初中数学常见的存在性问题(答案附后)
中考数学 二次函数存在性问题 与参考答案
中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线2=向左平移1个单位,再向下平移4个单位,得到抛物线2y x=-+.y x h k()所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)写出h k、的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由.2.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3.如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分)(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分) (4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。
初中数学 等腰三角形存在性问题(含答案)
等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.等腰三角形存在性问题【问题描述】如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.C 21+23,0()C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=1334C C 、同理可求,下求5C .显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解:故C 5坐标为(196,0)解得:x =1363-x ()2+22=x 2设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3,BH =2而对于本题的5C ,或许代数法更好用一些.【代数法】表示线段构相等(1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3), (2)表示线段:5AC =5BC(3)分类讨论:根据55AC BC =,(4)求解得答案:解得:236m =,故5C 坐标为23,06⎛⎫⎪⎝⎭. 【小结】几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A 、B 、C ;(2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.【2018泰安中考】如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE . (1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【分析】(1)233642y x x =--+;(2)可用铅垂法,当点D 坐标为()2,6-时,△ADE 面积最大,最大值为14; (3)这个问题只涉及到A 、E 两点及直线x =-1(对称轴)①当AE =AP 时,以A 为圆心,AE 为半径画圆,与对称轴交点即为所求P 点. ∵AE=1AP AH =3,∴1PH故(1P -、(21,P-. ②当EA =EP 时,以E 点为圆心,EA 为半径画圆,与对称轴交点即为所求P 点. 过点E 作EM 垂直对称轴于M 点,则EM =1,34P M P M ===,故(31,2P --、(41,2P --.③当P A =PE 时,作AE 的垂直平分线,与对称轴交点即为所求P 点. 设()51,P m -,()()2225140P A m =-++-,()()2225=102P E m --++ ∴()22921m m +=++,解得:m =1. 故()51,1P -.综上所述,P 点坐标为(1P -、(21,P -、(31,2P --+、(41,2P --、()51,1P -.【补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.【2019白银中考(删减)】如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m .(1)求此抛物线的表达式;(2)过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;【分析】(1)211433y x x =-++;(2)①当CA =CQ 时,∵CA =5,∴CQ =5,考虑到CB 与y 轴夹角为45°,故过点Q 作y 轴的垂线,垂足记为H ,则CH QH ==,故Q点坐标为-⎝⎭. ②当AC =AQ 时,考虑直线BC 解析式为y =-x +4,可设Q 点坐标为(m ,-m +4),AQ =5=,解得:m =1或0(舍),故Q 点坐标为(1,3).③当QA =QC 时,作AC 的垂直平分线,显然与线段BC无交点,故不存在. 综上所述,Q点坐标为⎝⎭或(1,3).【2019盐城中考删减】如图所示,二次函数2(1)2y k x =-+的图像与一次函数2y kx k =-+的图像交于A 、B 两点,点B 在点A 的右侧,直线AB 分别与x 、y 轴交于C 、D 两点,其中0k <. (1)求A 、B 两点的横坐标;(2)若OAB ∆是以OA 为腰的等腰三角形,求k 的值.【分析】(1)A 、B 两点横坐标分别为1、2; (2)求k 的值等价于求B 点坐标,B 点横坐标始终为2,故点B 可以看成是直线x =2上的一个动点, 满足△OAB 是以OA 为腰的等腰三角形, 又A 点坐标为(1,2),故OA = ①当OA =OB时,即OB =记直线x =2与x 轴交点为H 点, ∵OH =2,∴BH =1,故B 点坐标为(2,1)或(2,-1),k =-1或-3. ②当AO =AB 时,易知B 点坐标为(2,0),k =-2. 综上所述,k 的值为-1或-2或-3.【2018贵港中考(删减)】如图,已知二次函数2y ax bx c =++的图像与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴相交于点(0,3)C -.(1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图像上任意一点,PH x ⊥轴于点H ,与线段BC 交于点M ,连接PC .当PCM ∆是以PM 为一腰的等腰三角形时,求点P 的坐标.【分析】(1)223y x x =--;(2)①当PM =PC 时,(特殊角分析)考虑∠PMC =45°,∴∠PCM =45°,即△PCM 是等腰直角三角形,P 点坐标为(2,-3);②当MP =MC 时,(表示线段列方程)设P 点坐标为()2,23m m m --,则M 点坐标为(),3m m -, 故线段()()223233PM m m m m m =----=-+ 故点M 作y 轴的垂线,垂足记为N ,则MN =m , 考虑△MCN是等腰直角三角形,故MC =,∴23m m -+,解得3m =0(舍), 故P点坐标为(3-.综上所述,P 点坐标为(2,-3)或(3-.【2019眉山中考删减】如图,在平面直角坐标系中,抛物线249y x bx c =-++经过点(5,0)A -和点(1,0)B .(1)求抛物线的解析式及顶点D 的坐标;(2)如图,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ∆为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.【分析】(1)241620999y x x =--+,顶点D 坐标为()2,4-;(2)考虑到∠DAB =∠DBA =∠DMN ,即有△BMD ∽△ANM (一线三等角).①当MD =MN 时,有△BMD ≌△ANM , 可得AM =BD =5,故AN =BM =1;②当NM =ND 时,则∠NDM =∠NMD =∠DAB , △MAD ∽△DAB ,可得AM =256,116BM = ∴AN AMBM BD=,即2561156AN =, 解得:5536AN =.③当DM =DN 时,∠DNM =∠DMN =∠DAB ,显然不成立,故不存在这样的点M . 综上,AN 的值为1或5536.【2019葫芦岛中考(删减)】如图,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y x bx c =-++经过B ,C 两点,与x 轴另一交点为A .点PBC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图,连接AM 交BC 于点D ,当PDM ∆是等腰三角形时,直接写出t 的值.【分析】(1)234y x x =-++;(2)①考虑到∠DPM =45°,当DP =DM 时,即∠DMP =45°,直线AM :y =x +1,联立方程:2341x x x -++=+, 解得:13x =,21x =-(舍). 此时t =1.②当PD=PM时,∠PMD=∠PDM=67.5°,∠MAB=22.5°,考虑tan∠22.5°1,直线AM:)11 y x=+,联立方程:)23411 x x x-++=解得:15x=21x=-(舍).此时t1 -.综上所述,t的值为11.附:tan22.5°1.221122.5°22.5°45°45°tan22.51︒==【总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,可减轻计算量.。
初中存在性问题(二)
存在性问题(二)1.y=ax2+bx+4与x轴的一个交点为A(﹣2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B. (1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.2.l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x 轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.3.y=ax2+bx+c经过A(3,0)、B(0,3)、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线AB上有一点P,使△ABO与△ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使△ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.4.如图①,点A坐标为(1,-2),点B坐标为(3,-1),二次函数y=-x2图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件函数解析式有个.②写出向下平移且经点A解析式.(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.5.对称轴为x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.6.与x 轴交于A 、D 两点,与y 轴交于点B,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H .(1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.24y x bx c 3=-++7.直线y =-x +2与x 轴交于点B,与y 轴交于点C.二次函数图象经过点B ,C 和点A (-1,0).(1)求B ,C 两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x 轴的交点为点D ,点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标;(4)在抛物线的对称轴上是否存在点P ,使△PCD 是等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明问题.8.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA =OC =4OB ,动点P 在过A ,B ,C 三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P 作PE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标.129.对称轴为直线x =−的抛物线经过点A(-6,0)和点B (0,4). (1)求抛物线的解析式和顶点坐标;(2)设点E (x ,y )是抛物线上的一个动点,且位于第三象限,四边形OEAF 是以OA 为对角线的平行四边形,求▱OEAF 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;①当▱OEAF 的面积为24时,请判断▱OEAF 是否为菱形?②是否存在点E ,使▱OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.72。
中考数学专题复习——存在性问题
中考数学专题复习——存在性问题一、二次函数中相似三角形的存在性问题1.如图,把抛物线2=向左平移1个单位,再向下平移4个单位,得到抛物线2y x=-+.y x h k()所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)写出h k、的值;(2)判断△ACD的形状,并说明理由;(3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由.2.如图,抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3.如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2), 点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,写出点D 的坐标; 若不存在,说明理由.4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分)(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分)(4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,说明理由。
中考数学几何模型22个精选——存在性问题
中考数学几何模型22个精选——存在性问题
1.三角形存在性问题
2.平行四边形存在性问题
目录1
一、直角三角形的存在性
1.几何法平面直角坐标系中已知条线段,构造直角三角形,用的是“两线圆':分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆。
2.两点间距离公式代数法,代数法解题步:
•(1)表示出A、B、C的坐标
•(2)表示出线段AB、AC、BC的长(两点间距离公式)
•(3)分类列方程
•3)解方程
•(4)检验。
二、等腰三角形的存在
1.“两圆一线”几何法,又叫两圆一中垂。
2.两点间距离公式代数法,代数法解题步骤:
•(1)列出三边长的平方
•(2)分类列方程;
•(3)解方程;
•(4)检验。
注:若△ABC是等腰三角形,那么可以分为①AB=AC;②AB=BC;③AC=BC三种情况
练习
三、平行四边形的存在性
分析:平移法的原理是平行四边形的对应边平行且相等;对点法的原理平行四边形对角线互相平分.
常考类型:1.三定一动2.二定二动。
初中数学几何最值存在性问题(word版+详解答案)
几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
初中数学存在性问题
存在性问题(一)1.在△ABC 中,点D ,E ,F 分别在AB ,BC ,AC 上,且∠ADF+∠DEC=180°,∠AFE=∠BDE .(1)如图1,当DE=DF 时,图1中是否存在与AB 相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF (其中0<k <1)时,若∠A=90°,AF=m ,求BD 的长(用含k ,m 的式子表示).2.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为()m m ,2,翻折矩形OABC ,使点A 与点C 重合,得到折痕DE ,设点B 的对应点为F ,折痕DE 所在直线与y 轴相交于点G ,经过点C ,F ,D 的抛物线为.(1)求点D 的坐标(用含m 的式子表示);(2)若点G 的坐标为(0,﹣3),求该抛物线的解析式;(3)在(2)的条件下,设线段CD 的中点为M ,在线段CD 上方的抛物线上是否存在点P ,使PM=EA ?若存在,直接写出点P 的坐标;若不存在,说明理由.c bx ax ++=2y 213.如图1,△ABC 和△AED 是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C在线段AD 上.(1)请直接写出线段BE 与线段CD 的关系;(2)如图2,将图1中的△ABC 绕点A 顺时针旋转角() 3600<<σσ.①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当ED AC 21=时,探究在△ABC 旋转的过程中,是否存在这样的角σ,使以D C B A ,,,四点为顶点的四边形是平行四边形?若存在,请直接写出角σ的度数;若不存在,请说明理由.4.如图1,抛物线交x 轴于()0,1-A 和()0,5B 两点,交y 轴于点C,点D 是线段OB 上一动点,连接CD,将线段CD 绕点D 顺时针旋转 90得到线段DE,过点E 作直线l ⊥x 轴于H,过点C 作CF ⊥l 于F .(1)求抛物线解析式;(2)如图2,当点F 恰好在抛物线上时,求线段OD 的长;(3)在(2)的条件下:①连接DF ,求tan ∠FDE 的值;②试探究在直线l 上,是否存在点G ,使∠EDG=45°?若存在,请直接写出点G 的坐标;若不存在,请说明理由.23y ax bx =++5.如图,在平面直角坐标系中,已知Rt △AOB 的两直角边OA 、OB 分别在x轴的负半轴和y 轴的正半轴上,且OA 、OB 的长满足,∠ABO的平分线交x 轴于点C 过点C 作AB 的垂线,垂足为点D ,交y 轴于点E .(1)求线段AB 的长;(2)求直线CE 的解析式;(3)若M 是射线BC 上的一个动点,在坐标平面内是否存在点P ,使以P M B A ,,,为顶点的四边形是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.6.如图,交x 轴于点A (1,0),交y 轴于点B ,对称轴是x=2.(1)求抛物线的解析式;(2)点P 是抛物线对称轴上的一个动点,是否存在点P,使△PAB 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.28(6)0OA OB -+-=c bx x y +-=27.如图,抛物线的顶点为D ,与x 轴交于B A ,两点,与y 轴交于C 点,E 为对称轴上的一点,连接CE.将线段CE 绕点E 按逆时针方向旋转90°后,点C 的对应点C ′恰好落在y 轴上.(1)点F 为直线C ′E 与已知抛物线的一个交点,点H 是抛物线上C 与F 之间的一个动点,若过点H 作直线HG 与y 轴平行,且与直线C ′E 交于点G,设点H 的横坐标为()40<<m m ,当m 为何值时,6:5:=∆∆BG F H G F S S ?(2)图2所示的抛物线是由向右平移1个单位后得到的,点T (5,y )在抛物线上,点P 是抛物线上O 与T 之间的任意一点,在线段OT 上是否存在一点Q ,使△PQT 是等腰直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.8.如图,点M 的坐标是(5,4),⊙M 与y 轴相切于点C ,与x 轴相交于A 、B 两点.(1)设经过A 、B 两点的抛物线解析式为,它的顶点为F ,求证:直线FA 与⊙M 相切;(2)在抛物线的对称轴上,是否存在点P ,且点P 在x 轴的上方,使△PBC 是等腰三角形.如果存在,请求出点P 的坐标;如果不存在,请说明理由.245y x x =-++245y x x =-++21(5)4y x k =-+9.如图1,与x 轴交于B A ,,与y 轴交于C ,抛物线的顶点为D ,直线l 过C 交x 轴于()0,4E .(1)写出D 的坐标和直线l 的解析式;(2)()y x P ,是线段BD 上的动点(不与D B ,重合),PF ⊥x 轴于F ,设四边形OFPC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点Q 在x 轴的正半轴上运动,过Q 作y 轴的平行线,交直线l 于M,交抛物线于N,连接CN ,将△CMN 沿CN 翻转,M 的对应点为M ′.在图2中探究:是否存在点Q ,使得M ′恰好落在y 轴上?若存在,请求出Q 的坐标;若不存在,请说明理由.10.如图,已知抛物线与直线AB 相交于()()3,0,0,3B A -两点.(1)求这条抛物线的解析式;(2)设C 是抛物线对称轴上的一动点,求使 90=∠CBA 的点C 的坐标;(3)探究在抛物线上是否存在点P ,使得APB ∆的面积等于3?若存在,求出点P 的坐标;若不存在,请说明理由.223y x x =-++2y x bx c =-++11.抛物线经过A (0,2),B (3,2)两点,若两动点D 、E 同时从原点O 分别沿着x 轴、y 轴正方向运动,点E 的速度是每秒1个单位长度,点D 的速度是每秒2个单位长度.(1)求抛物线与x 轴的交点坐标;(2)若点C 为抛物线与x 轴的交点,是否存在点D ,使A 、B 、C 、D 四点围成的四边形是平行四边形?若存在,求点D 的坐标;若不存在,说明理由;(3)问几秒钟时,B 、D 、E 在同一条直线上?12、已知()1235.022-++--=m x m x y 与x 轴交于()()0,,0,21x B x A 两点,且210x x <<抛物线交y 轴于点C,OB=2OA 。
存在性问题专题 (含答案)
第 8页(共 80 页)高中数学解题研究会 339444963 群文件
35. 设 (1)求 ( 2 )设 立,求 ( 3 )设
ln h
,
的极大值; , ,若
h
e
e
,其中 t
.
