第1章复数与复变函数
第一章复变函数
为闭区域
(三)复变函数例 1. 多项式
a 0 a1 z a 2 z a n z
2
n
( n 为整数 )
2. 有理分式
a 0 a1 z a 2 z b 0 b1 z b 2 z
2
anz bm z
n m
2
( m 和 n 为整数 )
(e
z
iz
e
z
),
cos z ch z 1 2
1 2
(e
z
iz
e
z
iz
)
(e e
),
(e e
)
ln z ln(| z | e z
s
i Arg z
) ln | z | i Arg z
e
s ln z
( s 为复数 )
sh同sinh,双曲正弦 (hyperbolic sine) ch同cosh, 双曲余弦 (hyperbolic cosine)
全体复数与平面上的点一一对应
y
cos =|z|
•
z=x+iy (x,y) (,)
/2-
复数平面
sin cos(/2-) x
o
z1=x1+i y1 ,z2=x2+i y2,如z1=z2,则x1=x2, y1 = y2
2) 极坐标表示 利用坐标变换:
y arctan 2 2 x 0 2
例5. 指数函数
2 i sin e
i
sin
e 2i
- i
5
3. 辐角主值: 辐角 = Arg
复数与复变函数
非零复数z的整数n次根式 为:
n
z
=n
iϕ +2kπ
ρe n
=n
ρ (cos ϕ + 2kπ
+ i sin ϕ + 2kπ )
n
n
(k = 0,1,2....n −1)
2. 无穷远点
复平面上一点与球面上的点 一一对应 ,复平面上∝ 点与 球面上N相对应,点的幅角无 意义。复平面+ ∝为闭平面。
(全平面扩充平面)。
ii) 复数“零”的幅角无定义,其模为零.
iii) 当ρ=1时, z = cosϕ + isinϕ = eiϕ称为单位复数.
利用复数的指数形式作乘除法比较简单,如:
z1 z2
=
ρ1 ρ 2 [cos(ϕ1
+ ϕ2 ) + i sin(ϕ1
+ ϕ2 )] =
ρ ρ ei(ϕ1 +ϕ2 ) 12
z1 z2
上却有很大的区别,这是因为实变函数Δx 只沿实轴逼近零
,而复变函数Δz却可以沿复平面上的任一曲线逼近零,因此
复变函数可导的要求比实变函数可导的要求要严格得多.
z x
例: f (z) = z = x − iy 在复平面上处处不可导
∵ z + ∆z − z = ∆z
∆z
∆z
当 Δz→0 沿实轴
∆z = ∆x, ∆z = ∆x → 1 ∆x ∆x
立。
4. 复变函数
例 : 初等单值函数
幂函数: w=zn n=1,2, - - - - -
多项式: a0+a1z1+a2z2+- - - - +anzn n 为整数
复变函数第一章
z1 z1 z2 z2
Arg(
z1 z2
)
Arg
z1
Arg
z2
1、 幂函数
非零复数 z 的 n 次幂
zn rnein rn (cos n i sin n )
其中
zn z n , Arg zn nArg z.
令 r = 1,则得棣莫弗公式
(cos i sin )n cos n i sin n
21
•连续曲线 若实函数 x(t) 和 y(t) 在闭区间[, ]
上连续,则方程组
x x(t),
y
y(t),
( t )
或复数方程 z z(t) x(t) iy(t) ( t )
代表一条平面曲线,称为 z 平面上的连续曲线.
进一步地,若在 t 上,x '(t) 及 y '(t) 存在、
E(C)
线 C 把 z 平面唯一地分成
C、I(C) 及 E(C) 三个点集,
I(C)
它们具有如下性质:
(1)彼此不交;
O
C
x
(2)I(C) 是一个有界区域(称为 C 的内部);
(3)E(C) 是一个无界区域(称为 C 的外部).
