【精选】人教版五年级上册数学重要知识点(概念+公式)汇总

合集下载

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总

人教版五年级(上册)数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

?2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:×(整数部分是0)就是求的十分之八是多少。

×(整数部分不是0)就是求的倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

%4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:《加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c:减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

人教版五年级数学上册知识点汇总

人教版五年级数学上册知识点汇总

人教版五年级数学上册知识点汇总第一章:整数的初步认识1. 整数概念•整数是由自然数、0和负整数组成的数。

•整数用“+”表示正数,用“-”表示负数。

2. 整数的比较和绝对值•整数比较的大小与自然数比较的大小相同。

•整数的绝对值是一个数离0的距离。

正整数的绝对值等于该数,负整数的绝对值等于该数的相反数。

3. 整数的加减运算•整数的加法运算规则:同号相加得同号,异号相加取绝对值较大的符号。

•整数的减法运算规则:减去一个整数等于加上它的相反数。

4. 整数的乘法和除法运算•整数的乘法运算:同号相乘得正数,异号相乘得负数。

•非0整数除以整数时,同号得正数,异号得负数,余数的符号与除数相同。

0不能作为除数。

第二章:计算的基本思想1. 算术法则•乘法分配律:a×(b+c)=a×b+a×c•乘法交换律:a×b=b×a•乘法结合律:a×(b×c)=(a×b)×c•加法交换律:a+b=b+a•加法结合律:a+(b+c)=(a+b)+c•减法与加法的关系:a+b=c,c-a=b;a=c-b,a-b=c•除法的基本概念:有理数分母不能为02. 运算顺序•先乘除后加减,同级按照从左往右的顺序计算。

3. 分数•分数是有理数的一种表示方法,由分子和分母构成。

•分数的基本性质:分数加减的通分、约分和把分数化成小数。

4. 分数的加减•分数相加减需通分,化简后按数学法则计算。

第三章:几何图形的初步认识1. 点、线、面•点是没有大小的几何体,用一个小点表示。

•线是一条几乎没有宽度的连续曲线,由无数个点组成。

•面是有一定大小和形状的几何图形,由许多条线组成。

2. 圆•圆是由与圆心距离相等的点组成的图形。

•圆的性质:圆心到圆上任一点的距离相等,圆的直径是圆心到圆上任一点的距离的两倍。

3. 三角形•三角形的两个性质:(1) 三角形的内角和等于直角的两个角的和;(2) 三角形的内角和等于180°。

【人教版】小学数学五年级知识汇总

【人教版】小学数学五年级知识汇总

【人教版】小学数学五年级知识汇总目录五年级上册数学知识点整理 (2)五年级上册数学复习资料 (16)小学数学五年级上册概念及公式 (16)第一单元:小数的乘法 (16)第二单元:数对 (18)第三单元:小数的除法 (18)第四单元:可能性 (20)第五单元:简易方程 (20)第七单元:多边形的面积 (24)二、植树间隔问题 (27)三、第一部分:概念 (28)四、第二部分:单位换算 (34)五、常用的数量关系式 (36)六、常用图形计算公式 (36)五年级数学错题集及答案 (39)五年级数学期末试卷 (46)五年级上册数学知识点整理一、计算公式:1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=aa 或者S=a25、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、三角形的周长=三边之和三角形的内角和=1800四边形内角和=36009、多边形内角和=(边数-2)×180二、数量关系1、单价×数量=总价总价÷数量=单价总价÷单价=数量2、单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量3、速度×时间=路程路程÷时间=速度路程÷速度=时间4、工效×时间=工作总量工作总量÷时间=工效工作总量÷工效=时间5、加数+加数=和一个加数=和-另一个加数6、被减数-减数=差减数=被减数-差被减数=差+ 减数7、因数×因数=积一个因数=积÷另一个因数8、被除数÷除数=商除数=被除数÷商被除数=商×除数9、有余数的除法:被除数=商×除数+余数10、求平均数的方法:总数÷总份数=平均数三、单位间的进率长度单位:1千米=1000米1公里=1千米1米=10分米1分米=10厘米1厘米=10毫米面积单位:1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1公顷=10000平方米1平方千米=100公顷1亩≈666.667平方米质量单位:1吨=1000千克1千克= 1000克= 1公斤= 2市斤体积单位:1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方米= 1方容积单位:1升=1立方分米=1000毫升1毫升=1立方厘米时间单位:1日=24小时1时=60分1分=60秒1星期=7天1世纪=100年1年=12月1年=4个季度1个季度=3个月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年:2月28天, 闰年:2月29天平年全年365天, 闰年全年366天四、定义、定理、性质(一)算术方面1、加法交换律:两数相加交换加数的位置,和不变。