的最大值; 成立,求
h
对任意的
t
h
t㔶 ,使
h
恒成
h ,若对任意给定 的
的取值范围.
te ,在区间
te 上总存在 t
36. 已知函数 (1)求 (2)若对任意的
㔶
成等比数列.
(3)是否存在实数 ,使得对任意的正整数 的最大值;若不存在,请说明理由.
h
h ,
h
,当
h
h
, ,都有
h 时,比较
h
的大小; 成立.若存在,求
h
h
第 4页(共 80 页)高中数学解题研究会 339444963 群文件
19. 已知函数 (1)当 (2)若存在实数
时,解不等式 满足
h h h , h
,求函数
h
h
ln
. 的单调区间; t 上是减函数,求实数 的取值范围; 的切线,证明:切点的横坐标为 .
在区间 作曲线
(3)过坐标原点
第 5页(共 80 页)高中数学解题研究会 339444963 群文件
23. 已知函数 (1)设 (2)求证:存在
,若
h
h
h . 在
t
.
的斜率为 ,是否存在
的值,若不存在,
请说明理由.
48. 已知函数 (1)当
时,求函数
h
h
h
的单调减区间; ,求 的最大值. t 时,有 ;
中考数学 存在性问题
存在性问题1.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N在,求出N 点的坐标;若不存在,说明理由.4.已知抛物线y=-x2+mx-m+2.(1)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB m的值;(2)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC 的面积等于27,试求m的值.的图象交于点A,且与x轴交于点B.如图,已知一次函数y=-x+7与正比例函数y=x3(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O﹣C﹣A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.5.答案:1. (1)由题意,可设抛物线的解析式为2(2)1y a x =-+,∵抛物线过原点,∴2(02)10a -+=, 14a =-. ∴抛物线的解析式为21(2)14y x =--+214x x =-+.(2)AOB △和所求MOB △同底不等高,3MOBAOB S S =△△且,∴MOB △的高是AOB △高的3倍,即M 点的纵坐标是3-. ∴2134x x -=-+,即24120x x --=.解之,得 16x =,22x =-. ∴满足条件的点有两个:1(63)M -,,2(23)M --,. (3)不存在.由抛物线的对称性,知AO AB =,AOB ABO ∠=∠.如图,若OBN △与OAB △相似,必有BON BOA BNO ∠=∠=∠.设ON 交抛物线的对称轴于A '点,显然(21)A '-,. ∴直线ON 的解析式为12y x =-.由21124x x x -=-+,得10x =,26x =∴ (63)N -,.过N 作NE x ⊥轴,垂足为E .在Rt BEN△中,2BE =,3NE=,∴NB ==.又OB =4,∴NB OB ≠,BON BNO ∠≠∠,OBN △与OAB △不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.所以在该抛物线上不存在点N ,使OBN △与OAB △相似.2. 解答:解:(1)∵OB=OC=3,∴B (3,0),C (0,3)∴⎩⎨⎧=++-=c cb 3390,解得⎩⎨⎧==32c b ∴二次函数的解析式为y=-x 2+2x+3; (2)∵y=-x 2+2x+3=-(x-1)2+4,∴M (1,4)设直线MB 的解析式为y=kx+n ,则有⎩⎨⎧+=+=n k nk 304解得⎩⎨⎧=-=62c k ∴直线MB 的解析式为y=-2x+6∵PD ⊥x 轴,OD=m ,∴点P 的坐标为(m ,-2m+6) S 三角形PCD =21×(-2m+6)•m=-m 2+3m (1≤m≤3); (3)∵若∠PDC 是直角,则点C 在x 轴上,由函数图象可知点C 在y 轴的正半轴上,∴∠PDC≠90°,在△PCD 中,当∠DPC=90°时,当CP ∥AB 时,∵PD ⊥AB ,∴CP ⊥PD ,∴PD=OC=3,∴P 点纵坐标为:3,代入y=-2x+6,∴x=23,此时P (23,3).∴线段BM 上存在点P (23,3)使 △PCD 为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′, 即9+m 2=3(-2m+6),∴m 2+6m-9=0,(1) 3. 解:分别把A (1,0)、B (3,0)两点坐标代入y=x 2+bx+c 得到关于b 、c 的方程组,解之得:b=-4,c=3,∴抛物线的对称轴为:直线x=2;4. 解: (1)A(x 1,0),B(x 2,0) . 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根. ∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2 ;又AB =∣x 1 — x 2∣==∴m 2-4m +3=0 解得:m=1或m=3(舍去) , ∴m 的值为1 .(2)M(a ,b),则N(-a ,-b) . ∵M 、N 是抛物线上的两点∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 .∴当m <2时,才存在满足条件中的两点M 、N.∴a = .这时M 、N 到y又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2×12×(2-m ∴解得m=-7 .。
九年级反比例函数中的几何图形存在性问题归纳总结
专题反比例函数中的几何图形存在性问题1、如图所示,在平面直角坐标系中,一次函数(叱0)与反比例函数尸鸟(启0)的图象交于 第二、四象限乩5两点,过点月作曲_Lx 轴于〃止=4, sinN/但冷,且点5的坐标为(m -2).5(1)求一次函数与反比例函数的解析式;(2)5是y 轴上一点,且△月比是等腰三角形,请直接写出所有符合条件的七点坐标.【解答】(1) •••一次函数y=4田6与反比例函数丫=典图象交于月与5且出ZLx 轴, x :.ZADO= 90° ,在 RtZLW 中,出?=4, sinZAOD=—. 即47=5,5 A0 5 根据勾股定理得:加=叱11=3, :.A ( -3, 4),代入反比例解析式得:力=-12,即y=-22,把5坐标代入得:A =6,即6 (6, -2),2、在平而直角坐标系才分中,一次函数,=田8的图象经过点月(-2, 0),与反比例函数丫=区(心>0)代入一次函数解析式得: 一孔坨=4,解得: 6k+b=-2 2- 93,即 y- - -(2)当。
氏=0Ez=Ag5,即艮(0, - 5),瓦(0, 5):.当Q4=月瓦=5时,得至IJ 组=2祖=8,即属(0, 8);当忠=的时,由3(-3, 4), 0 (0, 0),得到直线月。
解析式为尸-义, 中点坐标为(-1.5, 2), 垂直平分线方程为y2得 (A H-1),令X =0,得到尸争,即因(0,零),综上,当点上(0, 8)或(0, 5)或(0, -5)或(0,冬)时,△月比是等腰三角形.的图象交于5 (a, 4).(1)求一次函数和反比例函数的表达式:(2)设必是直线四上一点,过M 作必〃x 轴,交反比例函数y=k (x>0)的图象于点A ;若儿0, M x【解答】解:(1):一次函数的图象经过点月(-2, 0),,0=-2+6,得6=2, •••一次函数的解析式为产=肝2,:一次函数的解析式为产=/2与反比例函数,=区(Q0)的图象交于6 (a, 4),,4 = a+2, …得a=2, x ,4=& 得k=8,即反比例函数解析式为:尸区(Q0);2 x (2) •二点月(-2, 0), :.OA=2,设点必(m-2,加,点内(呈,血, m当心〃月。
(完整版)二次函数中的存在性问题(答案)
二次函数中的存在性问题姓名1 .已知抛物线y=-jx2等X-3与x轴交于A, B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得4ACD 的面积最大?若存在,求出点D的坐标;若不存在,请说明理由.2.已知y=ax2+bx+c (a加)图象与直线y=kx+4相交于A (1, m) , B (4, 8)两点,与x轴交于原点及点C. (1)求直线和抛物线解析式;(2)在x轴上方的抛物线上是否存在点D,使S AOCD=2S AOAB?如果存在,求出点D坐标,如果不存在,说明理由.3 .已知直线y==x-3与x轴交于点A ,与y轴交于点C,抛物线y= --^x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得4ACD的面积最大?若存在,求出点D的坐标;若不存在,4 .在平面直角坐标系xOy中,抛物线y= - x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点 C (2, 3).(1)求直线AC及抛物线的解析式;(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90彳导到直线1,设直线1与y轴的交点为P,求△ APE的面积;(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.5 .如图,在平面直角坐标系中,抛物线广2交x轴于A, B两点(A 在B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)求抛物线的顶点及对称轴;(3)若点Q是抛物线对称轴上的一动点,说明理由;(4)若点P是直线BC上方的一个动点, 的面积;若不存在,说明理由.线段AQ+CQ是否存在最小值?若存在,△ PBC的面积是否存在最大值?若存在,求出点Q的坐标;若不存在,求出点P的坐标及此时4PBC1 .已知抛物线y=—:\2+匪x ― 3与x轴交于A , B两点,2 .与y轴交于点C.在直线CA上方的抛物线上是否存在3 . 一点D,使得4ACD的面积最大?若存在,求出点D4 .的坐标;若不存在,请说明理由.牛目, 解:对于抛物线y= - -x2+—x - 3,4 4令y=0 ,得到--x2+i^x- 3=0, [4 4解得:x=1或x=4 ,B (1, 0), A (4, 0),令x=0,得至ij y= - 3,即 C (0, - 3), 设直线AC解析式为y=kx+b ,将A与C坐标代入得:]业上0 , 1b=-3解得:k=工,b= - 3,4・•・直线AC解析式为y=Wx-3,4设平行于直线AC,且与抛物线只有一个交点的直线方程为y/x+m,4此时直线与抛物线交于点D,使得4ACD的面积最大,与二次函数解析式联立消去y得:-总x2+"x - 3=^x+m ,4 4 4整理得:3x2- 12x+4m+12=0 ,A=144 - 12 (4m+12) =0,解得:m=0,,此时直线万程为y=^x,点D坐标为(2,―).4 42. (2008?宁波校级自主招生)已知y=ax2+bx+c (a沟)图象与直线y=kx+4相交于A (1, m), B (4, 8)两点, 与x轴交于原点及点 C.(1)求直线和抛物线解析式;(2)在x轴上方的抛物线上是否存在点D,使S AOCD=2S AOAB?如果存在,求出点D坐标,如果不存在,说明理由.解答:解:(1) 丁直线y=kx+4 过 A (1, m), B (4, 8)两点,金-Iy= - x2+6x;(2)存在.设D点纵坐标为h (h>0),由O (0, 0), A (1, 5), B (4, 8),可知S AOAB=6,把O、A、B三点坐标代入抛物线解析式,得c=0S A OCD =2S AOAB =12, —>6><h=12,解得 h=4, 2由-x 2+6x=4 ,得 x=3 父 5,•••D (3+、闻 4)或(3-V5, 4).3. (2014春?昌平区期末)已知直线 y=Cx-3与x 轴交于点A,与y 轴交于点4点A 和点C.(1)求此抛物线的解析式;(2)在直线CA 上方的抛物线上是否存在点 D,使得4ACD 的面积 最大?若存在,求出点 D 的坐标;若不存在,说明理由.—3得y= - 3,则C 点坐标为(0, — 3), -3=0,解得x=4 ,则A 点坐标为(4, 0),把 A (4, 0), C (0, - 3)代入 y=--?x 2+mx+n 得4k=-7,即 y=—x+b ,4 412x+4b+12=0 ,.・・△=122-4MX (4b+12) =0,解得 b=0, 3x 2 - 12x+12=0 ,解得 x 1=x 2=2, 把 x=2 , b=0 代入 y=—x+b 得 y=—,4 2D 点坐标为(2, -1).4. (2010?孝感模拟)在平面直角坐标系 xOy 中,抛物线y= - x 2+bx+c 与x 轴交于A 、B 两点(点A 在点B 的左侧),过点A 的直线y=kx+1交抛物线于点 C (2, 3).(1)求直线AC 及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点 E,以点E 为中心将直线y=kx+1顺时针旋转90彳导到直线1,设直线l 与y 轴的交点为P,求△ APE 的面积;解答:解得15n= - 3所以二次函数解析式为 y=- ±x 2+¥x - 3;4 4(2)存在.