25
•单连通区域 设 z 平面上的区域 D, 若在 D 内 无论怎样画简单闭曲线,其内部仍全含于 D, 则称 D 为单连通区域. 非单连通的区域称为多 连通区域.
y
z
v
w
2 O 2 x
4 O 4 u
31
•反函数 假设函数 w=f(z) 的定义域是 z 平面上的 集合 G,值域是 w 平面上的集合 G*. 对 G* 中 的每一个点 w,在 G 中有一个(或至少两个) 点与之相对应,则在 G* 上确定了一个单值(或
复变函数第一章
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n
《复变函数》第一章 复数与复变函数
的定义域, w 值的全体组成的集合称为函数 w = f ( z ) 的值域. 及 w = z +1
z 1
( z ≠ 1)
均为单值函数,w = n z
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w = f ( z ) 是定义在点集 则
容易验证复数的四则运算满足与实数的四则运算相应的运算规律. 全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域 中,复数是不能比较大小的.
2.复平面
从上述复数的定义中可以看出,一个复数 z = x + iy 实际上是由一对有 序实数 ( x, y ) 唯一确定.因此,如果我们把平面上的点 ( x, y )与复数 z = x + iy 对应,就建立了平面上全部的点和全体复数间的一一对应关系. 由于 x 轴上的点和 y 轴上非原点的点分别对应着实数和纯虚数,因而 通常称
对应相等,即 x1 = x2 且 y1 = y2 虚部为零的复数可看作实数,即x + ii0 = x ,
0 特别地, + ii0 = 0 ,因此,全体实数是全体复数的一部分.
实数为零但虚部不为零的复数称为纯虚数,复数 x + iy 为互为共轭复数,记为
( x + iy ) = x iy
和 x iy
2.区域与约当(Jordan)曲线
定义1.5 若非空点集 D 满足下列两个条件: (1) D 为开集. (2) D 中任意两点均可用全在 D 中的折线连接起来,则称 D 为区域 (图) 定义1.6 若 z0 为区域 D 的聚点且 z0 不是 D 的内点,则称 z0 为 D 的界点, D 的所有界点组成的点集称为 D 的边界,记为 D , 若 r > 0 ,使得 N r ( z0 ) ∩ D = ,则称 z 0 为 D 的外点 定义1.7 区域 D 加上它的边界 C 称为闭区域,记为 D = D + C
复变函数 第1章 复数与复变函数
6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2
1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .
1.3.2 单连通域与多(复)连通域
1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个
若
z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s
第1章复数与复变函数汇总
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
z1 z 2 z1 z 2 Re( z1 z 2 ), z1 z2 z1 z2 Re( z1 z2 ).
(2) ∞的实部,虚部及幅角都无 意义, (3)b≠0(但可为∞)时, b b ,
b ; a 0 , 0, (4)a≠∞时, a a a ; 0 (5)运算∞± ∞,0· ∞, , 0 无意义
§3 复数的乘幂与方根
第一章 复数与复变函数
§1 复数及其代数运算
目录
§2 复数几何表示
§3 复数的乘幂与方根
§4 区 域 §5 复变函数
§6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 形如 z=x+iy 或 z=x+yi 的数,称为复数 虚部为零的复数就可看作实数,即 x+i· 0=x 复数
z n r n (cosn i sin n ) r nein
n
2k 2k z r (cos i sin ) n n 1
1 n
w0 r (cos i sin ) n n 1 2 2 n
n
w1 r (cos
1 n
………………………………………
当x在第一象限
当x在第二象限 当x在第三象限 当x在第四象限 当z在正y轴上
2 arg z 2 0, ,
当z在负y轴上
当z在正x轴上 当z在负x轴上
复变函数-第一章-复数与复变函数
y
28
1 i
2
q
4
w0
r 2
q 2k
n i sin
w2
q 2k
n )
o
w3
x
wk n r (cos
16
例 2. 求
4
-1
解 : 1 cos i sin
4
1 cos
2k
4
i sin
2k
4
, (k 0,1,2,3).
z1
z2
z0 内点
P
D-区域
(6) 连通 D中任意两点可用一条全在D
中的曲线连接起来。
21
外点
z1
z2
z0 内点
P
(7) 区域
连通的开集.
