矩阵可对角化的总结

合集下载

对角化原理

对角化原理

对角化原理
对角化原理是线性代数中的一个重要概念,它涉及到将一个矩阵转换为对角矩阵的过程。

通过对角化,我们能够将一个复杂的矩阵问题简化,从而更容易地解决相关问题。

对角化原理的基本思想是将一个矩阵相似于一个对角矩阵。

对角矩阵是一个除了主对角线上的元素外,其他元素都为零的矩阵。

通过对角化,我们可以将一个复杂的矩阵分解为一组简单的特征向量和对应的特征值。

为了将对角化原理应用于实际问题,我们需要找到一个可逆矩阵P,使得P^(-1)AP是一个对角矩阵。

这个过程称为矩阵的对角化。

如果存在这样的可逆矩阵P,那么称矩阵A是可对角化的。

矩阵可对角化的条件是其所有特征值都是非零的,且每个特征值对应一个线性无关的特征向量。

如果这些条件满足,则存在一个可逆矩阵P,使得P^(-1)AP是对角矩阵。

对角化原理的应用非常广泛,包括数值分析、信号处理、图像处理、控制系统等领域。

例如,在信号处理中,对角化可以用于将信号分解为一组正交的基函数,从而更好地理解和分析信号的特性。

在控制系统理论中,对角化可以用于分析系统的稳定性和性能。

总之,对角化原理是一种重要的数学工具,它可以简化复杂矩阵问题,并将其分解为一组简单的特征向量和特征值。

通过将对角化原理应用于实际问题,我们可以更好地理解和分析相关问题的特性,从而为实际应用提供更好的解决方案。

第二十讲 矩阵的对角化

第二十讲 矩阵的对角化

20.1 矩阵可对角化的条件设矩阵有个线性无关的特征向量令则是一个对角矩阵其对角元素是的特征值:20.1 矩阵可对角化的条件事实上,于是因可逆,故20.1 矩阵可对角化的条件若存在可逆矩阵使为对角矩阵,则称矩阵是可对角化的(diagonalized).由上面的分析知,反之也成立. 故有定理:矩阵可对角化的充要条件是有个线性无关的特征向量.20.1 矩阵可对角化的条件例:的特征值为故只有个线性无关的特征向量,因此不能对角化.20.1 矩阵可对角化的条件定理:设是的互异特征值,是相应特征向量. 则线性无关.证明:设两边左乘得再左乘得不断左乘直到得故有20.1 矩阵可对角化的条件左边第二个矩阵的行列式行列式因此该矩阵可逆,故由于特征向量均为非零向量,故所以线性无关.20.1 矩阵可对角化的条件推论:具有个两两互异特征值的矩阵可以对角化.但若矩阵有相同特征值,其也可能对角化.例:有重特征值任何可逆矩阵都使是对角阵. 这反映了所有非零向量都是单位矩阵的特征向量.20.2 特征值的代数重数和几何重数定义:设其中称为特征值的代数重数(algebraicmultiplicity),记作称为特征值的几何重数(geometric multiplicity),记作例:20.2 特征值的代数重数和几何重数例:例:20.2 特征值的代数重数和几何重数一般地,命题:引理1:相似矩阵具有相同的特征多项式.事实上,设可逆,则我们有20.2 特征值的代数重数和几何重数引理2:任意复方阵相似于上三角阵,且其对角元为矩阵的特征值. 证明:对方阵的阶数用数学归纳法.时结论成立. 假设对阶复方阵结论成立.对任意阶复方阵设其有特征值及相应特征向量则可将其扩充得的一组基有记则有20.2 特征值的代数重数和几何重数对阶复方阵由归纳假设, 存在可逆阵使得为上三角阵.令为上三角阵.则结论第一部分得证.由引理1知上三角阵的对角元为的特征值.20.2 特征值的代数重数和几何重数命题的证明:由引理2,相似于上三角阵则和有相同特征值,且对任意特征值因此,不妨设是上三角阵,即于是故20.2 特征值的代数重数和几何重数定理:复方阵可对角化对任意特征值事实上,若则故有个线性无关的特征向量.从而可对角化.20.2 特征值的代数重数和几何重数例:判断是否可对角化,若可以求使为对角阵.解:于是又因此,可对角化.20.2 特征值的代数重数和几何重数对的基础解系为对的基础解系为20.2 特征值的代数重数和几何重数令则20.2 特征值的代数重数和几何重数注:可以看到,使对角化的矩阵不是唯一的. 一个特征向量乘以非零常数后仍是属于同一特征值的特征向量,所以若用任意非零常数乘以的各列,则得一个新的使对角化的矩阵. 而对于重特征值则有更大自由度. 上例中由的任意线性组合得到的两个线性无关的向量都可充当的前两列.20.2 特征值的代数重数和几何重数例:设其中为矩阵.