过D 点作直线AC 的平行线y=kx+b ,当直线y=kx+b 与抛物线只有一个公共点时,点 大,此时4ACD 的面积最大, D 到AC 的距离最直线AC 的解析式为y3 「x — 3,4由直线y=—x+b 和抛物线y=-x - 3组成方程组得y=-/+b厂「¥苧一3,消去y 得至iJ 3x 2-解:(1)把x=0代入把 y=0 代入 y=-^x —3 4经过(3)若G 为抛物线上一点,是否存在 x 轴上的点F,使以B 、E 、F 、G 为顶点的四边形为平行四边形?若存在, 直接写出点F 的坐标;若不存在,请说明理由. 解答: 解:(1) 丁点C (2, 3)在直线y=kx+1上,,2k+1=3 .解得k=1.直线AC 的解析式为y=x+1 . •・•点A 在x 轴上,A (T, 0).,「抛物线 y= -x 2+bx+c 过点 A 、C,I - 4f2b+c=3解得抛物线的解析式为 y= - x 2+2x+3 . (2)由 y= - x 2+2x+3= - (x-1)2+4, 可得抛物线的对称轴为 x=1, B (3, 0). • . E (1, 2).根据题意,知点 A 旋转到点B 处,直线l 过点B 、E. 设直线l 的解析式为y=mx+n . 将B 、E 的坐标代入y=mx+n 中, 联立可得m= - 1, n=3. 直线l 的解析式为y= - x+3. P (0, 3).过点E 作ED^x 轴于点D.••• S APA E=S APAB - S AEAB =±AB ?PO -4AB?ED=± MX (3-2) =2.2 2 2(3)存在,点F 的坐标分别为(3-死,0), (3+,万,0), (- 1-右,0) (- 1+/6, 0).在B 的左侧),交y 轴于点C.(1)求直线BC 的解析式; (2)求抛物线的顶点及对称轴;5. (2013秋?红安县校级月考)如图,在平面直角坐标系中,抛物线 y=+4工十2交x 轴于A , B 两点(A考点:二次函数综合题. 专题:压轴题.分析:(1)令y=0,解关于x 的一元二次方程求出点 B 的坐标,令x=0求出点C 的坐标,设直线 BC 的解析式 为y=kx+b ,然后利用待定系数法求一次函数解析式解答即可;(2)把二次函数解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据轴对称确定最短路线问题,直线 BC 与对称轴的交点即为使线段 AQ+CQ 最小的点Q,然后利 用直线解析式求解即可;(4)过点P 作PD// y 轴与BC 相交于点D,根据抛物线解析式与直线BC 的解析式表示出 PD,再根据S APBC =S APCD +S APBD 列式整理,然后利用二次函数最值问题解答. 解答: 解:(1)令 y=0,贝u― -^x 2+4x+2=0 ,3 3整理得,x 2 - 2x - 3=0 , 解得 x i = - 1, x 2=3,所以,点B 的坐标为(3, 0), 令 x=0 ,则 y=2,所以,点C 的坐标为(0, 2),设直线BC 的解析式为y=kx+b ,则{:"仁。
一次函数之存在性问题(讲义及答案)
一次函数之存在性问题➢课前预习1.如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找到几个?请找出所有符合条件的点C.2.在Rt△ABC中,∠C=90°,∠A=30°,若在直线BC上取点P,使△ABP是等腰三角形,则符合条件的点P有______个.BC A3.用铅笔做讲义第1,2题,并将计算、演草保留在讲义上,先看知识点睛,再做题,思路受阻时(某个点做了2~3分钟)重复上述动作,若仍无法解决,课堂重点听.➢知识点睛1.存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查_______________.2.一次函数背景下解决存在性问题的思考方向:①研究背景图形,把函数信息(_________________)转化为几何信息.②分析不变特征,确定分类标准.③分析特殊状态的形成因素,画出符合题意的图形并求解.3.不变特征举例:①等腰三角形以定线段作为底边或者腰确定分类标准,利用两圆一线确定点的位置.②等腰直角三角形根据直角顶点确定分类标准,然后借助两腰相等或者45°角确定点的位置.➢精讲精练1.直线y=kx-4与x轴、y轴分别交于点B,C,且43 OCOB.(1)求点B的坐标和k的值.(2)若点A是直线y=kx-4上的一个动点,且点A在第一象限,则当点A运动到什么位置时,△AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.2. 如图,直线3y x =--x 轴、y 轴分别交于点B ,C ,点A 在该直线上,且纵坐标为 (1)求△OAB 的面积.(2)第二象限内是否存在点P ,使得△PAB 是等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,点A的坐标为(2,0),Q是直线x=3上的一个动点,y轴正半轴上是否存在点P,使△APQ为等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】➢课前预习1.符合条件的点C有4个,作图略2. 2➢知识点睛1.运动的结果2.坐标或表达式➢精讲精练1.(1)B(3,0),43 k=(2)A(6,4)(3)存在,点P的坐标为(0),(-0),(12,0)或(133,0)2.(1)(2)存在,点P的坐标为(12-+6+),(6-+6)或(9-+33.存在,点P的坐标为(0,1),(0,3)或(0,4)。
中考数学压轴题专题02等腰三角形的存在性问题(学生版+解析版)
专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一 【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D ,满足∠DAB =45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y=ax2+bx+c的图象与x轴交于A(2,0),B(﹣8,0)两点,与y轴交于点C(0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A (﹣2,﹣4),直线x =﹣2与x 轴相交于点B ,连接OA ,抛物线y =﹣x 2从点O 沿OA 方向平移,与直线x =﹣2交于点P ,顶点M 到点A 时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段P A 最长?并求出此时P A 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y =ax 2+bx +c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△P AB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△P AD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A (4,4),B (5,0)和原点O ,P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D (m ,0),并与直线OA 相较于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当点P 在直线OA 的上方时,是否存在一点P ,使射线OP 平分∠AOy ,若存在,请求出P 点坐标;若不存在.请说明理由;(4)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,若存在,求出P 点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A ,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , );②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
存在性问题专题 (含答案)
h 存在性问题专题 (含答案)1. 已知函数 ƒ x = x — t |x| t C R . (1)试讨论函数 ƒ x 的单调区间;(2)若 Et C 0th ,对于 6x C 1th ,不等式 ƒ x Σ x h a 都成立,求实数 a 的取值范围.2. 已知函数 ƒ x = x 3 — ax h h 10.(1)当 a = 1 时,求曲线 y = ƒ x 在点 h t ƒ h处的切线方程;(2)在区间 1th 内至少存在一个实数 x ,使得 ƒ x € 0 成立,求实数 a 的取值范围.3. 已知等差数列 a n 满足:a 1 = t ,a 5 = 0.数列 b n 的前 n 项和为 S n = h n —1 — 1 n C N ×(1)求数列 a n 和 b n 的通项公式;(2)令 c n = h a n ,试问:是否存在正整数 n ,使不等式 b n c n h 1 Σ b n h c n 成立?若存在,求出相应 n 的值;若不存在,请说明理由.4. 已知函数 ƒ x = lnx — 1 ax h — hx h 1,a C Rh(1)若 ƒ x 在 x = h 处的切线与直线 hx h y = 0 垂直,求 a 的值; (2)若 ƒ x 存在单调递减区间,求 a 的取值范围.5. 已知函数 ƒ x = x h — mx h n mtn C R .(1)若 n = h ,且不等式 ƒ x ≤ 0 在 0t 㔶 m 的最小值;(2)若 x 1,x h 是方程 ƒ x = 0 的两实根,且满足 0 € x 1 € h € x h € 㔶,试求 m h n 的范围.h 6. 已知函数 y = x h t 有如下性质:如果常数 t Σ 0,那么该函数在 0tx上是减函数,在 tt h œ上是增函数.(1)已知 ƒ x = 㔶x h —1hx —3 tx C 0t1 ,利用上述性质,求函数 ƒ x 的单调区间和值域;hxh1(2)对于(1)中的函数 ƒ x 和函数 g x =— x — ha ,若对任意 x 1 C 0t1 ,总存在 x h C 0t1 ,使得 g x h = ƒ x 1 成立,求实数 a 的值.7. 已知函数 ƒ x = x x hb,其中 b C R .(1)求 ƒ x 的单调区间;(2)设 b Σ 0,若 Ex C 1t 3,使 ƒ x ≤ 1,求 b 得取值范围.㔶㔶8. 设 ƒ x 是 R 上的奇函数,且对任意的实数 a ,b 当 a h b G 0 时,都有 ƒ a hƒ bΣ 0.(1)若 a Σ b ,试比较 ƒ a ,ƒ b 的大小;(2)若存在实数 1 t 3 使得不等式 ƒ x — c h ƒ x — c h Σ 0 成立,试求实数 c 的取值范围.h h9. 已知函数 ƒ x = x — 1 h x — a . (1)若 a =— 1,解不等式 ƒ x ≤ 3;(2)如果 Ex C R ,使得 ƒ x € h 成立,求实数 a 的取值范围.10. 已知函数 ƒ x = x — a — x — 㔶 x C Rta C R 的值域为 3t3 .(1)求实数 a 的值;(2)若存在 x 0 C R ,使得 ƒ x 0 ≤ hm — m h ,求实数 m 的取值范围.txh1 hh11. 设二次函数 ƒ x = ax h h bx h c atbtc C Rta G 0 满足条件:(a )当 x C R 时,ƒ x — 㔶 = ƒ h — x ,且ƒ x ≤ x ; h(b )当 x C 0th 时,ƒ x ≤;(c )ƒ x 在 R 上的最小值为 0.求最大的 m m Σ 1 ,使得存在 t C R ,只要 x C 1tm ,就有 ƒ x h t ≤ x .12. 已知函数 ƒ x = kx x h3kk Σ 0 .(1)若 ƒ x Σ m 的解集为 x x €— 3 或 x Σ— h ,求不等式 5mx h h k x h 3 Σ 0 的解集; h(2)若存在 x 0 Σ 3,使得 ƒ x 0 Σ 1 成立,求 k 的取值范围.13. 已知函数 ƒ x = x — 1 h x h 3 ,x C R .(1)解不等式 ƒ x ≤ 5;(2)若不等式 t h h 3t Σ ƒ x 在 x C R 上有解,求实数 t 的取值范围.14. 设 ƒ x = mx h h 3 m — 㔶 x — 9.(1)试判断函数 ƒ x 零点的个数; (2)若满足 ƒ 1 — x = ƒ 1 h x ,求 m 的值;(3)若 m = 1 时,存在 x C 0th 使 得 ƒ x — a Σ 0 成立,求 a 的取值范围.ha a 15. 已知正项数列 a n 的前 n 项的和为 S n ,且 p — 1 S n = p h — a n n C N ×tp Σ 0tp G 1 ,数列b n 满足 b n = hlog p a n .(1)分别求 a n 和 b n 的表达式 ; (2)设数列的前 n 项和 T n ,当 p = 1 时,求证: 0 € T n € 㔶 ; (3)是否存在正整数 M ,使得 n Σ M 时, a n Σ 1 恒成立?若存在,求出相应的 M 的值;若不存在,请说明理由.16. 设 x 1,x h 为函数 ƒ x = ax h h b — 1 x h 1 a Σ 0 两个不同零点,且满足 x h — x 1 = h .