D-区域
区域D与它的边界一起构成闭区域, 或闭域. D
22
(8) 有界区域 如果存在正数M,使得对于一切D中的点z, z M, 有 则称 D为有界区域,否则称为无界区域。 例如
设 w e , 由w z , 有 ne in re iq ,
i n
则 n r , n q 2k
(k为整数 ).
即 w = n z = n re
r (cos
n
i
θ + 2 kπ n
,
q 2k
n )
q 2k
n
i sin
(k为整数).
14
当k=0,1,2,…,n-1时,得到n个相异的根:
z. 共轭 x iy为x iy的共轭复数,记为
注:(1)两个复数相等,是指二者实部、虚部分别相同; (2)两个复数之间无法比较大小,除非都是实数; (3)实部为0,虚部不为0,为纯虚数。
《复变函数》第1章
3
3
23
23
arg z
23 6
2019/7/14
《复变函数》(第四版)
第10页
书 P.7
例1 将下列复数化为三角表示式与指数表示式:
解: 1) 1) z 12 2i
2) z sin i cos
5
5
r
12 4 4,
z 4(
12 2 i ) 44
2019/7/14
《复变函数》(第四版)
第3页
(3) 除法: z z1 x1 iy1 ( x1 iy1 )( x2 iy2 )
z2 x2 iy2 ( x2 iy2 )( x2 iy2 )
x1x2 y1 y2 x22 y22
i
x2 y1 x1 y2 x22 y22
复数的运算满足交换律、结合律和分配律.
(4) 共轭复数性质
i) z1 z2 z1 z2 , ii) z z ;
z1z2 z1 z2 ,
z1 z1 z2 z2
;
iii) z z Re(z)2 Im( z)2 ;
iv) z z 2 Re(z) , z z 2i Im( z) .
4(
3 1 i ). 22
cos 3 ,
2
sin 1
2
5.
6
(或
arctan 2
12
arctan
3
3
5
6
∴
∵ z 在第三象限 ) 三角式: z 4[cos(
5
)
i
sin(
高等数学复变函数与积分变换第一章 复数与复变函数
第一章 复数与复变函数第一节 复数1.复数域每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。
复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。
如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。
复数的四则运算定义为:)21()21()22()11(b b i a a ib a ib a ±+±=+±+)1221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222a ib a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。
2.复平面C 也可以看成平面2R ,我们称为复平面。
作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。
横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。
3.复数的模与辐角复数z x iy =+可以等同于平面中的向量。
向量的长度称为复数的模,定(,)x y义为:||z向量与正实轴之间的夹角称为复数的辐角,定义为:Arg arctan 2y z i xπ=+(k Z ∈)。
复数的共轭定义为:z x iy =-;复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;复数加法的几何表示:设1z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、||||||1212z z z z +≤+;(2)、||||||||1212z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;例1.1试用复数表示圆的方程:22()0a x y bx cy d ++++= (0a ≠)其中a,b,c,d 是实常数。
明德 第一章 复数与复变函数
P x, y
复数z x iy可用xoy平面上 坐标为( x,y )的点p表示.此时,
x轴 — 实 轴 y轴 — 虚 轴 平 面— 复 平 面 或 z平 面
0
z x iy
x 实轴
数z与点z同义
2. 向量表示法
z x iy 点P ( x,y ) oP { x , y } 显然下列各式成立 可 用 向 量 oP表 示z x iy。 x z, y z, 称向量的长度为复数z=x+iy 的模或绝对值; 2 以x轴正方向为始边,OP 为终边的的夹角 θ 称为复数 2 z z z z . z x y, z=x+iy的辐角. y 虚轴 uu r
2 2
法 2. 将 z x iy 代入得: x y 1 i 2
x y 1 i 4 即 x y 1 4
2 2 2
2
z 2i z 2
解: 由几何意义, z 2i z 2 即 z 2i z 2
0
特别的,以z0为圆点?