2022年人教版小学数学五年级全册(上下册)知识点梳理汇总

2022年人教版小学数学五年级全册(上下册)知识点梳理汇总

人教版小学数学五年级全册(上下册)知识点梳理汇总五年级上册知识点梳理第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法。

5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版小学五年级数学概念、公式汇总(附应用题)

人教版小学五年级数学概念、公式汇总(附应用题)

第一单元:小数乘法1、小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

如:1.2×5表示5个1.2是多少。

2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。

如:1.2×0.5表示求1.2的十分之五是多少。

3、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

乘得的积的小数位数不够,要在前面用0补足,再点上小数点。

4、一个数(0除外)乘1,积等于原来的数。

一个数(0除外)乘大于1的数,积比原来的数大。

一个数(0除外)乘小于1的数,积比原来的数小。

5、整数乘法的交换律、结合律和分配率,对于小数乘法也适用。

第二单元:小数除法1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。

如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。

2、小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

如果除到末尾仍有余数,要添0再继续除。

3、被除数比除数大的,商大于1。

被除数比除数小的,商小于1。

4、计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。

再按照除数是整数的小数除法进行计算。

5、一个数(0除外)除以1,商等于原来的数。

一个数(0除外)除以大于1的数,商比原来的数小。

一个数(0除外)除以小于1的数,商比原来的数大。

6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。

7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

8、小数部分的位数是有限的小数,叫做有限小数。

小数部分是无限的小数叫做无限小数。

五年级上册数学必背公式

五年级上册数学必背公式

五年级上册数学必背公式一、教学目标1.掌握五年级上册数学中的基本公式,能够熟练运用这些公式解决实际问题。

2.培养良好的数学学习习惯,提高数学思维能力。

二、教学重点熟练掌握并运用五年级上册数学中的基本公式。

三、教学难点将公式运用到实际问题中,提高数学思维能力。

四、教学内容五年级上册数学中涉及到许多重要的公式,这些公式是学好数学的基础。

本篇文章将详细介绍这些公式的概念、推导过程、适用范围以及注意事项。

1.加法交换律:两个加数交换位置,和不变。

用字母a、b表示任意两个加数,公式表示为:a+b=b+a。

2.加法结合律:三个数相加,可以先把后两个数相加,再与第一个数相加。

用字母a、b、c表示任意三个数,公式表示为:(a+b)+c=a+(b+c)。

3.乘法交换律:两个因数交换位置,积不变。

用字母a、b表示任意两个因数,公式表示为:axb=bxa。

4.乘法结合律:三个数相乘,可以先把后两个数相乘,再与第一个数相乘,也可以将它们先分别相乘再相乘。

用字母a、b、c表示任意三个数,公式表示为:(axb)xc=ax(bxc)。

5.乘法分配律:一个数与括号内的数相乘,可以先把括号内的数与另一个数相乘,再与括号外的数相乘。

用字母a、b、c表示一个数m,公式表示为:(mxa)x=axb或(axc)x=bxm。

6.减法的性质:从一个数里连续减去几个数,等于从这个数里减去所有这些数的和。

用字母a表示任意一个数,公式表示为:a-b-c=a-(b+c)。

7.除法的性质:一个数连续除以几个数,等于把这个数分别除以这几个数的积。

用字母a、b、c表示任意一个数m,公式表示为:m÷a÷b=m÷(ab)。

8.商不变的性质:在除法里,被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

用字母a、b表示任意两个除数,公式表示为:a÷b=(an)÷(bn),其中n不为0。

这些是五年级上册数学中必须掌握的公式,也是学好数学的基础。

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总第一单元 小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大:一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法: (3)去尾法 5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@减法:{a −bc =a −(b +c )a −(b +c )=a −b −c@乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c -b×c】@除法:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