的秩为的秩为故可对角化.20.3 矩阵可对角化的应用若矩阵可对角化,则可快速计算例:设求解:的特征值可对角化.20.3 矩阵可对角化的应用对的基础解系为对的基础解系为20.3 矩阵可对角化的应用令 则故20.3 矩阵可对角化的应用例(Markov过程):每年海淀区以外人口的迁入海淀区,而海淀区人口的迁出. 这给出一个差分方程:设最初外部人口为内部人口为则一年以后外部人口内部人口即20.3 矩阵可对角化的应用这个虚构的人口迁移过程有两个特点:(1)人口总数保持不变;(2)海淀区外部和内部的人口数不是负的. 我们称之为Markov(马尔科夫)过程.由性质(1),矩阵每一列元素之和为由性质(2),矩阵元素非负. 同样等也非负.20.3 矩阵可对角化的应用记取则20.3 矩阵可对角化的应用于是我们可求和年之后的人口分布:20.3 矩阵可对角化的应用可以看出,经过很多年之后,会变得非常小,从而这个解达到一个极限状态:此时,总人口仍为与初始状态相同. 但在此极限状态下,总人口的在外部,在内部, 并且这个数据无论初始分布怎样总成立.20.3 矩阵可对角化的应用注意到即这个稳定状态是Markov矩阵关于的特征向量.20.3 矩阵可对角化的应用例(Fibonacci数列):数列满足规律这是一个差分方程.怎样由出发,求出Fibonacci数列的通项公式呢?20.3 矩阵可对角化的应用令则即于是只需求20.3 矩阵可对角化的应用故20.3 矩阵可对角化的应用初始值给出于是Fibonacci数是这个乘积的第二个分量20.3 矩阵可对角化的应用我们希望研究由差分方程描述的离散动力系统的长期行为,即时解的性质.设可对角化,即存在可逆矩阵其中使为对角阵.则其中即可以看出,的增长由因子支配. 因此系统的稳定性依赖于的特征值.20.3 矩阵可对角化的应用对由一个差分方程定义的离散动力系统,当的所有特征值时,它是稳定的(stable),且;当所有时,它是中性稳定的(neutrally stable),且有界;而当至少有一个特征值时,它是不稳定的(unstable),且是无界的.Markov过程是中性稳定的,Fibonacci数列是不稳定的.20.3 矩阵可对角化的应用例:考虑差分方程其中的特征值为其对角元和故该系统是稳定的.由任何一个初始向量出发,的解必定最终趋向于如:20.3 矩阵可对角化的应用可以看到从开始,而的实际作用是,若把分解成的两个特征向量的和:则把属于的特征向量化为零,而把属于的特征向量乘以20.4 同时对角化问题:给定两个阶矩阵是否存在可逆矩阵使得同时为对角阵,也即同时对角化?命题:若有相同特征向量矩阵使得为对角阵,则事实上,20.4 同时对角化重要的是,“逆”命题也成立. 我们不加证明地给出:定理:若均可对角化,且则可同时对角化.注意到,若则故和是的属于同一特征值的特征向量. 看简单的情况.假设的特征值两两互异,则其所有特征子空间都是一维的. 于是必是的倍数,也即是的特征向量. 从而有公共特征向量矩阵,可同时对角化.20.4 同时对角化定理:对阶复矩阵若矩阵的特征值两两互异,则可同时对角化.20.4 同时对角化小结:1. 矩阵可对角化,指存在可逆矩阵使为对角阵.2. 矩阵可对角化有个线性无关的特征向量.3. 若复矩阵有个互异特征值,则可对角化.4. 复矩阵可对角化任意特征值的几何重数等于代数重数.5. 设可对角化, 即存在可逆阵使则6. 差分方程的解为其中。

关于矩阵等价、合同、相似以及可对角化的性质和判别条件的总结

关于矩阵等价、合同、相似以及可对角化的性质和判别条件的总结



求出r iE A,

k n r iE A是否成立



A可对角化
A的特征值全为正数 A的顺序主子式全大于0
0
A
a11a22 L
L
ann
aii 0,i 1, 2,L L , n.
5.矩阵A与B相似:即可逆矩阵P,使得B P1AP.
r A r B
A、B具有相同的特征多项式,即
E
A
E
B
矩阵A、B具有许多相同的性质
A、B具有相同的特征值 AB
A
A为实对称矩阵
必可以与对角矩阵相似 必可以用正交变换对角化 3.实对称矩阵A的性质 不同特征值的特征向量必线性无关且正交
特征值全为实数 对应的特征向量全为实向量
k重特征值必有k个线性无关的特征向量
合同于单位矩阵,即可逆矩阵C,使得A CTC
A的正惯性指数等于n
4.n阶实对称矩阵A为正定矩阵
矩阵A与B的相似问题一般只对实对称矩阵而言,
即矩阵A与B均为实对称矩阵。
实对称矩阵A与B相似 A与B具有相同的特征值
此外还可以根据A与B相似的必要条件进行判别
A
Ann