z z0 Re i 0 2 , 为参数
x
0 2 , 为参数
例5 指出下列方程表示的曲线
1
解:法 1.
zi 2
由几何意义 z i 2 即 z i 2 表示到 i
距离为2的点的轨迹, 即圆 x y 1 4
n
k 0,1,,n 1
(1) 当k=0,1,…,n-1时,可得n个不同的根, 而k取其它整数时,这些根又会重复出现。
n n (2)几何上, z 的n个值是以原点为中心, r 为半 径的圆周上n个等分点,即它们是内接于该圆周 的正n边形的n个顶点。
复变函数第一章
1.1.4.复数四则运算的几何意义 .1.4.复数四则运算的几何意义 , θ θ 设有两个复数 z1 = r1(cos 1 + i sinθ1) z2 = r2 (cos 2 + i sinθ2)
则,z1 z 2 = r1 (cos θ 1 + i sin θ 1 )r2 (cos θ 2 + i sin θ 2 )
例1:下列复数化为三角表示式与指数表示式
2i ( 1 ) z = − 12 − 2i, ( 2 ) z = , ( 3 ) z = −3 + 4i −1+ i
例3:求下列方程所表示的曲线
(1) |z + i| = 2, ( 2) |z − 2i| = |z + 2|, ( 3 ) Im(i + z) = 4
________
7 1 z1 ∴ ( )=− + i z2 5 5
__ 1 3i 例2: z = - − 求 Re (z),Im (z)与z z i 1-i
− ( 1 − i) − 3i(i) − 1 + i + 3 2 + i ( 2 + i)( 1 − i) = = 解: z = = i( 1 − i) i +1 1+ i 2
x
(3)幅角主值的求法 (3)幅角主值的求法 y arctan x , ( x > 0 , y > 0 ) arctan y + π ( x < 0 , y > 0 ) , x arg z = arctan y − π , ( x < 0 , y < 0 ) x y arctan , ( x > 0, y < 0) x
数学物理方法课件-1 复数与复变函数
sin z sinx iy
sin x cosiy cosx sin iy
sin x ey e y cos x ey e y
2
2i
sin2 x ey e y 2 cos2 x ey e y 2
4
4
1 sin 2 x e2 y 2 e2 y cos2 x e2y 2 e2y 2
所有的无穷大复数(平面上无限远点)投影到唯一的北极 N。故我们为 方便,将无穷远点看作一个点。其模无穷大,幅角无意义。
§1.2 复变函数
1. 定义
zz0
邻域
以复数 z0 为圆心,以任意小实数 为半径
作一圆,则圆内所有点的集合称为z0的邻域.
内点
z0 和它的邻域都属于 E, 则 z0 为 E 的内点。
(2) 极坐标
x cos y sin
z x iy cos i sin 复数的极坐标表示
模 幅角, Argz x2 y2
arctg( y / x)
由于三角函数的周期性,复数的幅角不唯一,且 彼此相差2π的整数倍.
)
,
lim
zz0
g(z)
g ( z0 ),则
lim [ f (z) g(z)]
zz0
f (z0) g(z0)
lim
zz0
f (z)g(z)
f
(z0 )g(z0 )
lim f (z) f (z0 ) zz0 g(z) g(z0 )
(g(z0 ) 0)
§1.4 可导与可微
第一章 复数与复变函数
§1.1 复数与复数运算 1. 复数的基本概念
第一章 复数和复变函数
ei1 ei2 (cos1 i sin 1 )(cos 2 i sin 2 ) cos(1 2 ) i sin(1 2 ) ei (1 2 ) ,
可得
z1z 2 r1r2ei (1 2 ) .
于是有如下等式
(1.13)
| z1 z2 || z1 || z2 |, Arg ( z1z 2 ) Arg ( z1 ) Arg ( z 2 ).
