP,AB,AE两两垂直.如图,以A为坐标原点,分别以AB,AE,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,0),P(0,0,2),B(4,0,0),C(4,−2,0).因为D为PB的中点,所以D(2,0,1).故CP=(−4,2,2),AD=(2,0,1).所以cos〈AD,CP〉=AD CPAD CP⋅⋅==−.设异面直线PC,AD所成的角为θ,则cos θ=|cos〈AD,CP〉|=.2.如图所示,在正方体1111ABCD A B C D-中,若E为11D C的中点,则11A C→与DE→所成角的余弦值为()A.1010B.13C.24D.55【详解】设正方体的棱长为1,记AB a→=,AD b→=,1AA c→=,则||||||1a b c===,0a b b c c a⋅=⋅=⋅=.因为11AC AB AD a bAC→→→→==+=+,1111112DE DD D E DD D C c→→→→→=+=+=+12a,所以221111111()22222AC DE a b c a a c b c a a b a→→⎛⎫⋅=+⋅+=⋅+⋅++⋅==⎪⎝⎭.又因为11||2AC →=,215||122DE →⎛⎫=+=⎪⎝⎭, 所以1111111102cos ,105||||22AC AC DE AC DE →→→→→〈〉===⨯, 所以11AC→与DE →所成角的余弦值为1010.故选:A3.在三棱锥O ABC -中,已知OA 、OB 、OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足12BP BC ≤,12AQ AO≥,则PQ 和OB 所成角的余弦的取值范围是___________.【详解】根据题意,以O 为原点,分别为OA 、OB 、OC 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系O xyz -,不妨设1OA OB OC ===,则()1,0,0A 、()0,1,0B 、()0,0,1C 、()10,,112P b b b ⎛⎫-≤≤ ⎪⎝⎭、()1,0,002Q a a ⎛⎫≤≤ ⎪⎝⎭, (),,1QP a b b =--,()0,1,0OB =,所以()222221cos ,1111QP OB b QP OB QP OBa b b a b b ⋅<>===⋅++-⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭.因为[]0,1a b ∈,[]11,2b ∈,所以当0a =,1b =时, cos ,QP OB <>取得最大值,且最大值为1;当12a b ==时,cos ,QP OB <>取得最小值,且最小值为33,所以PQ 和OB 所成角的余弦的取值范围是3,13⎡⎤⎢⎥⎣⎦.故答案为:3,13⎡⎤⎢⎥⎣⎦.易错点八:线面角的向量求法1.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为1CC 的中点,则直线1A B 与平面BDE 的夹角为( )A .6πB .3πC .2πD .56π 【详解】以点D 为原点,DA ,DC ,1DD 分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,10,1,2⎛⎫ ⎪⎝⎭E ,1(1,0,1)A , ①(1,1,0)DB =,10,1,2DE ⎛⎫= ⎪⎝⎭,1(0,1,1)A B =-, 设平面BDE 的一个法向量(,,)n x y z =,则00n DB n DE ⎧⋅=⎨⋅=⎩,即0102x y y z +=⎧⎪⎨+=⎪⎩,令1x =,则1,2y z =-=,所以平面BDE 的一个法向量(1,1,2)n =-,①1(0,1,1)BA =-,①11123cos ,,,[0,]223BA n BA n π+<>==<>∈, ①1,6BA n π<>=,①直线1A B 与平面BDE 的夹角为3π.故选:B.2.在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B.25C.35D.45【详解】建立如图所示的空间直角坐标系,则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2A D M B11(1,0,0)=-A D,11(0,1,)2=-D M,11(1,0,)2=MB设平面11A D M的法向量为(,,)m x y z=则111=012xA D my zD M m-=⎧⎧⋅⎪⎪⇒⎨⎨-=⋅=⎪⎩⎪⎩令1y=可得2z=,所以(0,1,2)=m设直线1B M与平面11A D M所成角为θ,1112sin5552θ⋅===⋅⨯m MBm MB故选:B3.在正四棱锥S­ABCD中,O为顶点在底面内的投影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角是________.