{a ÷b ÷c =a ÷(b ×c )a ÷(b ×c )=a ÷b ÷c1、数对:第二单元位置2、作用:一组数对确定唯一一个点的位置。

人教版五年级数学上册知识点汇总

人教版五年级数学上册知识点汇总

人教版五年级数学上册知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定唯一一个点的位置。

数学五年级上定义和公式

数学五年级上定义和公式

数学五年级上定义和公式
以下是五年级上册数学中一些定义和公式:
1.定义:
•面积:一个平面图形所占的范围大小。

•周长:一个封闭图形一周的长度。

•除法:把一个数平均分成几份,求每份是多少。

•分数:把单位“1”平均分成若干份,表示其中的一份或几份的数叫做分数。

2.公式:
•长方形面积= 长× 宽
•长方形周长= (长+ 宽)× 2
•正方形面积= 边长× 边长
•正方形周长= 边长× 4
•除法公式:被除数= 除数× 商+ 余数
•分数乘法公式:分子乘分子,分母乘分母,用乘号连接起来。

•分数除法公式:被除数= 除数× 商+ 余数
•分数的加法公式:分母相同,分子相加;分母不同,先通分再相加。

•分数的减法公式:分母相同,分子相减;分母不同,先通分再相减。

以上定义和公式是五年级上册数学中需要掌握的基础知识,对于后续的学习也有一定的帮助。

新人教版五年级数学上册【重点知识点汇总】

新人教版五年级数学上册【重点知识点汇总】

(人教課標版)五年級數學上冊【知識點匯總】第一單元《小數乘法》第三單元《觀察物體》第四單元《四簡易方程》解方程1.方程的解與解方程。

“方程的解”是一個數,是使等號左右兩邊相等的未知數的值;“解方程”是指演算過程。

2.解形如±a=b 和a=b 的方程。

依據等式性質來解此類方程。

解方程時要注意寫清步驟,等號對齊。

3.驗算。

把未知數的值代人原方程,看等號左邊的值是否等於等號右邊的值。

稍複雜的方程1.列方程解決問題的步驟。

(1)弄清題意,找出未知數,用表示;(2)分析、找出數量之間的相等關係,列方程;(3)解方程;(4)檢驗,寫出答語。

2.算術解法與方程解法的區別。

(1)列方程解決問題時,未知數用字母表示,參加列式;算術解法中未知數不參加列式。

(2)列方程解決問題是根據題中的數量關係,列出含有未知數的等式,求未知數的過程由解方程來完成。

算術解法是根據題中已知數和未知數問的關係,確定解答步驟,再列式計算。

3.驗算。

除了把未知數的值代人方程檢驗之外,還可以把求得的未知數的值代入原題進行檢驗,這樣驗算更有效,也更簡便。

具體內容重點知識平行四邊形的面積平行四邊形的面積=底×高用字母表示:S=ah 三角形的面積三角形的面積=底×高÷2用字母表示:S=ah÷2第六單元《統計與可能性》第七單元《數學廣角》【郵遞區號的意義和機構】1.郵遞區號的意義:郵遞區號是代表投送郵件的郵局的一種專用代號,也是這個局(所)投送範圍內的居民與單位的通信代號。

2.郵遞區號的結構:郵遞區號由六位元數位組成,前兩位元數字表示省(或自治區、直轄市);第三位數表示郵區;第四位數表示縣(市);最後兩位數表示投遞局(所)。

【身份證號碼蘊含的資訊和編碼的含義】1.公民身份證的意義:公民身份號碼是每個公民唯一的、終身不變的身份代碼,由公安機關按照公民身份號碼國家標準編制的。

2.身份證的作用:居民身份證是公民進行社會活動,維護社會秩序,保障公民合法權益,證明公民身份的法定證件。

人教版五年级数学上册知识要点单元总结汇总表及必背公式期末一定会考

人教版五年级数学上册知识要点单元总结汇总表及必背公式期末一定会考
4、a×a可以写作a•a或a2,a2读作a的平方பைடு நூலகம்2a表示a+a
方程的意义
1.方程与等式的区别。
含有未知数的等式叫做方程;方程一定是等式,而等式不一定是方程。
2.等式的性质。
等式两边同时加上或减去相同的数,同时乘或除以相同的数(0除外),左右两边仍然相等。
3、两个数相加,和都相同,一个加数越小,另一个加数就越大。
2.确定列数时,一般从左往右数;确定行数时,一般从前往后数。数列数和行数时,数的起始点和方向不要弄错。
3.用数对表示物体的位置,列在前,行在后,两数之间用逗号隔开。如(列数,行数),数对表示一个确定的位置。
第三单元《小数除法》
具体内容
重点知识
小数除法计算法则
1.小数除以整数,按照整数除法的计算法则计算,商的小数点要和被除数的小数点对齐,有余数时可在余数后补0继续除。(小数点对齐)
2、进一法(收尾法)就是保留整数时,无论十分位是多少,都往整数进一。
如10公斤油分瓶装,每瓶装2.6公斤,需要几个瓶子才能装下?
3、去尾法,就是保留整数时,无论十分位是多少,都去掉小数。
如100元买书,单价18元,可以买多少本?
计算钱数,保留两位小数,表示计算到分。保留一位小数,
表示计算到角。
连乘、乘加
乘减
1.小数连乘的运算顺序:按照从左往右的顺序依次运算。
2.乘加、乘减运算顺序:无括号的,先算乘法,再算加减;有括号的,先算括号里面的,再算括号外面的。
整数乘法运算定律推广到小数
整数乘法运算定律对于小数乘法同样适用,应用乘法运算定律可以使一些计算简便。
加法:加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)