(1.14)
式(1.14)表明: 两个复数乘积的模等于它们模的乘积, 两个复数乘积的辐角等于它们辐角的 和。值得注意的是,由于辐角的多值性,式(1.14)的第二式应理解为对于左端 Arg ( z1 z2 ) 的
上海交通大学数学系 王健
任一值, 必有由右端 Argz1 与 Argz2 的各一值相加得出的 和与之对应;反之亦然。以后,凡遇到多值等式时,都 按此约定理解。 由式(1.14)可得复数乘法的几何意义,即: z1 z2 所 对应的向量是把 z1 所对应的向量伸缩 r2 | z2 | 倍, 然后再 旋转一个角度 2 argz 2 所得(见图 1.2)。
a 2 b 2 ( a b)( a b), a3 b3 ( a b)(a 2 ab b 2 ),
等等仍然成立。实数域和复数域都是代数学中所研究的“域”的实例。 由于一个复数与平面上的一个向量所对应, 因此, 复数的加法运算与平面上向量加法运 算一致,从而以下两个不等式成立。
z2 x2 iy2 相等,是指它们的实部与实部相等,虚部与虚部相等, 即 x1 iy1 x2 iy2
当且仅当 x1 x2 , y1 y2 。 1.1.2 复数的表示 1.1.2.1 代数表示 由式(1.1)所给出的即为复数的代数表示。 1.1.2.2 几何表示 由复数的定义可知,复数 z x iy 与有序数对 ( x, y ) 建立了一一对应关系。在平面上建立直角坐标 系 xOy ,用 xOy 平面上的点 P ( x , y ) 表示复数 z ,这 样复数与平面上的点一一对应,称这样的平面为复平 面。若用向量 OP 表示复数 z ,如图 1.1 所示。该向
复变函数第1章 复数与复变函数
设 z1 r1(cos1 isin1) r1ei1 ,
z2 r2(cos2 isin2 ) r2ei2
则
z1z2 r1r 2 (cos1 isin1)(cos2 isin2 )
r1r 2[cos( 12 ) isin( 12 )] r1r 2 ei( 12 )
于是, z1z2 z1 z2 , Arg(z1z2 ) Arg(z1) Arg(z2 )
(7) 复变函数理论也是积分变换的重要基础.
积分变换在许多领域被广泛地应用,如电力 工程、通信和控制领域以及信号分析、图象处理 和其他许多数学、物理和工程技术领域.
Josep(8h) Fourier 变换应用于频谱分析和信号处理等. (1768.3.21-1频83谱0.5分.1析6) 是对各次谐波的频率、振幅、相位之 法国数学间家的和关物系理进学行家分.他析致. 力随于着计算机的发展,语音、图 导问题, 象18等22作年出为版信名号著,《在热频的域分中的处理要方便得多.
1 i i
例1. 证明若z是实系数方程 an xn an-1xn1 a1x a0 0 的根,则z也是其根. (实系数方程的复根成对出现)
三、复平面及复数的几何表示y
设 z x iy P(x, y) OP x轴 实轴, y轴 虚轴
1. 模 、辐角 模:z r OP x2 y2 ; 则有
复 实数 ( y =0) 数 (C) 虚数 ( y 0)
纯虚数 ( x=0) 非纯虚数 (x 0 )
简单性质:
(1) 设 z1 x1iy1 , z2 x2 iy2,则 z1 z2 x1 x2且y1 y2
(2) z x iy 0 x 0且y 0
注意:一般说来,. 任意两个复数不能比较大小!