(1)若对任意 x C R 都有 ƒ h — x = ƒ h h x ,求 ƒ x ;(2)设 g x =— ƒ x h h x h — x ,试证明必存在 x 0 C R 使得 g x 0 ≤ 㔶 成立.17. 设函数 ƒ x = xe x ,g x = ax h h x(1)若 ƒ x 与 g x 具有完全相同的单调区间,求 a 的值; (2)若当 x ≤ 0 时恒有 ƒ x ≤ g x ,求 a 的取值范围.18. 已知公差不为 0 的等差数列 a n 的首项 a 1 = 1,前 n 项和为 S n ,且 a 1,a h ,a 㔶 成等比数列.(1)求数列 a n 的通项公式及 S n ;(2) 记 A = 1 h 1 h ... h 1 ,B = 1 h 1 h (1),当 n ≤ h 时,比较 A 与 B 的大小;S 1 S h S n1 n —1hhh(3)是否存在实数 k ,使得对任意的正整数 m ,n ,都有 a h h a h ≤ k · a h成立.若存在,求k 的最大值;若不存在,请说明理由.mnmhnb n a na19.已知函数ƒx = x —3 h hx h t ,t C R.(1)当t = 1 时,解不等式ƒ x ≤ 5;(2)若存在实数a 满足ƒ a h a —3 € h,求t 的取值范围.20.已知关于x 的不等式x — 1 — hx — 1 Σlog1a (其中a Σ0 ).3(1)当 a = 3 时,求不等式的解集;(2)若不等式有解,求实数 a 的取值范围.21.设函数ƒx = |ax — 1|.(1)若ƒ x ≤ h 的解集为— 6th ,求实数a 的值;(2)当 a = h 时,若存在x C R,使得不等式ƒ hx h 1 —ƒ x —1 ≤ 7 — 3m 成立,求实数m 的取值范围.22.设函数ƒx = x h h ax —lnx a C R .(1)若 a = 1,求函数y = ƒ x 的单调区间;(2)若函数ƒ x 在区间0t1 上是减函数,求实数a 的取值范围;(3)过坐标原点0 作曲线y = ƒ x 的切线,证明:切点的横坐标为1.ƒ x x23. 已知函数 ƒ x = x h h ax h b .(1)设 b = a ,若 |ƒ x | 在 x C 0t1 上单调递增,求实数 a 的取值范围. (2)求证:存在 x 0 C — 1t1 ,使 |ƒ x 0 | ≤ |a|.24. 已知命题 p 知 关于 x 的方程 a h x h h ax — h = 0 在 — 1t1 上有解;命题 q 知 只有一个实数 x 满足不等式 x h h hax h ha ≤ 0.若“p 或 q ”是假命题,求实数 a 的取值范围.25. 已 知 二 次 函 数 ƒ x = hx h h ax h b为 偶 函 数 , g x =h x = c x h 1 h c G h .关于 x 的方程 ƒ x = h x 有且仅有一根 1. h— 1 x h m ,(1)求 a ,b ,c 的值;(2)若对任意的 x C — 1t1 ,≤ g x 恒成立,求实数 m 的取值范围; (3) 令 x = h 数 m 的取值范围.,若存在 x 1tx h C 0t1 使得 x 1 — x h ≤ g m ,求实26. 设函数 ƒ x = px — p — hlnx ,其中 e 是自然对数的底数.x(1)当 p = 3 时,求函数 ƒ x 的极值h(2)若 ƒ x 在其定义域内为单调函数,求实数 p 的取值范围.(3)设 g x = he ,若在1te 上至少存在一点 x 0,使得 ƒ x 0 Σ g x 0 成立,求实数 p 的取值 范围.3 ƒ x ƒ 1 — xh 27. 已知函数 ƒ x = e x x h h ax h a .(1)当 a = 1 时,求函数 ƒ x 的单调区间;(2)若关于 x 的不等式 ƒ x ≤ e a 在 at h œ 上有解,求实数 a 的取值范围;(3)若曲线 y = ƒ x 存在两条互相垂直的切线,求实数 a 的取值范围;(只需直接写出结果)28. 已知函数 ƒ x = x h h a — 㔶 x h 3 — a .(1)若 ƒ x 在区间 0t1 上不单调,求 a 的取值范围;(2)若对于任意的 a C 0t 㔶 ,存在 x 0 C 0th ,使得 ƒ x 0 ≤ t ,求 t 的取值范围.29. 已知函数 ƒ x = mx 3h ax h h 1 — b h x ,mtatb C R .3(1)求函数 ƒ x 的导函数 ƒ' x ;(2)当 m = 1 时,若函数 ƒ x 是 R 上的增函数,求 z = a h b 的最小值;(3)当 a = 1,b = 时,函数 ƒ x 在 ht h œ 上存在单调递增区间,求 m 的取值范围.30. 已知 ƒ x = ax h h bx h c ,atbtc C R ,定义域为 — 1t1 .(1)当 a = 1,|ƒ x | ≤ 1 时,求证:|1 h c| ≤ 1;(2)当 b Σ ha Σ 0 时,是否存在 x C — 1t1 ,使得 |ƒ x | ≤ b ?31. 已知函数 ƒ x = alnx h x h h bx (a 为实常数).(1)若 a =— h ,b =— 3,求 ƒ x 的单调区间;(2)若 b = 0,a Σ— h e h 求函数 ƒ x 在 1t e 上的最小值及相应的 x 值;(3)设 b = 0,若存在 x C 1t e ,使得 ƒ x ≤ a h h x 成立,求实数a 的取值范围.32. 已知函数 ƒ x = lnx .x(1)记函数 F x = x h — x · ƒ x x C 1 th ,求函数 F x 的最大值;h(2)记函数 H x =tx ≤ st x t0 € x € st若对任意实数 k ,总存在实数 x 0,使得 H x 0 = k 成立,求实数 s 的取值集合.33. 已知过原点 0 的动直线 l 与圆 C 知 x h 1 h h y h = 㔶 交于 A ,B 两点.(1)若 |AB| = 15,求直线 l 的方程.(2)在 x 轴上是否存在定点 M x 0t0 ,使得当 l 变动时,总有直线 MA ,MB 的斜率之和为 0?若存在,求出 x 0 的值;若不存在,说明理由.34. 己知函数 ƒ x = mx h n e —x (mtn C R ,e 是自然对数的底).(1)若函数 ƒ x 在点 1t ƒ 1 处的切线方程为 x h e y — 3 = 0,试确定函数 ƒ x 单调区间; (2)① 当 n =— 1,m C R 时,若对于任意 x C 1 th ,都有 ƒ x ≤ x 恒成立,求实数 m 的最小h值;② 当 m = n = 1 时,设函数 g x = xƒ x h tƒ' x h e —x t C R ,是否存在实数 atbtc C 0t1 , 使得 g a h g b € g c ?若存在,求出 t 的取值范围;若不存在,说明理由.xheƒ1 g x hx35. 设 ƒ x = alnx h bx — b ,g x = ex ,其中 atb C R . e(1)求 g x 的极大值;(2)设 b = 1,a Σ 0,若 ƒ x h — ƒ x 1 €—立,求 a 的最大值;对任意的 x 1tx h C 3t 㔶 x 1 G x h 恒成( 3) 设 a =— h , 若对任意给定的 x 0 C 0te , 在区间 0te 上总存在 stt s G t , 使 ƒ s = ƒt = g x 0 成立,求 b 的取值范围.36. 已知函数 ƒ x = alnx — x h h ,其中 a G 0.(1)求 ƒ x 的单调区间;(2)若对任意的 x 1 C 1te ,总存在 x h C 1te ,使得 ƒ x 1 h ƒ x h = 㔶,求实数 a 的值.37. 已知函数 ƒ x = x h a · e —x .(1)当 a = e h 时,求 ƒ x 在区间 1t3 上的最小值; (2)求证:存在实数 x 0 C — 3t3 ,有 ƒ x 0 Σ a .38. 已知函数 ƒ x = 1 ax h — ha h 1 x h hlnx a C R .h(1)若曲线 y = ƒ x 在 x = 1 和 x = 3 处的切线互相平行,求 a 的值; (2)求 ƒ x 的单调区间;(3)设 g x = x h — hx ,若对任意 x 1 C 0th ,均存在 x h C 0th ,使得 ƒ x 1 € g x h ,求 a 的取值范围.1g x 1x39. 已知函数 ƒ x = a x — 1x— hlnx a C R .(1)若 a = h ,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)求函数 ƒ x 的单调区间;(3)设函数 g x =— a .若至少存在一个 x 0 C 1te ,使得 ƒ x 0 Σ g x 0 成立,求实数 a 的取 值范围.40. 已知函数 ƒ x = ax h h hx — a e x ,g x = 1 ƒ lnx ,其中 a C R ,e = h.71tht … 为自然对数的h底数.(1)若函数 y = ƒ x 的图象在点 M h t ƒ h处的切线过坐标原点,求实数 a 的值;(2)若 ƒ x 在 — 1t1 上为单调递增函数,求实数 a 的取值范围; (3)当 a = 0 时,对于满足 0 € x 1 € x h 的两个实数 x 1tx h ,若存在 x 0 Σ 0,使得 g' x = g x 1 —g x hx 1—x h成立,试比较 x 0 与 x 1 的大小.41. 已知函数 ƒ x = x — alnx h 1ha xa C R .(1)求 ƒ x 的单调区间;(2)若在 1te e = h.71tht… 上存在一点 x 0,使得 ƒ x 0 ≤ 0 成立,求 a 的取值范围.42. 已知函数 ƒ x = e mx — lnx — h .(1)若 m = 1,证明:存在唯一实数 t C 1 t1 ,使得 ƒ' t = 0;h(2)求证:存在 0 € m € 1,使得 ƒ x Σ 0.x h y h h43.已知椭圆C知a hhb h= 1(a Σb Σ0)的离心率为C 上,直线PA 交x 轴于点M.,点P 0t1 和点A mtn (m G 0)都在椭圆h(1)求椭圆C 的方程,并求点M 的坐标(用m,n 表示).(2)设0 为原点,点 B 与点A 关于x 轴对称,直线PB 交x 轴于点N,问:y 轴上是否存在点Q,使得²0QM = ²0NQ ?若存在,求点Q 的坐标;若不存在,说明理由.44.已知函数ƒx = e x hx —1 —ax h a a C R ,e 为自然对数的底数.(1)当a=1 时,求函数ƒ x 的单调区间;(2)①若存在实数x,满足ƒ x € 0,求实数 a 的取值范围;②若有且只有唯一整数x0,满足ƒ x0€ 0,求实数a 的取值范围.45.已知函数ƒx = log a x h 1 a Σ1 ,若函数y = g x 的图象与函数y = ƒx 的图象关于原点对称.(1)写出函数g x 的解析式;(2)求不等式hƒ x h g x ≤ 0 的解集A;(3)问是否存在m C 0t h œ ,使不等式ƒ x h hg x ≤ log a m 的解集恰好是A ?若存在,请求出m 的值;若不存在,请说明理由.xe x46.已知函数ƒx = xh1(e 为自然对数的底数).e(1)求函数ƒ x 的最大值;(2)设函数x = xƒ x h tƒ' x h 1,存在实数x1,x h C 0t 1 ,使得h x1€ x h成立,求实数t 的取值范围.47.设函数ƒ x = mlnx —1 x h 1 . m C R .h hx(1)当m = 5时,求ƒ x 的极值;㔶(2)设A 、B 是曲线y = ƒ x 上的两个不同点,且曲线在A 、B 两点处的切线均与x 轴平行,直线AB 的斜率为k,是否存在m,使得m — k = 1 ? 若存在,请求出m 的值,若不存在,请说明理由.48.已知函数ƒx = x3 h 3h1 —a x h —3ax h 1,a Σ 0.(1)当 a = 1 时,求函数ƒ x 的单调减区间;(2)证明:对于任意正数a,存在正数p,使得当x C 0tp 时,有ƒx ≤ 1;(3)设(2)中的p 的最大值为g a ,求g a 的最大值.2 149. 设函数 ƒ x = lnx — ax h 1—a — 1.x(1)当 a = 1 时,过原点的直线与函数 ƒ x 的图象相切于点 P ,求点 P 的坐标; (2)当 0 € a € 1 时,求函数 ƒ x 的单调区间;h(3)当 a = 1 时,设函数 g x = x h — hbx — 5 ,若对于 6x 1 C 0te ,Ex h C 0t1 使 ƒ x 1 ≤31hg x h 成立,求实数 b 的取值范围(e 是自然对数的底数,e €h 1).50. 已知函数 ƒ x = ax — ha h 1 lnx — h ,g x =— halnx — h ,其中 a C R .xx(1)当 a = h 时,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)当 a Σ 0 时,求 ƒ x 的单调区间;(3)若存在 x C 1 te h ,使不等式 ƒ x ≤ g x 成立,求 a 的取值范围.e51. 函数 y = Asin mx h A Σ 0tm Σ 0t0 ≤ ≤ π h在 x C 0t7π 内只取到一个最大值和一个最小值,且当 x = π 时,y max = 3;当 x = 6π 时,y min =— 3. (1)求出此函数的解析式; (2)求该函数的单调递增区间;(3)是否存在实数 m ,满足不等式 Asin m存在,求出 m 的范围(或值),若不存在,请说明理由.h Σ Asin mh ? 