人教版五年级数学上册(全册)知识点汇总

人教版五年级数学上册(全册)知识点汇总

人教版五年级数学上册(全册)知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

新人教版五年级上册数学知识点汇总word版本

新人教版五年级上册数学知识点汇总word版本

新人教版五年级上册数学知识点汇总第一单元:小数乘法1.小数乘小数的计算方法:把小数乘小数转化为整数乘法进行计算,再看因数中一共有几位小数就从积的右边起数出几位,点上小数点。

积的小数位数不够时,需要用零补足,根据小数的性质小数末尾的零可以去掉。

例子:2.积的大小与因数的关系:一个数(0除外)乘以大于1的数,积比原来的数大;一个数(0除外)乘以小于1的数,积比原来的数小。

例子:3.整数乘除法的运算定律对于小数乘除法同样适用。

(共有九个运算定律)例子:4.积的变化规律:有一条例子:5.积的近似数:例子:第二单元:位置1.用数对表示物体位置时,竖为列,横为行。

列在前,行在后,中间用逗号隔开。

如(列数,行数)。

例子:第三单元:小数除法1.小数除以整数的计算方法:先按照整数除法的法则进行计算,商的小数点要和被除数的小数点对齐;如果整数部分不够除,商0,点上商的小数点后继续除;如果除到被除数的末尾仍然有余数,就在余数的末尾添0,再继续除。

例子:2.如果被除数比除数大,商就大于1;如果被除数比除数小,商就小于1;例子:3.一个数除以小数的计算方法:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也要向右移动几位(位数不够时,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。

(转化的思想)例子:4.商与除数的大小关系(被除数不等于0)除数>1,商就<被除数例子:除数=1,商就=被除数例子:除数<1,商就>被除数例子:5.“进一法”例子:“去尾法” 例子:6.循环小数:一个数的小数部分,从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。

例子:7.小数分为:有限小数和无限小数,其中循环小数是无限小数。

例子:8.商的近似数:例子:9.商的变化规律:有三条例子:第四单元:可能性1.可能、不可能、一定是判断事件发生的三种情况。

五年级上册数学人教版知识要点汇总

五年级上册数学人教版知识要点汇总

第二单元知识梳理位置1.确定物体的位置,要用到数对(有两个数组成,中间用逗号隔开,用括号括起来,括号里面的数由左至右分别为列数和行数,即“先列后行”)。

2.用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。

二是给出坐标中的一个点,要能用数对表示。

第三单元知识梳理小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

5、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大(缩小),商随着扩大(缩小)。

③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。

如6.3232……的循环节是32.简写作6.327、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

小数分为有限小数和无限小数。

8、规律:一个数(0除外)除以大于1的数,商比原来的数小,例如1÷2=0.5;一个数(0除外)除以小于1的数,商比原来的数大,例如1÷0.1=10.第四单元知识梳理可能性1、事件发生有三种情况:可能发生、不可能发生、一定发生。

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总一、小数乘法1.小数乘整数:o理解小数乘整数的意义,掌握计算方法。