【详解】解:如图所示,以O为坐标原点建立空间直角坐标系Oxyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),(0,,)22a aP-,则CA =(2a ,0,0),AP =(,,)22a a a --,CB =(a ,a ,0). 设平面PAC 的法向量为n =(x ,y ,z),因为n ①CA ,n AP ⊥,所以20,0,22ax a a ax y z =⎧⎪⎨--+=⎪⎩所以x =0,y =z ,令y =1,则n =(0,1,1)是平面PAC 的一个法向量, 所以cos 〈,CB n〉=21222CB n a CB n a ⋅==⨯,所以〈,CB n 〉=60°,所以直线BC 与平面PAC 的夹角为90°-60°=30°.故答案为:30°.易错点九:面面角的向量求法1.如图,在空间直角坐标系D xyz -中,四棱柱1111ABCD A B C D -为长方体,12AA AB AD ==,点E ,F 分别为11C D ,1A B 的中点,则二面角11B A B E --的余弦值为( )A .33- B .32- C .33 D .32【详解】 设1AD =,则1(1,0,2)A ,(1,2,0)B①E ,F 分别为11C D ,1A B 的中点①(0,1,2)E ,(1,1,1)F ,即1(1,1,0)AE =-,1(0,2,2)A B =- 设(,,)m x y z =是平面1A BE 的法向量,则1100A E m A B m ⎧⋅=⎪⎨⋅=⎪⎩,即0220x y y z -+=⎧⎨-=⎩取1x =,则1y z ==,即有平面1A BE 的一个法向量为(1,1,1)m =又DA ⊥平面11A B B ,即(1,0,0)DA =是平面11A B B 的一个法向量①13cos ,3||||3m DA m DA m DA ⋅〈〉===,又二面角11B A B E --为锐二面角 ①二面角11B A B E --的余弦值为33故选:C2.如图,在空间直角坐标系Dxyz 中,四棱柱1111ABCD A B C D -为长方体, 12AA AB AD ==,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( )A .33- B .32- C .33 D .32【详解】 设1AD =,则1(1,0,2),(1,2,0)A B ,因为E 为11C D 的中点,所以(0,1,2)E ,所以 11(1,1,0),(0,2,2)A E A B =-=-,设(,,)m x y z =是平面 1A BE 的一个法向量,则1100A E m A B m ⎧⋅=⎪⎨⋅=⎪⎩,即 0220x y y z -+=⎧⎨-=⎩,取1x =,则1y z ==,所以平面1A BE 的一个法向量为(1,1,1)m =,又因为DA ⊥平面11A B B ,所以(1,0,0)DA =是平面 11A B B 的一个法向量,所以13cos ,3||||3m DA m DA m DA ⋅〈〉===, 又因为二面角11B A B E --为锐二面角, 所以二面角11B A B E --的余弦值为33.故选:C.3.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.【解析】 分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案.详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=-平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n = (,,)m x y z =为平面1D EC 的法向量, ∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=-二面角1D EC D --的大小为4π∴cos4m nm n π⋅=⋅,即22222(2)12λ=-++解得 23λ=-,23λ=+(舍去)∴23AE =-故答案为23-。

第一章 空间向量与立体几何(单元复习课件)

第一章 空间向量与立体几何(单元复习课件)
保证点及向量的坐标写正确. ●(3)利用空间向量的模与夹角的坐标表示求解.
三、本章考点分析
类型 18:求平面的法向量解题技巧
利用待定系数法求平面法向量的步骤
(1)设向量:设平面的法向量为 n=(x,y,z).
(2)选向量:在平面内选取两个不共线向量A→B,A→C.
n·A→B=0, (3)列方程组:由 n·A→C=0
面.首先应考虑三个向量是否是零向量,其次判断三个非零向量是否共面.如果从 正面难以入手判断三个向量是否共面,可假设三个向量共面,利用向量共面的充要 条件建立方程组.若方程组有解,则三个向量共面;若方程组无解,则三个向量不 共面.
● 类型7:用基底表示空间向量答题模板
● 用基底表示空间向量的步骤
● (1)定基底:根据已知条件,确定三个不共面的向量构成空间的一个基底.
(3)利用|a | a2 ,通过计算求出 a ,即得所求距离.
类型 11:求两直线的夹角问题解题技巧 (1)求几何体中两个向量的夹角,可以把其中一个向量平移到与另一个向量的起点重合,转化为求 平面中的角的大小.
