人教版高中数学必修5期末测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的.
1.在等差数列3,7,11…中,第5项为( ). A .15
B .18
C .19
D .23
2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列
D .首项为1的等比数列
3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4
B .5
C .6
D .7
4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5
B .13
C .13
D .37
5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4
B .8
C .15
D .31
6.△ABC 中,如果A a tan =B b tan =C c
tan ,那么△ABC 是( ). A .直角三角形
B .等边三角形
C .等腰直角三角形
D .钝角三角形
7.如果a >b >0,t >0,设M =b a ,N =t
b t
a ++,那么( ). A .M >N B .M <N
C .M =N
D .M 与N 的大小关系随t 的变化而变化
8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n =
n
21
D .a n =1+log 2n
9.如果a <b <0,那么( ). A .a -b >0
B .ac <bc
C .
a 1>b
1 D .a 2<b 2
10.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)的过程.令a =2,b =4,若c ∈(0,1),则输出区间的形式为( ).
A .M
B .N
C .P
D .∅
11.等差数列{a n }中,已知a 1=31
,a 2+a 5=4,a n =33,则n 的值为( ).
A .50
B .49
C .48
D .47
开始
输入a ,b ,c
计算△=b 2-4ac
判断△≥0?
计算
a
b x a
b x 2221∆+-=
∆--=
结束
判断x 1≠x 2?
输出区间
N =(-∞,x 1)∪(x 2,+∞)
输出区间
M =(-∞,-a b 2)∪(-a
b
2,+∞) 输出区间 P (-∞,+∞)
是
否
是
否
12.设集合A ={(x ,y )|x ,y ,1―x ―y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( ).
O
x
0.5
0.5
y
x
0.50.5
y
x
0.5
0.5
y x
0.5
0.5
y O
O O
A
B
C
D
13.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为( ).
A .4
B .5
C .7
D .8
14.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ). A .9
B .8
C .7
D .6
二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.已知x 是4和16的等差中项,则x = . 16.一元二次不等式x 2<x +6的解集为 .
17.函数f (x )=x (1-x ),x ∈(0,1)的最大值为 .
18.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为 .
三、解答题:本大题共3小题,共28分. 解答应写出文字说明、证明过程或演算步骤. 19.△ABC 中,BC =7,AB =3,且B C
sin sin =5
3. (1)求AC ; (2)求∠A .
20.某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?
21.已知等差数列{a n}的前n项的和记为S n.如果a4=-12,a8=-4.
(1)求数列{a n}的通项公式;
(2)求S n的最小值及其相应的n的值;
a,…,构成一个新的数列{b n},
(3)从数列{a n}中依次取出a1,a2,a4,a8,…,1
2n-
求{b n}的前n项和.