A是否为实对称矩阵


对 由A的特征多项式 E A 是
角 求出A的所有特征值,A是
化 否有n个不同的特征值


对于A的k重特征值i
tr A tr B,即: aii bii
A1 : B1、AT : B、A* B、f ( A) f (B)于实对称矩阵A、B,A : B A与B合同,反之不成立
A : B A和B具有相同的特征值 A与B合同

矩阵可对角化的总结

矩阵可对角化的总结

矩阵可对角化的总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--矩阵可对角化的总结莆田学院数学系02级1班连涵生[摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。

[关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵说明:如果没有具体指出是在哪一个数域上的n 级方阵,都认为是复数域上的。

当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。

只要适当扩大原本数域使得满足以上条件就可以。

复数域上一定满足,因此这样假设,就不用再去讨论数域。

引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。

本文主要是讨论矩阵可对角化。

定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。

矩阵P称为由A到B的相似变换矩阵。

[]1[]2[]3[]423定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。

[]1[]2[]3[]4定义3:设A 是数域P 上一个n 级方阵,若多项式()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。

[]2定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。

[]1[]2[]3一、 首先从特征值,特征向量入手讨论n 级方阵可对角化的相关条件。

定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。

矩阵对角化问题总结

矩阵对角化问题总结

矩阵对角化问题总结矩阵对角化是线性代数中的一个重要概念,它在很多数学和工程领域中都有广泛应用。

对角化可以把一个矩阵转化为对角矩阵的形式,简化了计算和分析的过程。

本文将对矩阵对角化的定义、条件以及计算方法进行总结。

首先,矩阵对角化的定义如下:对于一个n × n的矩阵A,如果存在一个可逆矩阵P,使得我们可以得到对角矩阵D,则称矩阵A是可对角化的。

其中,对角矩阵D的非零元素是A的特征值,且按照相应的特征值的重数排列。

为了判断一个矩阵是否可对角化,我们需要满足以下条件:1. 矩阵A必须是一个方阵(即行数等于列数)。

2. 矩阵A必须具有n个线性无关的特征向量,对应于n个不同的特征值。

当满足上述条件时,我们可以通过以下步骤进行矩阵对角化:1. 求出矩阵A的特征值,即解A的特征方程det(A-λI) = 0,其中I是单位矩阵。

2. 对每个特征值λ,解方程组(A-λI)X = 0,求得对应的特征向量X。

3. 将特征向量按列组成矩阵P。

4. 求出特征值构成的对角矩阵D。

需要注意的是,在实际求解矩阵对角化问题时,可能会遇到以下情况:1. 矩阵A的特征值重数大于1。

在这种情况下,我们需要确保对应于相同特征值的特征向量线性无关。

2. 矩阵A不可对角化。

这意味着矩阵A无法被相似变换为对角矩阵。

这可能发生在矩阵A的特征向量不足以构成一组基的情况下。

矩阵对角化在很多应用中具有重要意义,它简化了矩阵的计算和分析过程。

对角矩阵具有很好的性质,例如幂运算和指数函数的计算变得更加简单。

此外,在线性系统的稳定性和动态响应的分析中,矩阵对角化也起到了关键的作用。

总之,矩阵对角化是一个重要而又广泛应用的概念。

本文对矩阵对角化的定义、条件以及计算方法进行了总结,并提到了在实际问题中可能会遇到的情况。

了解矩阵对角化的概念和方法,对于深入理解和应用线性代数具有重要意义。

一、 可对角化的概念.

一、 可对角化的概念.

四、 对角化的一般方法
1.先求出矩阵A的全部特征根. 2.如果A的特征根都在F内,那么对于每一特征 根λ,求出齐次线性方程组
x1 0 x2 0 (I A) x 0 n
的一个基础解系. 3.如果对于每一特征根 λ 来说,相应的齐次线 性方程组的基础解系所含解向量的个数等于λ的
注意:推论7.6.3的条件只是一个n阶矩阵可以对角 化的充分条件,但不是必要条件。
下面将给出一个n 阶矩阵对角化的充分必要条件。
定义:设σ是数域F上向量空间V的一个线性变换, λ是σ的一个本征值,令 则有 因而是V的一个子空间. 这个子空间叫做σ的属于 本征值λ的特征子空间.
V { V | ( ) } V Ker ( )
现在设存在 F中的数 a11,, a1s1 ,, at1,, atst , 使得
a1111 a1s1 1s1 at1 t1 atst tst 0.