(2)由两个向量的数量积定义得 cosa,b a b ,求 a,b 的大小,转化为求两个向量的数量积及两个 | a || b |
三、本章考点分析
类型 16:坐标形式下向量的平行与垂直问题答题模板 判断空间向量垂直或平行的步骤 (1)向量化:将空间中的垂直与平行转化为向量的垂直与平行; (2)向量关系代数化:写出向量的坐标; (3)对于 a (x1, y1, z1),b (x2 , y2 , z2 ) ,根据 x1x 2 y1 y2 z1z2 是否等于 0,判断两向量是否垂直;根据
三、本章考点分析
类型 2:向量的共面问题规律总结 (1)证明向量共面,可以利用共面向量的充要条件,也可以直接利用定义,通过线面平行或直线在 平面内进行证明. (2)向量共面时向量所在的直线不一定共面,只有这些向量都过同一点时向量所在的直线才共面(向 量的起点、终点共面). 类型 3:数量积的计算规律总结 (1)已知 a,b 的模及 a 与 b 的夹角,直接代入数量积公式计算. (2)如果要求的是关于 a 与 b 的多项式形式的数量积,可以先利用数量积的运算律将多项式展开, 再利用 a a a2 及数量积公式进行计算.

高考数学压轴专题最新备战高考《空间向量与立体几何》知识点总复习

高考数学压轴专题最新备战高考《空间向量与立体几何》知识点总复习

新数学高考《空间向量与立体几何》复习资料一、选择题1.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()minDE EF ∴+===DEF ∴∆2+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为2sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为3R ===, 因此,三棱锥P ABC -的外接球的表面积为22284433R πππ⎛=⨯= ⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.4.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A 7B .3C .3D .2【答案】A 【解析】 【分析】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,Q ||||3AB AD ==1||1AA =,∴0113tan 3,60AA B AA B ∠==.所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A . 【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.5.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】 【分析】根据直线、平面平行垂直的关系进行判断. 【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β, ∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.6.《九章算术》是中国古代的数学瑰宝,其第五卷商功中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”翻译成现代汉语就是:今有三面皆为等腰梯形,其他两侧面为直角三角形的五面体的隧道,前端下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺(注:一丈=十尺).则该五面体的体积为( )A .66立方尺B .78立方尺C .84立方尺D .92立方尺【答案】C 【解析】 【分析】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,ADE BGH B CGHF V V V --=+,计算得到答案.【详解】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,故多面体的体积11()7332ADE BGH B CGHF V V V S AB CG HF --=+=⋅+⨯+⨯⨯直截面 111736(42)7384232=⨯⨯⨯+⨯⨯⨯⨯=, 故选:C .【点睛】本题考查了几何体体积的计算,意在考查学生的计算能力和空间想象能力.7.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .534【答案】B 【解析】 【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以16sin 5APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.8.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( ) A .4:3 B .3:4 C .16:9 D .9:16【答案】C 【解析】 【分析】由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值. 【详解】设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°, 则母线长为2r ,高为3r , 则圆锥的底面积为:2r π,侧面积为1222r r π⋅, 则圆锥的表面积为2212232r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的内切圆,则半径为32R r =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2216:316:93r r ππ=,故选:C . 【点睛】本题考查圆锥的性质,以及其外接球,表面积,属于中档题.9.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B .66C .34D 3 【答案】B 【解析】【分析】设1AA c=u u u v v,AB a =u u u vv,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,ABBC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c=u u u v v,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又()222123AB a c a a c c =+=+⋅+=u u u v v v v v v v()222212222BC b a cb ac a b b c a c =-+=++-⋅+⋅-⋅=u u u u vv v v v v v v v v v v v1111116cos ,66AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 所成角的余弦值为:6 本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.10.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )A .92B 92C .32D .3【答案】A 【解析】 【分析】由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案. 【详解】由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,其截面是一个梯形BCFE , 上底长为22112+=,下底边长为222222+=,高为:222322()2+=, 故截面的面积1329(222)222S =+⨯=, 故选:A . 【点睛】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.11.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .305C .275D .475【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.12.以下说法正确的有几个( )①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行; A .0个 B .1个C .2个D .3个【答案】B 【解析】 【分析】对四个说法逐一分析,由此得出正确的个数. 