若52. 已知函数 ƒ x = x h — k h 1 x h 9,g x = hx — k ,其中 k C R .㔶(1)若 ƒ x 在区间 1t 㔶 上有零点,求实数 k 的取值范围;( )设函数 p x = ƒ x tx € 0t是否存在实数 k ,对任意给定的非零实数 x ,存在唯一的非零 g x tx ≤ 0t实数 x h x 1 G x h ,使得 p x 1 = p x h .若存在,求出 k 的值,若不存在,请说明理由.3 — m h h hm h 3 — m h h 㔶h㔶53. 已知函数 ƒ x = ln 1 h 1 ax h x h — ax ( a 为常数,a Σ 0 ).hh(1)当 y = ƒ x 在 x = 1 处取得极值时,若关于 x 的方程 ƒ x — b = 0 在 0th 上恰有两个不h相等的实数根,求实数 b 的取值范围;(2)若对任意的 a C 1th ,总存在 x 0 C 1 t1 ,使不等式 ƒ x 0 Σ m a hh ha — 3 成立,求实数 m 的取值范围.54. 已知函数 ƒ x = e x ,点 A at0 为一定点,直线 x = t t G a 分别与函数 ƒ x 的图象和 x 轴交于点 M ,N ,记 O AMN 的面积为 S t . (1)当 a = 0 时,求函数 S t 的单调区间;(2)当 a Σ h 时,若 Et 0 C 0th ,使得 S t 0 ≤ e ,求实数 a 的取值范围.55. 已知函数 ƒ x = x — alnx ,g x =— 1ha x(1)若 a = 1,求函数 ƒ x 的极值;a Σ 0 .(2)设函数 h x = ƒ x — g x ,求函数 h x 的单调区间; (3)若存在 x 0 C 1te ,使得 ƒ x 0 € g x 0 成立,求 a 的取值范围.56. 已知函数 ƒ x — lnx — ax h 1—a — 1 a C R .x(1)当 a ≤ 1 时,讨论 ƒ x 的单调性;h( 2) 设 g x = x h — hbx h 㔶. 当 a = 1 时, 若对任意 x 1 0th , 存在 x h C 1th , 使 ƒ x 1 ≤ g x h ,求实数 b 取值范围.57.已知二次函数ƒx = ax h h bx h c a Σ0 的图象过点1t0 .(1)记函数ƒ x 在0th 上的最大值为M,若M ≤ 1,求a 的最大值;(2)若对任意的x1 C 0th ,存在x h C 0th ,使得ƒ x1h ƒ x hΣ 3 a,求 b 的取值范围.h a58.设a 为正实数,函数ƒx = ax,g x = lnx.(1)求函数h x = ƒ x · g x 的极值;(2)证明:Ex0 C R,使得当x Σ x0时,ƒ x Σ g x 恒成立.59.设函数ƒ x = p x 1x —hlnx,g x = he(p 是实数,e 为自然对数的底数).x(1)若ƒ x 在其定义域内为单调函数,求p 的取值范围;(2)若在1te 上至少存在一点x0,使得ƒ x0Σ g x0成立,求p 的取值范围.60.设二次函数ƒx = ax h h bx h c atbtc C R 满足下列条件:①当x C R 时,其最小值为0,且ƒ x — 1 = ƒ — x — 1 成立;②当x C 0t5 时,x ≤ ƒ x ≤ h|x — 1| h 1 恒成立.(1)求ƒ 1 的值;(2)求ƒ x 的解析式;(3)求最大的实数m m Σ 1 ,使得存在t C R,只要当x C 1tm 时,就有ƒ x h t ≤ x 成立.61. 已知函数 ƒ x = e x ,A at0 为一定点,直线 x = t (t G a )分别与 ƒ x 的图象和 x 轴交于点 M ,N ,记 O AMN 的面积为 S t .(1)当 a = 0 时,求函数 S t 的单调区间;(2)当 a Σ h 时,若 Et0 S t 0 ≤ e ,求 a 的取值范围.62. 已知函数 ƒ x = ax h — ha h 1 x a C R .(1)当 a ≤ 0 时,讨论函数 ƒ x 的单调性;(2)设 g x = bx h ,当 a = 1 时,若对任意 x C 0th ,存在 x C 1th , 使 ƒ x ≤ g x , 求lnx h实数 b 的取值范围.1 h 1 h63. 已知函数 ƒ x = 1 ax h — a h 1 x h lnx ,g x = x h — hbx h 7.ht(1)当 a = 0 时,求曲线 y = ƒ x 在点 1t ƒ 1 处的切线方程;(2)当 a € 1 时,求函数 ƒ x 的单调区间;(3)当 a = 1 时,函数 ƒ x 在 0 th M ,若存在 g x ≤ M 成立,㔶求实数 b 的取值范围.0 0 64.已知函数ƒx = x·ex—aa € 0 .(1)当 a =—㔶时,试判断函数ƒ x 在—㔶t h œ 上的单调性;(2)若函数ƒ x 在x = t 处取得极小值,1 求实数t 的取值集合T;h 问是否存在整数m,使得m ≤ t hth1数m 的值;若不存在,请说明理由.ƒ t ≤ m h 1 对于任意t C T 恒成立.若存在,求出整65.设函数ƒx=a ln x h1—a x h—b x a G1,曲线y=ƒx在点1tƒ1处的切线斜率为0.h(1)求b;(2)若存在x ≤ 1,使得ƒx €a,求a 的取值范围.a—166.设函数ƒx = e x—1,x G 0.x(1)判断函数ƒ x 在0t h œ 上的单调性;(2)证明:对任意正数a,存在正数x,使不等式ƒ x —1 € a 成立.a 2 167. 已知 a Σ 0 且 a G 1,函数 ƒ x = log h .1—x(1)求 ƒ x 的定义域 D 及其零点;(2)讨论并证明函数 ƒ x 在定义域 D 上的单调性;(3)设 g x = mx h — hmx h 3,当 a Σ 1 时,若对任意 x 1 C — œt — 1 存在 x h C 3t 㔶 ,使得ƒ x 1 ≤ g x h ,求实数 m 的取值范围.68. 已知函数 ƒ x = log a h x .(1)判断并证明 ƒ x 的奇偶性;(2)若两个函数 F x 与 G x 在闭区间 ptq 上恒满足 F x — G x Σ h ,则称函数 F x 与G x在闭区间 p t q 上是分离的.是否存在实数 a 使得 y = ƒ x 的反函数 y = ƒ—1 x 与 g x = a x 在闭区间 1th 上分离?若存在,求出实数 a 的取值范围;若不存在,请说明理由.69. 已知函数 ƒ x = ax h — hax h b a Σ 0 在区间 — 1t 㔶 上有最大值 10 和最小值 1.设 g x = ƒ x .(1)求 a ,b 的值;(2)证明:函数 g x 在 bt h œ 上是增函数;(3)若不等式 g h x — k · h x ≤ 0 在 x C — 1t1 上有解,求实数 k 的取值范围.70. 已知函数 ƒ x = x 3 — k h — k h 1 x h h 5x — h t g x = k h x h h k x h 1,其中 k C R .(1)设函数 p x = ƒ x h g x .若 p x 在区间 0t3 上不单调,求 k 的取值范围;( )设函数 q x = g x t x ≤ 0,是否存在 k ,对任意给定的非零实数 x ,存在惟一的非零实 ƒ x t x € 0数 x h x h G x 1 ,使得 q' x h = q' x 1 成立?若存在,求 k 的值;若不存在,请说明理由.x h h 1xha hhhhxh71.已知函数ƒx = .(1)若ƒ' a = 1,求 a 的值;(2)设 a ≤ 0,若对于定义域内的任意x1,总存在x h使得ƒ x h€ ƒ x1,求a 的取值范围.72.设函数ƒx = x h —ax h lnx (a 为常数).(1)当 a = 3 时,求函数ƒ x 的极值;(2)当0 € a € h h 时,试判断ƒ x 的单调性;(3)若存在x0C 1th ,使不等式ƒ x0€ mlna 对任意a C 0t 1恒成立,求实数m 的取值范围.73.已知集合P = x 1≤ x ≤ h ,函数y = log ax h — hx h h 的定义域为Q.h(1)若P fi Q G t,求实数 a 的取值范围;(2)若方程log ax h — hx h h = h 在 1 th 内有解,求实数a 的取值的取值范围.h74.已知函数ƒx = ex,其导函数记为ƒ' x (e 为自然对数的底数).e(1)求函数ƒ x 的极大值;(2)解方程ƒƒx = x;(3)若存在实数x1tx h x1G x h使得ƒ x1 = ƒ x h,求证:ƒ' x1hx h€ 0.75.已知函数ƒx = lnx —x—1h.(1)求函数ƒ x 的单调递增区间;(2)证明:当x Σ 1 时,ƒ x € x —1;(3)确定实数k 的所有可能取值,使得存在x0Σ 1,当x C 1tx0,恒有ƒ x Σ k x — 1 .76.已知函数ƒx = 1h alnx a G 0ta C Rx(1)若 a = 1,求函数ƒ x 的极值和单调区间;(2)若在区间0te 上至少存在一点x0,使得ƒ x0€ 0 成立,求实数a 的取值范围.77.已知函数ƒx = x h —ax —aln x —1 a C R .(1)求函数ƒ x 的单调区间;h (2)试判断是否存在实数 a a ≤ 1 ,使y = ƒ x 的图象与直线y = 1 h ln无公共点(其中自然对数的底数e 为无理数且e = h.71tht…).78.设ƒ x = a h xlnx,g x = x3 —x h —3.x(1)当a = h 时,求曲线y = ƒ x 在x = 1 处的切线方程;(2)如果存在x1,x h C 0th 使得g x1— g x h≤ M 成立,求满足上述条件的最大整数M;(3)如果对任意的stt C 1 th 都有ƒ s ≤ g t 成立,求实数a 的取值范围.h79. 设函数 ƒ x = xhlnx,g x = ax3 — xh. (1)求函数 ƒ x 的最小值; (2)若存在 x C 0t h œ ,使 ƒ x Σ g x 成立,求实数 a 的取值范围;1(3)若使关于 x 的方程 ƒ x — g x = 0 在 e — 3ten (其中 e = h.71…… 为自然对数的底数)上 有解的 a 的最小值为 an,数列 an 的前 n 项和为 Sn,求证:Sn € 3.80. 已知函数 ƒ x = 1 axh — ha h 1 x h hlnx a C R .h(1)若曲线 y = ƒ x 在 x = 1 和 x = 3 处的切线互相平行,求 a 的值; (2)求 y = ƒ x 的单调区间; (3)设 g x = xh — hx,若对任意 x1 C 0th ,均存在 xh C 0th ,使得 ƒ x1 € g xh ,求 a 的取值范围.81. 已知函数 ƒ x = ex — axh h a — e h 1 x — 1(e 是自然对数的底数,a 为常数). (1)若函数 g x = ƒ x — 1 x ·ƒ' x 在区间 1t h œ 上单调递减,求 a 的取值范围.h(2)当 a C e — ht1 时,函数 ƒ x = ex — axh h a — e h 1 x — 1 在 0t1 上是否有零点?并说明 理由.2182. 设 x = 3 是函数 ƒ x = xh h ax h b e3—x x C R 的一个极值点.(1)求 a 与 b 的关系式(用 a 表示 b),并求 ƒ x 的单调区间;(2)设a Σ 0,g x = ah hh5 㔶ex.若存在 ɛ1,ɛhC 0t㔶 使得 |ƒ ɛ1— g ɛh| € 1 成立,求 a的取值范围.83. 已知函数 ƒ x = ax — lnx — 㔶 a C R . (1)讨论 ƒ x 的单调性; (2)当 a = h 时,若存在区间 mtn Š 1 t h œ ,使 ƒ x 在 mtn 上的值域是h的取值范围.k t k ,求 kmh1 nh184. 已知定义在 R 上的偶函数 ƒ x ,当 x C 0t h œ 时,ƒ x = ex. (1)当 x C — œt0 时,求过原点与函数 ƒ x 图象相切的直线的方程; (2)求最大的整数 m m Σ 1 ,使得存在 t C R,只要 x C 1tm ,就有 ƒ x h t ≤ ex.85. 设函数 ƒ x = a h lnx,g x = x3 — xh — 3.xh(1)讨论函数 ƒ x 的单调性;(2)若存在x1txhC—1 3t3,使得g x1 — g xh ≤ M 成立,求满足条件的最大整数M;(3)若对任意的 stt C 1 th ,都有 sƒ s ≤ g t 成立,求实数 a 的取值范围.32286. 数列an各项均为正数,a1=1,且对任意的hn C N×,有 anh1 = an h canh c Σ 0 .(1)求 c1hca1hc 1hcahh1 的值;a3(2)若c = 1 ,是否存在h016n C N×,使得an Σ 1,若存在,试求出n 的最小值,若不存在,请说明理由.87. 已知函数 ƒ x = axh h bx h c(a Σ 0),g x = ƒ x ·e—㔶x(e 为自然对数的底),当 — 1 ≤ x ≤ 1 时,|ƒ x | ≤ 1,且 a h b = h. (1)求 ƒ x ; (2)求函数 g x 可能的最大值和最小值; (3)若 Ex0 C R,当 x C — œtx0 ,g x ≤ ƒ' x 成立(ƒ' x 是 ƒ x 的导函数),求最大整数 x0.88. 