第一章复数与复变函数
n 次幂,
cos i sin
n
cosn i sinn
此式称为棣莫佛(De Moivre)公式。
2、复数的开方 开方是乘方的逆运算,设 w z 则称复数 z的n次方根记作: n z . w w为复数
n
容易得
1 1 w z | z |[cos( 2k ) i sin( 2k )] n n
2 2 2 2
2
2
三、复数的表示方法
1. 点的表示法 2. 向量表示法
3. 三角表示法 4. 指数表示法
1. 点的表示法
复数z x iy 一对有序实数x, y), (
在平面直角坐标系中, 任 意 点 ( x , y ) 一 对 有 序 实 数x , y ) P ( z x iy 平 面 上 的 点 ( x , y ) P
则有 z1z2 | z1 || z2 | [cos( 1 2 ) i sin( 1 2 )]
于是得到:1z2 || z1 || z2 | |z
Arg( z1z2 ) Argz1 Argz2
后一个式子应理解为集合相等。
几何意义 : 将复数 z 1 按逆时针方向旋转一个 角度2 ,再将其伸缩 z2 倍。
内接于该圆周的正 n 边形的 n 个顶点。
如 wk 4 1 i
2k 2k 8 2 (cos 4 i sin 4 ) ( k 0,1,2,3) 4 4
(见下图)
w1
y
1 i
2
28
w0
w2
o
w3
x
例5 求解方程 z 3 2 0
解:z 2
故得
1 3
第一章 复数与复变函数
z 对应,就建立了
平面上全部的点和全体复数间的一一对应关系.同时,复 Z也能用向量 OP 来表示。
从上述复数的定义中可以看出,一个复数z x iy 实际 唯一确定.因此,如果我们把 ( x, y ) 平面上的点 ( x, y ) 与复数 z 对应,就建立了平面上全部 上是由一对有序实数 的点和全体复数间的一一对应关系.
x2 iy2 ,则复数四则运算规定:
z1 z2 ( x1 x2 ) i( y1 y2 )
z1 z2 ( x1x2 y1 y2 ) i( x1 y2 x2 y1 )
z1 x1 x2 y1 y2 x2 y1 x1 y2 i 2 ( z2 0) 2 2 2 z2 x2 y2 x2 y2
y x x y
2 2
例 将复数
1 sin1 i cos1
2
化为三角形式和指数形式
z 1 sin1
2
1 4cos 4 2
2
cos 1 21 sin1 2 1 cos 1 2
2
又
i 4 1 i 2 cos 4 i sin 4 2e
例1.4
1 1
cos0 i sin0 e i 2 2 cos i sin 2e
0i
cos i sin i 1 2 2
式
z1 z2 z1 z2
(三角形两边之和第三边,图1-2)
(1.2)
z1 z2 z1 z2
(三角形两边之差第三边,图1-3)
(1.3)
(1.2)与(1.3)两式中等号成立的几何意义是:复数 z1 , z2 分别 与 z1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 复数与复变函数1.1 复数及复平面1-1 若1||1,n nz z z ω==+(n 是正整数),则( ). (A )Re()0ω= (B )Im()0ω= (C )arg()0ω= (D )arg()πω=解 由||1z =知1z z=,因此1n n n n z z z z+=+为实数,故Im()0ω=. 选(B )||1z =时n z = 1/.n n z z =1-233n n+=( ). (A )(1)2n - (B )1(1)2n -- (C )2 (D )2-解2i π3e =2i π3e =知,等式中两项皆为1. 选(C ) 1-3 i |(1e )|n θ+=( ).(A )2cos2n nθ(B )2sin2n nθ(C )/222(1cos )n n θ+ (D )/222(1sin )n n θ+解 i 222|1e |(1cos )sin 2(1cos )θθθθ+=++=+故 i /22|(1e )|2(1c o s ).nnn θθ+=+ 选(C )本题容易错选(A)项,因为2(1+2cos )4cos 2θθ=得i |1e |θ+=2cos .2θ错在cos 2θ应加上绝对值.1-4 42max{|i |||1}z z z +≤=( ). (A(B(C(D )2 解 由4242|i |||||2,z z z z +≤+≤而当i4e z π=时,πi4i π2422e 1,i ie 1,|i |2z z z z ==-==-+=,故最大值为2 .