o会用小数乘整数解决简单的实际问题。

2.小数乘小数:o掌握小数乘小数的计算方法,理解积的小数位数与乘数小数位数的关系。

o能进行小数乘法的简便计算。

3.积的近似数:o理解近似数的概念,学会用四舍五入法求积的近似数。

4.连乘、乘加、乘减:o掌握小数连乘、乘加、乘减的运算顺序和计算方法。

5.整数乘法运算定律推广到小数:o理解并应用加法交换律、结合律,乘法交换律、结合律和分配律进行小数计算。

二、位置1.用数对表示位置:o理解数对的概念,能用数对表示具体情境中物体的位置。

o能在方格纸上根据数对确定物体的位置。

三、小数除法1.小数除以整数:o理解小数除以整数的意义,掌握计算方法。

o能进行小数除以整数的估算和精确计算。

2.一个数除以小数:o掌握除数是小数的除法计算方法,理解商的变化规律。

3.商的近似数:o理解近似数的必要性,学会用四舍五入法求商的近似数。

4.循环小数:o认识循环小数,能用简便方法表示循环小数。

5.用计算器探索规律:o学会使用计算器进行复杂的小数计算,并通过计算探索数学规律。

四、可能性1.简单事件发生的可能性:o理解可能性的概念,能用“一定”、“可能”、“不可能”等词语描述简单事件发生的可能性。

2.游戏规则的公平性:o理解游戏规则的公平性,能设计简单的公平游戏。

五、简易方程1.用字母表示数:o理解用字母表示数的意义和作用,能用字母表示简单的数量关系。

2.方程的意义:o理解方程的概念,知道等式与方程的关系。

3.解简易方程:o掌握解简易方程的基本步骤和方法,如等式两边同时加、减、乘、除同一个数(不为0)。

4.列简易方程解决问题:o学会根据问题中的等量关系列简易方程,并解方程求解。

六、多边形的面积1.平行四边形的面积:o掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。

2.三角形的面积:o掌握三角形的面积计算公式,理解等底等高的三角形面积相等。

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点汇总

人教版五年级上册数学知识点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

人教版数学五年级上册知识点汇总

人教版数学五年级上册知识点汇总

一、整数1. 整数的认识整数是正整数、0和负整数的统称。

在数轴上,正整数在0的右边,负整数在0的左边,0既不是正整数也不是负整数。

2. 整数的比较整数与整数比较大小时,可以利用数轴的概念帮助比较大小,数字越大,数轴上的位置越靠右。

3. 整数的加减整数加减法的运算规律与非负整数的运算规律一致,加法是整数间的运算,要注意正负号的变化;减法可以看作加法的逆运算。

二、小数1. 小数的认识小数是分数的一种表示形式,除了能写成有限小数的分数还有些分数只能写成无限小数。

2. 小数的读法小数的读法很简单,将小数点读做“点”,小数的每一位数字都要读出来。

3. 小数的加减小数的加减法需要对齐小数点,将小数点对齐后进行加减法运算,最后保留小数点的位置。

三、分数1. 分数的认识分数是整数除以整数的结果,包括真分数和假分数两种形式,假分数的分子大于分母。

2. 分数的大小比较分数的大小比较需要找到它们的公共分母,然后按照分子的大小来比较大小。

3. 分数的加减分数的加减法需要找到它们的公共分母,然后将分数转化为公共分母后进行运算。

四、质数和合数1. 质数的认识质数是指除了1和本身以外没有其他因数的数,最小的质数是2。

2. 合数的认识合数是除了1和本身以外还有其他因数的数,例如6、8等。

3. 质数和合数的判定判定一个数是不是质数,可以利用试除法,看这个数能否被2到其平方根以内的数整除。

五、乘法1. 乘法的认识乘法是重复加法的结合,表示为a × b = c,a、b为因数,c为积。

2. 乘法法则乘法有分配律、结合律和交换律等法则,能够简化乘法运算的步骤。

3. 乘法的计算方法乘法的计算方法包括竖式、列竖式和横式,能够快速准确地进行乘法运算。

六、除法1. 除法的认识除法表示为a ÷ b = c,a为被除数,b为除数,c为商,其中b不能为0。

2. 除法法则除法中有相反数相乘法则、除法消去法则、综合除法原则等法则,有利于简化除法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精选】人教版五年级上册
数学重要知识点(概念+公式)汇总
第一单元:小数乘法
1、小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

如:1.2×5表示5个1.2是多少。

2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。

如:1.2×0.5表示求1.2的十分之五是多少。

3、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

乘得的积的小数位数不够,要在前面用0补足,再点上小数点。

4、一个数(0除外)乘1,积等于原来的数。

一个数(0除外)乘大于1的数,积比原来的数大。

一个数(0除外)乘小于1的数,积比原来的数小。

5、整数乘法的交换律、结合律和分配率,对于小数乘法也适用。

第二单元:小数除法
1、小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。

如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6,求另一个因数是多少。

2、小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

如果除到末尾仍有余数,要添0再继续除。

3、被除数比除数大的,商大于1。

被除数比除数小的,商小于1。

4、计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。

再按照除数是整数的小数除法进行计算。

5、一个数(0除外)除以1,商等于原来的数。

一个数(0除外)除以大于1的数,商比原来的数小。

一个数(0除外)除以小于1的数,商比原来的数大。

6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。

7、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

8、小数部分的位数是有限的小数,叫做有限小数。

小数部分是无限的小数叫做无限小数。

循环小数就是无限小数中的一种。

有限小数
小数循环小数
无限小数
无限不循环小数
10、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