已知函数 ƒ x = lnx.x(1)若关于 x 的不等式 ƒ x ≤ m 恒成立,求实数 m 的最小值;(2)对任意的 x1,xh C0th ,已知存在 x0 Cx1txh ,使得 ƒ' x0=ƒxh—ƒ x1 x —hx 1,求证:x0€x1xh.23答案1. (1) ƒ x = xh — txtx ≤ 0 ,— xh h txtx € 0当 t Σ 0 时,ƒ x 的单调增区间为 t t h œ , — œt0 ,单调减区间为 0t t .hh当 t = 0 时,ƒ x 的单调增区间为 — œt h œ .当 t € 0 时,ƒ x 的单调增区间为 0t h œ , — œt t ,单调减区间为 t t0 .h(2) 方法一:设 g x = ƒ x — x = xh — t h 1 xhtx C 0th .— xh h t — 1 x tx C — 1t0x C 0th 时,因为 th1 C 0th ,所以 gx = g th1 =— th1 h .hminh㔶x C — 1t0 时,因为 g — 1 =— t,g 0 = 0,所以 gmin x =— t .故只须 Et C 0th ,使得:—th1 㔶hΣa成立,即—1㔶≤a,—tΣ a0≤a所以 a ≤— 1 .㔶方法二:设 h t = ƒ x — x =— |x| ·t h x|x| — x,t C 0th .只须 h t max ≤ a ,对 x C — 1th 都成立.则只须 h 0 = x|x| — x ≤ a,对 x C — 1th 都成立.再设 m x = x|x| — x,x C — 1th ,只须 m x min ≤ a,易求得 a ≤— 1 .㔶 2. (1) 当 a = 1 时,ƒ' x = 3xh — hx,ƒ h = 1㔶.曲线 y = ƒ x 在点 htƒ h 处的切线斜率 k = ƒ' h = t,所以曲线 y = ƒ x 在点 htƒ h 处的切线方程为 y — 1㔶 = t x — h ,即 tx — y — h = 0. (2) 由已知,得 a Σ x3h10 = x h 10,xhxh设 g x = x h 10 1 ≤ x ≤ h , 则 g' x = 1 — h0.xhx3因为 1 ≤ x ≤ h,所以 g' x € 0,所以 g x 在 1th 上是减函数.所以 g x min = g h = 9,所以 a Σ 9.hh3. (1) 设数列 an 的公差为 d,由 a5 = a1 h 㔶d,得 d =— h,得 an =— hn h 10.由数列bn的前n和为Sn=hn—1—1 hn C N× 可知,当n=1时,b1=S1=1.h当 n ≤ h 时,bn = Sn — Sn—1 = hn—h.因为h1—h=1h=b1,所以n ≤ 1 时,bn = hn—h.故数列 an 的通项公式为 an =— hn h 10, bn 的通项公式为 bn = hn—h.(2) cn = han = h10—hn = 㔶5—n,bn = hn—h.假设存在正整数 n 使不等式 bncn h 1 Σ bn h cn 成立,即要满足 cn — 1 bn — 1 Σ 0.因为 cn,bn 需满足同时大于 1 或同时小于 1. 则由指数函数性质得 5 — n Σ 0t 或 5 — n € 0tn — h Σ 0. n — h € 0.24解得 h € n € 5.综上所述,存在正整数 n = 3,㔶 时,使不等式 bncn h 1 Σ bn h cn 成立.4. (1) 直线 hx h y = 0 的斜率 k =— h,若 曲线 ƒ x 在 x = h 处的切线与直线 hx h y = 0 垂直,则 ƒ' h = 1,hƒ x = lnx — 1 axh — hx h 1,hƒ' x = 1 — ax — h,x则 ƒ' h = 1 — ha — h = 1,解得 a =— 1.hh(2) 若 ƒ x 存在单调递减区间,即 ƒ' x = 1 — ax — h € 0 在 0t h œ 上有解,即 1 — h € ax,则xx设 g x = 1—hx,则 g x =xh1 — hxhaΣhxh t1 — h ·1 = 1 — 1 — 1 ≤— 1, 则xxxa Σ— 1.5. (1) 由 ƒ x ≤ 0 得 m ≤ x h h 在 0t㔶 上有解(易检验 x = 0 不是已知不等式的解),x则 m ≤ h h,即 m 的最小值为 h h.ƒ 0 Σ 0t n Σ 0t (2) 设 ƒ x = xh — mx h n,则由题意得 ƒ h € 0t 即 㔶 — hm h n € 0tƒ 㔶 Σ 0t 16 — 㔶m h n Σ 0.利用线性规划可得 m h n 的范围为 ht1㔶 .6. (1) y = ƒ x = 㔶 xh—1hx—3 = hx h 1 h 㔶 — t,hxh1hxh1设 u = hx h 1tx C 0t1 t1 ≤ u ≤ 3,则 y = u h 㔶 — ttu C 1t3 .u由已知性质得,当 1 ≤ u ≤ h,即 0 ≤ x ≤ 1 时,ƒ x 单调递减;h所以减区间为 0t 1 ;h当 h ≤ u ≤ 3,即 1 ≤ x ≤ 1 时,ƒ x 单调递增;h所以增区间为 1 t1 ;h由 ƒ 0 =— 3tƒ 1 =— 㔶tƒ 1 =— 11,h3得 ƒ x 的值域为 — 㔶t — 3(2) g x =— x — ha 为减函数,故 g x C — 1 — hat — ha tx C 0t1 .由题意,ƒ x 的值域是 g x 的值域的子集,所以 — 1 — ha ≤— 㔶.所以 a = 3.— ha ≤— 3h7. (1) ① 当 b = 0 时,ƒ x = 1.x故 ƒ x 的单调区区间为 — œt0 , 0t h œ ;无单调增区间.25②当 b Σ 0 时,ƒ'x=b—xh xhhb h.令 ƒ' x = 0,得 x1 = b,xh =— b. ƒ x 和 ƒ' x 的情况如下:x — œt — b — b — bt b bƒ' x—0h0ƒxk³bt h œ— kƒ x 和 ƒ' x 的情况如下:故 ƒ x 的单调减区间为 — œt — b , bt h œ ;单调增区间为 — bt b .③ 当 b € 0 时,ƒ x 的定义域为 D = x C Rh因为ƒ'x=b—x xhhbh€0在D 上恒成立,x Gt— b.故 ƒ x 的单调减区间 — œt — — b , — — bt — b ;无单调增区间.(2) 因为 b Σ 0,x C 1 t 3 ,㔶㔶所以 ƒ x ≤ 1 等价于 b ≤— xh h x,其中 x C 1 t 3 .㔶㔶设 g x =— xh h x,g x 在区间 1 t 3 上的最大值为 g 1 = 1.㔶㔶h㔶则“E C 1 t 3 ,使得 b ≤— xh h x”等价于 b ≤ 1.㔶㔶㔶所以,b 的取值范围是 0t 1 .㔶8. (1) 因为 ƒ x 是 R 上的奇函数,所以ƒ a—ƒ b a—b= ƒ ahƒ —b ah—bΣ 0t又因为 a Σ b,所以 a — b Σ 0,所 以 ƒ a — ƒ b Σ 0,即 ƒ a Σ ƒ b .(2) 由(1)知,a Σ b 时,都有 ƒ a Σ ƒ b ,所以 ƒ x 在 R 上单调递增. 因为 ƒ x 为奇函数,所以 ƒ x — c h ƒ x — ch Σ 0 等价于 ƒ x — c Σ ƒ ch — x ,所以不等式等价于 x — c Σ ch — x,即 ch h c € hx,因为存在实数 x C 1 t 3 使得不等式 ch h c € hx 成立,hh所以 ch h c € 3,即 ch h c — 3 € 0,解得 c 的取值范围为 — 1h 13 t 13—1 .hh9. (1) 若 a =— 1,ƒ x ≤ 3,即 为 x — 1 h x h 1 ≤ 3,当 x ≤— 1 时,1 — x — x — 1 ≤ 3,即有 x ≤— 3;h当 — 1 € x € 1 时,1 — x h x h 1 = h ≤ 3 不成立;当 x ≤ 1 时,x — 1 h x h 1 = hx ≤ 3,解得 x ≤ 3;h综上可得,ƒ x ≤ 3 的解集为 — œt — 3 U 3 t h œ ;hh(2) Ex C R,使得 ƒ x € h 成立,26即有 h Σ ƒ x min, 由函数 ƒ x = x — 1 h x — a ≤ x — 1 — x h a = a — 1 ,当 x — 1 x — a ≤ 0 时,取得最小值 a — 1 ,则 a — 1 € h,即 — h € a — 1 € h,解得 — 1 € a € 3.则实数 a 的取值范围为 — 1t3 .10. (1) 对于任意 x C R,ƒ x=x—a — x—㔶 C — a—㔶ta—㔶 ,可 知 a — 㔶 = 3,解得:a = 1 或 a = 7;(2) 依题意有 — 3 ≤ hm — mh, 即 mh — hm — 3 ≤ 0,解得:m C — 1t3 .11. 由(a)知,函数 ƒ x 的对称轴为 x =—1. 所以b = ha ……Ⓢ由(c)知,x =—1 时,y =0,即a — b h c = 0 ……Ⓢ a由(a)、(b)知 ƒ 1 = 1,即h b h c = 1 ……Ⓧ联立①、②、③得 所以1 11 a = 㔶tb = h tc = 㔶.ƒx 1 h 1 1 1h假设存在 t C R,只要 x C 1tm ,=㔶xhhxh㔶=㔶xh1.就有 ƒ x h t≤ x,即 1㔶x h t h 1 h ≤ x 恒成立.设g x = xh h h t — 1 x h t h 1 ht 只需证“存在 t C R,只要 x C 1tm ,g x = xh h h t — 1 x h t h 1 h ≤ 0 恒成立”,其充要条件为g 1 ≤ 0t g m ≤ 0.取 x = 1,有 解得1 㔶thhh≤1t— 㔶 ≤ t ≤ 0t27取 x = m,有 即1 㔶mhth1h≤mt解得mh — h 1 — t m h th h ht h 1 ≤ 0t所以 m ≤ 1 — t h — 㔶t.1 — t — — 㔶t≤ m ≤ 1 — t h — 㔶 tt因为 0 ≤— t ≤ 㔶,所以 m ≤ 1 h 㔶 h 㔶 = 9.故当 t =— 㔶 时,mmax = 9. 12. (1) 因为 k Σ 0,所以ƒxΣm¤ kxxh h3kΣm¤ mxh —kxh3km€0,因为不等式 mxh — kx h 3km € 0 的解集为 x x €— 3 或 x Σ— h ,所以 — 3,— h 是方程 mxh — kx h 3km = 0 的根,且 m € 0.所以k =— 5tm‹3k = 6k = ht m =— h t5所以 5mxh h k x h 3 Σ 0 ¤hxh — x — 3 € 0 ¤— 1 € x € 3.hh所以不等式 5mxh h k x h 3 Σ 0 的解集为 — 1t 3 .hh(2)因为ƒxΣ1¤ kxxh h3kΣ1kΣ0¤xh—kxh3k€0¤x—3kΣxh,存在 x0 Σ 3,使得 ƒ x0Σ1成立,即存在x0Σ3,使得kΣ 0x成 h 立.x0—3h令 g x = x ,x C 3t h œ , 则 k Σ g xx—3min.h令 x — 3 = t, 则 t C 0t h œ ,y = th3 = t h 9 h 6 ≤ httt ·9 h 6 = 1h.t当且仅当 t = 9 即 t = 3 即 x = 6 时等号成立.t所以 g x min = 1h,所以 k C 1ht h œ .13. (1) 原不等式等价于 x €— 3t或— h — hx ≤ 5— 3 ≤ x ≤ 1t 㔶≤ 5或x Σ 1t hx h h≤5t得73— h ≤ x €— 3 或 — 3 ≤ x ≤ 1 或 1 € x ≤ h t因此不等式的解集为 — 7 t 3 .hh(2) ƒ x = x — 1 h x h 3 ≤ x — 1 — x h 3 = 㔶,要使 th h 3t Σ ƒ x 在 x C R 上有解,只需 th h 3t 大于 ƒ x 的最小值,th h 3t Σ ƒ x min = 㔶 ‹ th h 3t — 㔶 Σ 0 ‹ t €— 㔶 或 t Σ 1.14. (1) (i)当 m = 0 时,ƒ x =— 1hx — 9 为一次函数,有唯一零点.(ii)当 m G 0 时,由 6 = 9 m — 㔶 h h 36m = 9 m — h h h 10t Σ 0,故 ƒ x 必有两个零点.(2) 由条件可得 ƒ x 的图象关于直线 x = 1 对称,所以 — 3 m— = 1 且 m G 0,解得 㔶hm281h m= .5(3) 依题原命题等价于 ƒ x — a Σ 0 有解,即 ƒ x Σ a 有 解. 所以 a € ƒ x max,因为 ƒ x 在 0th 上递减, 所以 ƒ x max = ƒ 0 =— 9,故 a €— 9. 15. (1) 当 n = 1 时,由 p — 1 a1 = ph — a1 ,得 a1 = p . 当 n ≤ h 时,p — 1 Sn = ph — an p — 1 Sn—1 = ph — an—1两式相减,整理得 an = 1 .an—1 pan = p1 pn—1 = ph—n ,从而bn= 㔶 — hn .(2) an 为等比数列, bn 为等差数列,由错位相减法,得Tn=㔶n hn—1.当 n = 1th 时, T1 = Th = 㔶 .当 n ≤ 3 时 , Tn = Tn—1 =hnh——3 n € 0 . 0 € Tn € T3 = 3 , 故 0 € Tn ≤ 㔶 . (3) 当 0 € p € 1 时,存在 M = h ,使得当 n Σ h 时, an Σ 1 恒成立. 当 p Σ 1 时,由 an = ph—n Σ 1 ,得 h — n Σ 0 即 n € h . 