选 (D )用不等式确定最大值是常用方法.1-5 对任意复数12,z z ,证明不等式121212||||||||||||.z z z z z z -≤±≤+证1 121212*********|||()|||||||||||||||||z z z z z z z z z z z z z z z -=+-≤+-=+=+-≤++故 1212||||||z z z z -≤+,同理 2112||||||z z z z -≤+ 即 121212||||||||z z z z z z -+≤-≤+ 也就是 1212||||||||.z z z z -≤+ 证2 (代数法) 设i (1,2)k k k z x y k =+=则只要证 222121122||||2||||||z z z z z z +≤++即只要证12122x x y y y + (1) 只要证 2222212121122()()()x x y y x y x y +≤++ 此不等式等价于 22221221112220x y x y x y x y +-≥由于,k k x y 皆是实数,上式左边是完全平方式,故此不等式成立,也就是1212||||||z z z z +≤+成立,以下同证1.证3 (三角法).设12i i 1122e ,e ,z r z r θθ==则2221211221122||(cos cos )(sin sin )z z r r r r θθθθ+=+++ 222212*********cos()2r r r r r r r r θθ=+-≤+ 21212()(||||)r r z z =+=+ 即 1212||||||z z z z +≤+成立,以下同证1. 1-6 当1||≤z 时,求||α+n z 的最大与最小值,n 是正整数,a 是复常数. 解1 (代数法).由1-5 题知.||1||||||||||||αα+≤+≤+≤-a z z z z n n n我们知道,当1||=n z ,且向量nz 与α夹角为0°时右边不等式等号成立.故||α+n z 的最大值是.||1α+对左边不等式,要分情况讨论.(1)若1||>α,则.1||||||||-≥-≥+αααn n z z 等号当,1||=z 且nz 与α方向相反时成立.这时最小值是.1||-α(2)若1||≤α,则由0||≥+αn z ,当α-=nz 时等号成立,最小值为0.总之,不论α为何复数,|1|+n z 的最大值是||1α+;而当1||>α时,最小值为1||-α.当1||≤α时,最小值为0.解 2 (几何法).我们仅就1||>α加以证明.由1||≤z 知1||≤n z 。
即n z 是闭单位圆上一点.||α+n z 表示nz 点到α-点的距离.很明显(初等几何)当nz 位于如图1.2的1ω的位置时,nz 与α-距离最大,且最大值就是||1α+;当nz 位于2ω点时,||α+n z 最小,最小值为1||-α.1||≤α的情况请读者自己研究.1-7 若123||||||z z z ==,且1230z z z ++=证明以123,,z z z 为顶点的三角形是正三角形. 证1 记1||z a =,则222221232323||||2(||||)||z z z z z z z =+=+--|得 2223||3.z z a -=同样 2223112||||3z z z z a -=-= 即得 213213||||||.z z z z z z -=-=-命题得证.证2 设(1,2,3)k i k z ae k θ==因而有 312()0,i i i a ee e θθθ++=即123123cos cos cos sin sin sin 0.θθθθθθ++=++=不妨设 12302.θθθπ≤<<≤则2222123123(cos cos )cos ,(sin sin )sin .θθθθθθ+=+=于是 121222(c o s c o ss i n s i n ) 1.θθθθ++= 即 212112cos(),.23θθθθπ-=--= 同理,3223θθπ-=,说明123,,z z z 在圆周上且 1223,z z z z 与 31z z 的度数均为2,3π所以123,,z z z 为顶点的三角形是正三角形.1-8 证明复数形式的柯西(Cauchy )不等式:22111||||||.n nnk k k kk k k a αββ===≤∑∑∑证 对任意n 个复数,由三角不等式.知11||||||.n nk k k k k k a αββ==≤∑∑ (见1-5题).再由关于实数的柯西不等式得22221111||(||||)||||.n n nnk k k k k kk k k k a αββαβ====≤≤∑∑∑∑说明它的几何意义。