11、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个循环点。

循环点最多只点两个。

12、取近似数有三种方法:
1、四舍五入法;
2、去尾法;
3、进一法。

在解决实际问题时,要根据实际情况取商的近似值。

第四单元:简易方程
1、在含有字母的式子里,乘号可以记做“·”,也可以省略不写。

(1)数字与字母相乘,省略乘号,要将数字写在字母的前面。

(2)字母与字母相乘,直接省略乘号。

(3)括号与数字相乘,要将数字写在括号的前面,再省略乘号。

2、长方形的周长=(长+宽)×2
C长=2(a+b)
长方形的面积=长×宽S长=ab
正方形的周长=边长×4 C正=4a
方形的面积=边长×边长S正=a2
3、表示相等关系的式子叫做等式。

4、含有未知数的等式是方程。

5、方程一定是等式,等式不一定是方程。

6、等式两边同时加上、减去、乘或除以同一个数(0除外),所得结果仍然是等式。

方程左右两边同时加上(或减去)相同的数,方程左右两边依然相等。

方程左右两边同时乘以(或除以“0”除外)相同的数,方程左右两边依然相等。

7、使方程左右两边相等的未知数的值叫做方程的解。

求方程的解的过程,叫做解方程。

解方程的根据是天平平和的道理,还可以根据方程各部分之间的关系。

8、解方程时常用的关系式:
一个加数=和-另一个加数
被减数=差+减数
减数=被减数-差
一个因数=积÷另一个因数
被除数=商×除数
除数=被除数÷商
注意:解完方程,要养成检验的好习惯。

9、三个或五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍或5倍。

10、列方程解应用题的思路:
A、审题并弄懂题目的已知条件和所求问题。

B、理清题目的数量关系
C、设未知数,一般是把所求的数用X表示。

D、根据数量关系列出方程
E、解方程
F、检验
G、作答。

第五单元:多边形的面积
1.长方形:周长=(长+宽)×2
C长=2(a+b)面积=长×宽S长=a b
正方形:周长=边长×4 C正=4a
面积=边长×边长S正=a
2、平行四边形有无数条高。

三角形有三条高。

梯形有无数条高。

3、平行四边形面积公式的推导过程:
把平行四边形沿一条高剪下,通过移拼,可以拼成一个长方形。

拼成长方形的长与平形四边形的底相等,长方形的宽与平形四边形的高相等,拼成长方形的面积与平形四边形面积相等,因为长方形面积长乘以宽,所以平行四边形底乘以高。

如果用S表
示平形四边形的面积,用a、h分别表示平形四边形的底和高,面积公式可以写成:S=ah
平行四边形的面积=底×高S平=ah
平行四边形的底=面积÷高a平=S÷h
平行四边形的高=面积÷底h平=S÷a
4、三角形面积公式的推导过程:
把两个完全一样的三角形可以拼成一个平行四边形,拼成平行四边形的底与三角形的底相等,平行四边形的高与三角形的高相等,每个三角形的面积是拼成平形四边形面积的一半,因为平形四边形的面积等于底乘以高,所以三角形面积等于底乘以高除以2。

如果用S表示三角形的面积,用a和h分别表示三角形的底和高,面积公式可以写成:
S=ah÷2。

三角形的面积=底×高÷2
S三=ah÷2
三角形的底=面积×2÷高
a三=S×2÷h
三角形的高=面积×2÷底
h三=S×2÷a
5、梯形面积公式的推导过程:
把两个完全一样的梯形可以拼成一个平形四边形,拼成平形四边形的底等于梯形
的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是拼成平形四边形面积的一半,因为平形四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2. 如果用S表示梯形的面积,用a、b和h分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷2
梯形的面积=(上底+下底)×高÷2
S梯=(a+b)h÷2
梯形的高=面积×2÷(上底+下底)
h梯=S×2÷(a+b)
上底+下底=面积×2÷高
a+b=S×2÷h
梯形的上底=面积×2÷高-下底
a梯=S×2÷h-b
梯形的下底=面积×2÷高-上底
b梯=S×2÷h-a。

相关文档
最新文档