所以满足要求的 M 不存在 .16. (1) 由 ƒ h — x = ƒ h h x 得函数 ƒ x 关于 x = h 对称,则 — b—1 = h,ha又 xh — x1 = h 可知 x1 = 1,xh = 3,则 a h b — 1 h 1 = 0,解得 a = 1,b =— 1,则 ƒ x = 1 xh — 㔶 x h 1.3333gx = (2)=— a x — x1 x — xh h h xh — xa xh — xx—x1hh a≤axh—x1hha hht等号成立条件为x0=xhhx1—ha,h设函数 g x 的最大值为 h a ,则 h a = ahhhah=a1h1h =ah 1hh≤㔶,haa故必存在 x0 C R 使得 g x0 ≤ 㔶 成立. 17. (1) 因为 ƒ x = xex,所以 ƒ' x = ex h xex = 1 h x ex 当 x €— 1 时,ƒ' x € 0,所以 ƒ x 在 — œt —1 内单调递减;当 x Σ— 1 时,ƒ' x Σ 0,所以 ƒ x 在 — 1t h œ 内单调递增.又 g' x = hax h 1,由 g' — 1 =— ha h 1 = 0,得 a = 1,h此 时 g x = 1 xh h x = 1 x h 1 h — 1,hhh29显然 g x 在 — œt — 1 内单调递减,在 — 1t h œ 内单调递增,故 a = 1.h(2) 当 x ≤ 0 时恒有 ƒ x ≤ g x ,即 ƒ x — g x = x ex — ax — 1 ≤ 0 恒成立. 故只需 F x = ex — ax — 1 ≤ 0 恒成立,对 F x 求导数可得 F' x = ex —a. 因为 x ≤ 0,所以 F' x = ex — a,若 a ≤ 1,则当 x C 0t h œ 时,F' x Σ 0,F x 为增函数, 从而当 x ≤ 0 时,F x ≤ F 0 = 0,即 ƒ x ≤ g x ;若 a Σ 1,则当 x C 0tlna 时,F' x € 0,F x 为减函数,从而当 x C (0tlna쳌 时,F(x쳌 € F(0쳌 = 0,即 ƒ(x쳌 € g(x쳌,故 ƒ(x쳌 ≤ g(x쳌 不恒成立.故 a 的取值范围为:a ≤ 1.18. (1) 设公差为 d,由 a1,ah,a㔶 成等比数列得:ah = a a1 㔶,h即 1 h d h = 1 ·1 h 3d ,求得:d = 1 或 d = 0 舍去 .所以na=1hn—1·1=n,S=n1han·n=h1nnhh1.(2) A = 1 h 1 h … h 1 = h 1 h 1 h … h1 =h 1— 1 ,S1 ShSn1×h h×3n× nh1nh1B=1h1h…1 =1h1h…1 =h—1 =h 1— 1 ,a0h a1hanh—1h0 h1hn—1hn—1hn因为当 n ≤ h 时,hn Σ n h 1,即 1 — 1 Σ 1 — 1 .hnnh1所以 A € B.(3) 要使 ah h ah ≤ k ·ah mtn C Nh 成立,只须:k ≤ amh hahn mtn C Nh 恒成立,即 k ≤mnmhnahmhnahmhah n ahmhn min因为= amh hnahahmhnmhhnh mhn h=mhhnh mhhnhhhmn,又因为hmn ≤ mh h nh所以 mhhnhmhhnhhhmn≤ mh mhhhnhhn=h1 h当且仅当m = n 时等号成立所以 k ≤ 1 时,对任意的正整数 m,n,不等式 ah h ah ≤ k ·ah 都成立,hmnmhn即实数 k 存在,最大值为 1 .h19. (1) 当 t = 1 时,ƒ x = x — 3 h hx h 1 ,由 ƒ x ≤ 5 得 x — 3 h hx h 1 ≤ 5,当 x ≤ 3 时,不等式等价为 x — 3 h hx h 1 ≤ 5,即 3x ≤ 7,得 x ≤ 7,此时 x ≤ 3,3当 — 1 € x € 3 时,不等式等价为 — x — 3 h hx h 1 ≤ 5,即 x ≤ 1,此时 1 ≤ x € 3,h当 x €— 1 时,不等式等价为 3 — x — hx — 1 ≤ 5,解得 x ≤— 1,得 x ≤— 1,h综上,x ≤ 1 或 x ≤— 1,即不等式的解集为 — œt — 1 U 1t h œ .ƒ a h a — 3 = h a — 3 h ha h t(2)≤ ha h t — ha — 6= th6t则命题 ƒ a h a — 3 € h,等价为 ƒ a h a — 3 min € h,即 t h 6 € h,则 — h € t h 6 € h,即 — t € t €— 㔶,即 t 的取值范围是 — tt — 㔶 .20. (1) 当 a = 3 时, x — 1 — hx — 1 Σ— 1 ,30所以x≤1 x—1—hx—1Σ—1或x≤1h1 — x — 1 — hx Σ— 1或1€ x € 1h1 — x — hx — 1 Σ— 1所以x≤ 1h或1€ x € 1h,x Σ— 1 h — 3x Σ— 1所以 — 1 € x ≤ 1 或1 € x € 1,即 — 1 € x € 1,hh所以不等式的解集为 — 1t1 .— xt x ≤ 1(2) ƒ x = x — 1 — hx — 1 =h — 3xt 1 € x € 1hxt 所以 ƒ x C — œt 1 ,所以 ƒ x 的最大值为 1.x≤ 1hhh因为不等式有解,所以1 Σ log1a,所以1a Σ 1 h,即a Σ 3.h33321. (1) 显然 a G 0,当 a Σ 0 时,解集为 — 1 t 3 ,— 1 =— 6,3 = h,无解;aaaa当 a € 0 时,解集为 3 t — 1 ,令 — 1 = h,3 =— 6,a =— 1,aaaah综上所述,a =— 1.h(2) 当 a = h 时,令 h x = ƒ hx h 1 — ƒ x — 1 = |㔶x h 1| — |hx — 3| =— hx —㔶t x ≤— 1 t㔶6x — ht — 1 € x € 3 t㔶hhx h 㔶t x ≤ 3 .h由此可知,h x 在 — œt — 1 单调减,在 — 1 t 3 和 3 t h œ 单调增,㔶㔶hh则当 x =— 1 时,h x 取到最小值 — 7,㔶h由题意知,— 7 ≤ 7 — 3m,则实数 m 的取值范围是 — œt 7 .hh22. (1) a = 1 时 ,ƒ x = xh h ax — lnx x Σ 0 ,所 以 ƒ' x = hx h 1 — 1 = hx—1 xh1 ,xxx C 0t 1 ,ƒ' x € 0,x C 1 t h œ ,ƒ' x Σ 0,hhƒ x 的减区间为 0t 1 ,增区间 1 t h œ .hh(2) ƒ' x = hx h a — 1.x因为 ƒ x 在区间 0t1 上是减函数,所以 ƒ' x ≤ 0 对任意 x C 0t1 恒成立,即 hx h a — 1 ≤ 0 对任意 x C 0t1 恒成立,x所以 a ≤ 1 — hx 对任意 x C 0t1 恒成立,x令 g x = 1 — hx,x所以 a ≤ g x min,31易知 g x 在 0t1 单调递减,所 以 g x min = g 1 =— 1. 所以 a ≤— 1.(3) 设切点为 M ttƒ t ,ƒ' x = hx h a — 1,x切线的斜率 k = ht h a — 1,又切线过原点 k = ƒ t ,ttƒ t = ht h a — 1,即:th h at — lnt = hth h at — 1.tt所以 th — 1 h lnt = 0,存在性:t = 1 满足方程 th — 1 h lnt = 0,所以 t = 1 是方程 th — 1 h lnt = 0 的根.再证唯一性:设 t = th — 1 h lnt, ' t = ht h 1 Σ 0,tt 在 0t h œ 单调递增,且 1 = 0, 所以方程 th — 1 h lnt = 0 有唯一解.综上,切点的横坐标为 1.23. (1) ① 当 — a ≤ 0 即 a ≤ 0 时,只需 ƒ 0 = a ≤ 0 即可,h所以 a ≤ 0 满足题意.② 当 0 €— a € 1 即 — h € a € 0 时不合题意.h③ 当 — a ≤ 1 即 a ≤— h 时,只需 ƒ 0 = a ≤ 0 即可,h所以 a ≤— h.所以 a ≤— h 或 a ≤ 0.(2) 解法一:如果 |ƒ 1 | 与 |ƒ — 1 | 中有一个不小于 |a|,那么命题成立,而 |ƒ 1 | = |1 h a h b| ≤ |a| ¤ 1 h b 1 h ha h b ≤ 0,此不等式在平面直角坐标系下表示的区域记为M(图略),|ƒ — 1 | = |1 — a h b| ≤ |a| ¤ 1 h b 1 — ha h b ≤ 0,此不等式在平面直角坐标系下表示的区域记为 N(图略).由于 M U N = xty xty C R ,故 |ƒ 1 | ≤ |a| 与 |ƒ — 1 | ≤ |a| 至少有一个成立. 解法二:当 a = 0 时,|ƒ x0 | ≤ 0 显然成立. 当 a Σ 0,假设 6x C — 1t1 t|ƒ x | € a 恒成立,即 — a € ƒ x € x, 所 以 — a € ƒ 1 = 1 h a h b € at— a € ƒ — 1 = 1 — a h b € at 所 以 — 1 — ha € b €— 1t— 1 € b €— 1 h hat 所以 b C t.当 a €0 时,同理可得 b C t,故假设不成立,综上知原命题结论成立.24. 对于方程 ahxh h ax — h = 0.32。
中考数学之存在性问题
1.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,点P 是x 轴正半轴上的一个动点,直线PQ 与直线AB 垂直,交y 轴于点Q ,如果△APQ 是等腰三角形,求点P 的坐标.2.如图,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0, m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .当△APD 是等腰三角形时,求m 的值.3.如图5-1,已知△ABC 中,AB =AC =6,BC =8,点D 是BC 边上的一个动点,点E 在AC 边上,∠ADE =∠B .设BD 的长为x ,如果△ADE 为等腰三角形,求x 的值.4.如图,在Rt ABC △中,90A ∠= ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.5.如图,在△ABC 中,AB =AC =10,cos ∠B =45.D 、E 为线段BC 上的两个动点,且DE AB C D E R PH Q=3(E 在D 右边),运动初始时D 和B 重合,当E 和C 重合时运动停止.过E 作EF //AC 交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值.6.如图,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.7.如图,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.8.如图,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.9.如图,抛物线213482y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由.10.如图,抛物线y =ax 2+bx -3与x 轴交于A (1, 0)、B (3, 0)两点,与y 轴交于点D ,顶点为C .(1)求此抛物线的解析式;(2)在x 轴下方的抛物线上是否存在点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,求出点M 的坐标;若不存在,请说明理由.11.在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x x y =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时:①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.A Py =KO 图112..已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题:(1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.13..将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将O P Q △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(3)连结AC ,将O P Q △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.图1P图①。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. ( 2017·怀化)如图,在菱形 ABCD 中, ABC 120, AB 10 cm,点 P 是这个菱形内 部或边上的一点.若以 P, B, C 为顶点的三角形是等腰三角形,则 P, A( P, A 两点不重合) 两点间的最短距离为 m.