1-9 若复数123,,z z z 满足等式13213123z z z z z z z z --=-- 证明 213123||||||.z z z z z z -=-=- 证 由已知等式取模可得2212313||||||z z z z z z --=- (1)又由已知等式知213113233123()()()()z z z z z z z z z z z z ------=-- 即23123123z z z z z z z z --=--,从而有 2123123||||||z z z z z z --=- (2)(1)、(2)两式相比得 2231231323||||||||z z z z z z z z --=-- 故 3123||||z z z z -=-,代入(1)即可得所要证明的结论: 213123||||||.z z z z z z -=-=-1-10 设实数||1r <,求下面级数的和.(1)cos kk rk θ∞=∑ (2)1sin k k r k θ∞=∑解 记e (e )(0,1,)k ik i k k a r r k θθ===于是111e 1cos i sin k i k a r r r θθθ∞===---∑21c o s i s i n 12c o s r r r r θθθ-+=-+ 故 (1)21cos cos 12cos kk r r k r r θθθ∞=-=-+∑ (2)221sin sin 12cos k r r k r r θθθ∞==-+∑ 1.2 复变函数、极限与连续性一个复函数()f z ω=可以看作是从z 平面到ω平面上的一个映射(也可称为变换). 1-11 已知映射1zω=,求 (1)圆周||2z =的像;(2)直线y x =的像;(3)区域1x >的像. 解 (1)||211|||,||2z z ω===是ω面上以原点为圆心,12为半径的圆周.(2)11i.(1i)2x xω-==+则11,,22u v x x ==-像是直线.u v =- (3)先看直线1x =的像. 211i 1i 1+y y yω-==+,则22221,,,11yu v u v u y y -==+=++是以12ω=为圆心,12为半径的偏心圆,而由0z =的像是ω=∞,在圆外部,因此,1x >的像是圆的内部,即22u v u +<.1-12 设22Im (),0(),,0z z f z z z α⎧≠⎪=⎨⎪=⎩则( ).(A )0α=时,()f z 连 (B )21(1i)α=+时,()f z 连续 (C )1α=时,()f z 连 (D )不论α为何值,()f z 在0z =处均不连续解 记i z x y =+,则222222i .Im (),z x y xy z y =-+=故当0z ≠时2223222()2i()()y x y xy f z x y --=+ 考虑222222()(,)()y x y u x y x y -=+,令y kx =,得2222(1)(,),0(1)k k u x kx x k -=→+时极限不同故z →0时,(,)u x y 极限不存在. 因此,不论α取何值,()f z 在0z =处不连续. 选(D ).相当于用极坐标研究二元函数的极限.1-13 求极限:2122lim1z zz z z z →+---解 原极限=1(1)2(1)lim (1)(1)z z z z z z →-+--+123lim.12z z z →+==+ 复函数的极限与实二元函数极限的关系.即0lim ()z z f z →与000lim (,),lim (,)x x x x y y y y u x y v x y →→→→两问题是等价的.1-14 证明定理:设000i ,i .()(,)i (,).z x y z x y f z u x y v x y =+=+=+则00lim ()z z f z u iv →=+的充要条件是000lim (,)x x y y u x y u →→=及000lim (,)x x y y v x y v →→=证 必要性. 由000lim ()i z z f z u v →=+知,对任意0,0εδ>∃>,只要00||z z δ<-=<便有 00|(,)((,))|.u x y u i v x y v ε-+-< 这时000|(,)||(,)i()|u x y u u x y u v v ε-≤-+-<000|(,)||(,)i((,))|v x y v u x y u v x y v ε-≤-+-<即 00l i m(,)x x y y u x y u →→=及000lim (,)x x y y v x y v →→=. 充分性.对0ε>,存在10,δ>只要01||z z σρδ<=-=<便有 0|(,)|/2u x y u ε-< (1) 又存在20,δ>只要20ρδ<<便有 0|(,)|/2v x y v ε-< (2) 成立.取12min(,)δδδ=,因此,只要0ρδ<<,(1)、(2)便成立,由三角不等式0000|()()|||||u iv u iv u u v v ε+-+≤-+-< 成立.即000lim ().z z f z u iv →=+本问题的逆问题成立吗? 1-15 设0lim ()z z f z α→=,证明lim ().z z f z α→=证 对0ε>,存在0δ>,只要0ρδ<<,便有||()|||||()|f z f z ααε-≤-<成立.即0lim |()|||.z z f z α→=本题证明方法与证明二元实函数极限不存在的方法相同。