【详解】①错误,如空间四边形确定一个三棱锥. ②错误,直线可能和平面相交. ③正确,根据公理二可判断③正确. ④错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有1个,故选B.【点睛】本小题主要考查空间有关命题真假性的判断,属于基础题.13.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】-,易证平面PAD⊥平面ABCD,平面PCD⊥平面画出该几何体的直观图P ABCDPAD,平面PAB⊥平面PAD,平面PAB⊥平面PCD,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD⊥平面ABCD,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面PCD⊥平面PAD,同理可证:平面PAB⊥平面PAD,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面PAB⊥平面PCD,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.14.如图,正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为a ,侧棱长为2a ,则1AC 与侧面11ABB A 所成的角是( )A .30°B .45︒C .60︒D .90︒【答案】A【解析】【分析】 以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法能求出1AC 与侧面11ABB A 所成的角.【详解】解:以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,则3(a A ,2a ,0),1(0C ,02)a ,13(a A 2a 2)a ,(0B ,a ,0), 13(a AC =u u u u r ,2a -2)a ,3(a AB =u u u r ,2a ,0),1(0AA =u u u r ,02)a , 设平面11ABB A 的法向量(n x =r ,y ,)z ,则13·02·20a a n AB x y n AA az ⎧=+=⎪⎨⎪==⎩u u u v v u u u v v ,取1x =,得(1n =r 3,0),设1AC 与侧面11ABB A 所成的角为θ, 则111||31sin |cos ,|2||||23n AC a n AC n AC a θ=<>===r u u u u r r u u u u r g r u u u u r g , 30θ∴=︒,1AC ∴与侧面11ABB A 所成的角为30°.故选:A .【点睛】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.15.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( )A .643πB .8316ππC .28πD .82163ππ+ 【答案】B【解析】【分析】结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可.【详解】结合三视图,还原直观图,得到故体积22221183242231633V r h r l ππππππ=⋅+⋅=⋅+⋅⋅=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等.16.三棱锥D ABC -中,CD ⊥底面,ABC ABC ∆为正三角形,若//,2AE CD AB CD AE ===,则三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体的体积为( )A .3B .3C .13D .3【答案】B【解析】根据题意画出如图所示的几何体:∴三棱锥D ABC -与三棱锥E ABC -的公共部分构成的几何体为三棱锥F ABC - ∵ABC 为正三角形,2AB =∴132232ABC S ∆=⨯⨯=∵CD ⊥底面ABC ,//AE CD ,2CD AE ==∴四边形AEDC 为矩形,则F 为EC 与AD 的中点∴三棱锥F ABC -的高为112CD =∴三棱锥F ABC -的体积为133133V =⨯⨯= 故选B.17.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60︒角 ④DM 与BN 是异面直线以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确.∴正确命题的个数是2个.故选:B .【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.18.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( ) A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A【解析】【分析】 D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos 2PO APB a α=∠,sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO PO APB PD a α==∠, 同理可得: sin cos 2PO CPB a β=∠,sin cos 2PO CPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>. 故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.19.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC == 由1132322732DE ⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.20.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】【分析】根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂,当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r 成立,反之当a b ⊥r r时,此时a 与l 不一定是垂直的, 所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可取 n=(1, 3,0).
设二面角 E-CF-C1 的大小为 θ,于是由 θ 为锐角可得 cos θ=||mm|·|nn||= 3×6 2= 22,所以 θ=45°.
即所求二面角 E-CF-C1 的大小为 45°.
考点整合
1.直线与平面、平面与平面的平行与垂直的向量方法 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2).平面 α、β 的法向量分别为 μ=(a3,b3,c3),v=(a4,b4, c4)(以下相同). (1)线面平行 l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0. (2)线面垂直 l⊥α⇔a∥μ⇔a=kμ⇔a1=ka3,b1=kb3,c1=kc3. (3)面面平行 α∥β⇔μ∥v⇔μ=kv⇔a3=λa4,b3=λb4,c3=λc4. (4)面面垂直 α⊥β⇔μ⊥v⇔μ·v=0⇔a3a4+b3b4+c3c4=0.
(2)解 C→E=(0,-2,2 2),设平面 CEF 的一个法向量为 m=(x,
y,z),
由 m⊥C→E,m⊥C→F,得mm··CC→ →EF= =00, ,
即-2y+2 2z=0, 3x-y+ 2z=0,
解得yx==0.2z,
可取 m=(0, 2,1).
设侧面 BC1 的一个法向量为 n,由 n⊥C→B,n⊥C→C1, 及C→B=( 3,-1,0),C→C1=(0,0,3 2),
分类突破
一、利用向量证明平行与垂直 例 1 如图所示,已知直三棱柱 ABC—A1B1C1
中,△ABC 为等腰直角三角形,∠BAC= 90°,且 AB=AA1,D、E、F 分别为 B1A、 C1C、BC 的中点. 求证:(1)DE∥平面 ABC; (2)B1F⊥平面 AEF.