2. ( 2017· 内江)如图, 已知直线 l1 // l2 ,l1 , l2 之间的距离为 8, 点 P 到直线 l1 的距离为 6.点 Q 到直线 l2 的距离为 4, PQ 4 30 ,在直线 l1 上有一动点 A ,直线 l2 上有一动点 B ,满足
2 5 2 ; ④ 当 线 段 DG 最 小 时 , BCG 的 面 积 S 8
有 .(填序号)
8 5 ,其中正确的命题 5
4. ( 2017 · 烟 台 ) 如 图 , 菱 形 ABCD 中 , 对 角 线 AC, BD 相 交 于 点 O, AC 12cm ,
BD 16 cm, 动点 N 从点 D 出发, 沿线段 DB 以 2 cm/s 的速度向点 B 运动, 同时动点 M 从点 B 出发,沿线段 BA 以 1 cm/s 的速度向点 A 运动,当其中一个动点停止运动时另一 个动点也随之停止.设运动时间为 t (s)( t 0 ),以点 M 为圆心, MB 长为半径的⊙ M 与 射线 BA ,线段 BD 分别交于点 E 、 F ,连接 EN . (l)求 BF 的长(用含有 t 的代数式表示),并求出 t 的取值范围; (2)当 t 为何值时,线段 EN 与⊙ M 相切?
1 SADE ,求此时抛物线的 2
8. (2017·西宁)如图,在平面直角坐标系中,矩形( OABC 的顶点 A, C 分别在 x 轴, y 轴的 正半轴上, 且 OA 4, OC 3 , 若抛物线经过 O, A 两点, 且顶点在 BC 边上, 对称轴交 BE 于点 F 点 D, E 的坐标分别为(3,0) , (0,1). (1)求抛物线的解析式; (2)猜想 EBD 的形状并加以证明; (3)点 M 在对称轴右侧的抛物线上,点 N 在 x 轴上,请问是否存在以点 A, F , M , N 为顶 点的四边形是平行四边形?若存在,请求出所有符合条件的点 M 的坐标;若不存在,请 说明理由.
同时,点 Q 从点 C 出发,沿 CD 方向匀速运动,速度为 1 cm/s.过点 Q 作 QM BD ,垂 足为 H ,交 AD 于点 M ,连接 AF , PQ ,当点 Q 停止运动时, EFP 也停止运动.设运动 时间为 t (s)(0< t <6),解答下列问题: (1)当 t 为何值时, PQ // BD ? (2)设五边形 AFPQM 的面积为拭 y (cm2),求 y 与 t 之间的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使 S五边形AFPQM : S矩形ABCD 9:8 ?若存在,求出 t 的值;若不存在,请说明理由. (4)在运动过程中,是否存在某一时刻 t ,使点 M 在线段 PG 的垂直平分线上?若存在,求
(3)若⊙ M 与线段 EN 只有一个公共点.求 t 的取值范围.
5. (2017· 无锡)如图, 已知矩形 ABCD 中,AB 4, AD m , 动点 P 从点 D 出发, 在边 DA 上以每秒 1 个单位的速度向点 A 运动,连接 CP ,作点 D 关于直线 I PC 的讨称点 E ,设 点 P 的运动时间为 t ( s). (1)若 m 6 ,求当 P 、 E 、 B 三点在同一直线上时对应的 t 的值; (2)已知 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中, 有且只有一个时刻 t , 使点 E 到直线 BC 的距离等于 3,求所有这样的 m 的取值范围.
2
8. (1) y
(2) EBD 为等腰直角三角形; (3) M (
3 2 x 3x ; 4
62 3 6 2 15 , 2) 或 M ( , 2) . 3 3
6.(1) APR, BPQ, CQR 的面积均为 6t (2 t ) ; (2) PQR 面积的最小值为 6;
18 或 1. 25 7.(1) x 1 ;
(3) t (2) A(1, 4a) , Q a 0,4a 0 ,所以在第三象限. (3) y x 2 x 3 .
6. (2017·绵阳)如图,已知 ABC 中, C 90 ,点 M 从点 C 出发沿 CB 方向以 1 cm/s 的速度匀速运动, 到达点 B 停止运动, 在点 M 的运动过程中, 过点 M 作直线 MN 交 AC 于点 N ,且保持 NMC 45 ,再过点 N 作 AC 的垂线交 AB 于点 F ,连接 MF ,将 MNF 关于直线 NF 对称后得到 ENF ,已知 AC 8 cm, BC 4 cm,设点 M 运动 时间为 t (s), ENF 与 ANF 重叠部分的面积为 y (cm2). (1)在点 M 的运动过程中, 能否使得四边形 MNEF 为正方形?如果能.求出相应的 t 值;如果 不能,说明理由; (2)求 y 关于 t 的函数解析式及相应 t 的取值范围; (3)当 y 取最大值时,求 sin NEF 的值.
2
(3)直线 y x m 与 x, y 轴分别相交于 B, C 两点, 与抛物线 y ax bx c 相交于 A, D
2
两点.设抛物线 y ax bx c 的对称轴与 x 轴相交于点 E .如果在对称轴左侧的抛物
2
线上存在点 F ,使得 ADF 与 BOC 相似,并且 SADF.
4. ( 2017 ·绍兴 ) 已知 ABC , AB AC, D 为直线 BC 上一点, E 为直线 AC 上一点,
AD AE,设 BAD , CDE .
(1)如图,若点 D 在线段 BC 上,点 E 在线段 AC 上; ①如果 ABC 60, ADE 70 ,那么 = ②求 , 之间的关系式. (2)是否存在不同于②中的 , 之间的关系式? 若存在,求出这个关系式(求出一个即可); 若不存在,说明理由. °, = °;
A. B. C. 是 .
40 3
15 4
3. ( 2017·遂宁)如图,正方形 ABCD 的边长为 4,点 E 、 F 分别从点 A 、点 D 以相同速度 同时出发,点 E 从点 A 向点 D 运动,点 F 从点 D 向点 C 运动,点 E 运动到 D 点时, E 、 F 停止运动连接 BE 、 AF 相交于点 G ,连接 CG .有下列结论:① AF BE ;②点 G 随 着点 E 、 F 的运动而运动,且点 G 的运动路径的长度为 ; ③线段 DG 的最小值为
9. 6 动态型问题 1. (2017· 毕节)如图, 在 Rt ABC 中, ACB 90, AC 6, BC 8, AD 平分 CAB 交 BC 于 D 点, E , F 分别是 AD, AC 上的动点.则 CE EF 的最小值为( )
24 D. 6 5 2. (2017·衢州)如图,在直角坐标系中,⊙ A 的圆心 A 的坐标为(-1,0),半径为 1,点 P 为 3 直线 y x 3 上的动点,过点 P 作⊙ A 的切线,切点为 Q ,则切线长 PQ 的最小值 4
参考答案
1. 10 3 10 2. 16 3. ①② 4. (1)①20 10 ② 2 (2)
2 180 或 180 2
5.(1) t
24 ; 7 1 2 5 117 (2) y t t ; 8 2 2 (3) t 2 ; 32 (4) t . 17
出 t 的值;若不存在,请说明理由.
6. ( 2017 ·大庆 ) 如图,直角 ABC 中, A 为直角, AB 6, AC 8 . 点 P, Q, R 分别在
AB, BC, CA 边上同时开始作匀速运动、2 秒后三个点同时停止运动,点 P 由点 A 出发以
每秒 3 个单位的速度回点 B 运动,点 Q 由点 B 出发以每秒 5 个单位的速度向点 C 运动, 点 R 由点 C 出发以每秒 4 个单位的速度向点 A 运动,在运动过程中: (1)求证: APR, BPQ, CQR 的面积相等; (2)求 PQR 面积的最小值; (3)用 t (秒)( 0 t 2 )表>r 运动时间,是否存在 t , 使 PQR 90 ?若存在,请直接写出 t 的值:若 不存在,请说明理由.
AB l2 ,且 PA AB BQ 最小,此时 PA BQ =
.
3. ( 2017·咸宁)如图,在 Rt ABC 中, BC 2, BAC 30 ,斜边 AB 的两个端点分别在 相互垂直的射线 OM , ON 上滑动,下列结论: ①若 C , O 两点关于 AB 对称,则 OA 2 3 ; ② C , O 两点间距离的最大值为 4; ③若 AB 平分 CO ,则 AB CO ; ④斜边 AB 的中点 D 运动路径的长为 其中正确的是
5. (2017 · 青 岛 ) 已 知 : Rt EFP 和 矩 形 ABCD 如 图 ① 摆 放 ( 点 P 与 点 B 重 合 ) , 点 如图②, F , B( P), C在同一直线上,AB EF 6 cm,BC FP 6 cm, EFP 90 ,
EFP 从图①的位置出发,沿 BC 方向匀速运动,速度为 1 cm/s , EP 与 AB 交于点 G ;
8.(2017·郴州)如图,已知抛物线 y ax
2
8 x c 与 x 轴交于 A, B 两点,与 y 轴交于点 C . 5
且 A(2,0), C (0, 4) , 直 线 l : y
1 x4 与 x 轴 交 于 点 D , 点 P 是 抛 物 线 2
8 y ax 2 x c 上的一动点,过点 P 作 PE x 轴,垂足为 E ,交直线 l 于点 F . 5
7. (2017·荆州)如图在平面直角坐标系中。直线 y