证明 如图建立空间直角坐标系 A—xyz, 令 AB=AA1=4, 则 A(0,0,0),E(0,4,2),F(2,2,0), B(4,0,0),B1(4,0,4). (1)取 AB 中点为 N,连结 CN, 则 N(2,0,0), C(0,4,0),D(2,0,2),
又∵AF∩FE=F,∴B1F⊥平面 AEF.
归纳拓展 (1)证明线面平行须证明线线平行,只需证明这条直 线与平面内的直线的方向向量平行.可用传统法也可用向量法, 用向量法更为普遍. (2)证明线面垂直的方法:可用直线的方向向量与平面的法向量 共线证明;也可用直线的方向向量与平面内两条相交直线的方 向向量垂直证明. (3)证明面面垂直通常转化为证线面垂直,也可用两平面的法向 量垂直来证明.
§3 空间向量与立ห้องสมุดไป่ตู้几何 真题热身
(2011·湖北)如图,已知正三棱柱 ABC-A1B1C1 的 底面边长为 2,侧棱长为 3 2,点 E 在侧棱 AA1 上,点 F 在侧棱 BB1 上,且 AE=2 2,BF= 2. (1)求证:CF⊥C1E; (2)求二面角 E-CF-C1 的大小. 方法一 (1)证明 由已知可得 CC1=3 2,CE=C1F= 22+(2 2)2=2 3, EF2=AB2+(AE-BF)2,EF=C1E= 22+( 2)2= 6, 于是有 EF2+C1E2=C1F2,CE2+C1E2=CC21, 所以 C1E⊥EF,C1E⊥CE. 又 EF∩CE=E,所以 C1E⊥平面 CEF. 又 CF⊂平面 CEF,故 CF⊥C1E.
(2)解 在△CEF 中,由(1)可得 EF=CF= 6, CE=2 3, 于是有 EF2+CF2=CE2,所以 CF⊥EF. 又由(1)知 CF⊥C1E,且 EF∩C1E=E, 所以 CF⊥平面 C1EF. 又 C1F⊂平面 C1EF,故 CF⊥C1F. 于是∠EFC1 即为二面角 E-CF-C1 的平面角. 由(1)知△C1EF 是等腰直角三角形,所以∠EFC1=45°,即所求 二面角 E-CF-C1 的大小为 45°.
变式训练 1 如图,在多面体 ABCDEF 中,四边形 ABCD 是正方形,EF∥ AB,EF⊥FB,AB=2EF,∠BFC =90°,BF=FC,H 为 BC 的中点. (1)求证:FH∥平面 EDB; (2)求证:AC⊥平面 EDB.
2.空间角的计算 (1)两条异面直线所成角的求法 设直线 a,b 的方向向量为 a,b,其夹角为 θ,则 cos φ=|cos θ|=||aa|·|bb||(其中 φ 为异面直线 a,b 所成的角). (2)直线和平面所成角的求法 如图所示,设直线 l 的方向向量为 e,平面 α 的法向量为 n, 直线 l 与平面 α 所成的角为 φ,两向量 e 与 n 的夹角为 θ,则 有 sin φ=|cos θ|=||ee|·|nn||.
方法二 建立如图所示的空间直角坐标系,
则由已知可得,A(0,0,0),B( 3,1,0),
C(0,2,0),C1(0,2,3 2),E(0,0,2 2),F( 3,1, 2).
(1)证明 C→1E=(0,-2,- 2), C→F=( 3,-1, 2),C→1E·C→F=0+2-2=0.
所以 CF⊥C1E.
(3)二面角的求法 ①利用向量求二面角的大小,可以不作 出平面角,如图所示,〈m,n〉即为所 求二面角的平面角. ②对于易于建立空间直角坐标系的几何体,求二面角的大小时,可 以利用这两个平面的法向量的夹角来求. 如图所示,二面角 α-l-β,平面 α 的法向量为 n1,平面 β 的法向 量为 n2,〈n1,n2〉=θ,则二面角 α-l-β 的大小为 θ 或 π-θ.
∴D→E=(-2,4,0),N→C=(-2,4,0), ∴D→E=N→C,
∴DE∥NC,又∵NC⊂平面 ABC, DE⊄平面 ABC.故 DE∥平面 ABC.
(2)B→1F=(-2,2,-4), E→F=(2,-2,-2),A→F=(2,2,0). B→1F·E→F=(-2)×2+2×(-2)+(-4)×(-2)=0, B→1F·A→F=(-2)×2+2×2+(-4)×0=0. ∴B→1F⊥E→F,B→1F⊥A→F,即 B1F⊥EF,B1F⊥AF,
相关文档
最新文档