i ai1i1 aisi isi , i 1,, t.
1 t 0.
现在令V是数域F上一个n维向量空间,而σ是V的一 个线性变换,设λ是σ的一个本征值, 是 σ V 的属于 本征值λ的本征子空间,取 的一个基 V 1 ,, s 并且将它扩充为V的基,由7.4,σ关于这 个基的矩阵有形状
I s A O
A1 A2
这里 I s 是一个s阶的单位矩阵.因此,A的特征多项 式是
二、 本征向量的线性关系
定理7.6.1 令σ是数域F上向量空间V的一个线性变 换.如果 1 , 2 , , n分别是σ的属于互不相同的本征 值 1 , 2 , , n 的特征向量,那么 1 , 2 , , n 线性 无关. 证 我们对n用数学归纳法来证明这个定理 当n = 1时,定理成立.因为本征向量不等于零。 设n >1并且假设对于n-1来说定理成立.现在设 1 , 2 , , n 是σ的两两不同的本征值, i 是属于 本征值 i 的本征向量:

矩阵相似对角化条件

矩阵相似对角化条件

矩阵相似对角化条件矩阵的相似对角化是矩阵分析中一个重要的概念。

对于一个方阵A,如果存在一个可逆矩阵P,使得$P^{-1}AP$是对角矩阵,那么我们就说矩阵A是可对角化的。

矩阵相似对角化的条件可以从多个角度来考虑,以下是主要的几个:1. 特征值条件:矩阵A是可对角化的当且仅当A的特征值都是实数,并且对于每个特征值$\lambda$,都有恰好对应于$\lambda$的线性无关的特征向量$v_1, \ldots, v_n$。

2. 几何重数等于代数重数:对于一个给定的矩阵A,其特征值的几何重数(即特征向量的个数)必须等于其代数重数(即特征值的重数)。

如果这两个数量不相等,那么矩阵A无法被对角化。

3. 满秩条件:如果矩阵A的秩等于其最小多项式的次数,那么A是可对角化的。

这是因为最小多项式的次数等于矩阵的特征值的个数,而矩阵的秩等于其最大线性无关组的个数,所以如果秩等于特征值的个数,那么就存在一组特征向量,它们可以线性无关并且覆盖所有特征值,这样就可以找到一个可逆矩阵P,使得$P^{-1}AP$是对角矩阵。

4. Jordan标准型:任何一个方阵都可以通过初等行变换变为Jordan标准型。

如果这个Jordan标准型只包含不同特征值的块,那么这个矩阵就是可对角化的。

5. 多项式矩阵:对于一个多项式矩阵$f(x)$,如果存在一个可逆矩阵P,使得$f(x)=P^{-1}XP$,那么我们就说f(x)是可对角化的。

在这种情况下,我们可以找到一个多项式矩阵S,使得$f(x)=S^{-1}x^nS$,其中x^n是n阶单位矩阵。

这些条件从不同的角度提供了对于矩阵是否可以相似对角化的判断方法。

在实际应用中,我们通常会使用其中的一个或多个条件来判断一个给定的矩阵是否可以相似对角化。

矩阵a可对角化的充要条件

矩阵a可对角化的充要条件

矩阵a可对角化的充要条件矩阵a可对角化的充要条件引言矩阵的对角化是线性代数中一个重要的概念,能够简化矩阵的计算和分析过程。

在研究矩阵可对角化的条件时,我们需要探讨其充要条件。

充分条件矩阵a可对角化的充分条件是存在一个可逆矩阵P,使得矩阵P-1AP为对角矩阵。

即:P<sup>-1</sup>AP = D其中D为对角矩阵,其主对角线元素为矩阵a的特征值。

必要条件矩阵a可对角化的必要条件是矩阵a有n个线性无关的特征向量,其中n为矩阵a的维数。

充要条件的证明充分性证明对于矩阵a可对角化的充分条件,我们需要证明存在一个可逆矩阵P,使得矩阵P-1AP为对角矩阵。

假设矩阵a的特征值为λ1, λ2, …, λn,对应的特征向量为v1, v2, …, vn。

我们可以将特征向量按列放在一个矩阵中,记作P=[v1, v2, …, vn]由于特征向量v1, v2, …, vn是线性无关的,矩阵P是可逆的。

我们可以计算P-1AP:P<sup>-1</sup>AP = [P<sup>-1</sup>v<sub>1</sub>, P< sup>-1</sup>v<sub>2</sub>, ..., P<sup>-1</sup>v<sub>n</s ub>] [λ<sub>1</sub>v<sub>1</sub>, λ<sub>2</sub>v<sub>2</ sub>, ..., λ<sub>n</sub>v<sub>n</sub>] = [λ<sub>1</sub>P <sup>-1</sup>v<sub>1</sub>, λ<sub>2</sub>P<sup>-1</sup>v <sub>2</sub>, ..., λ<sub>n</sub>P<sup>-1</sup>v<sub>n</s ub>]由于P是可逆矩阵,P-1v1, P-1v2, …, P-1vn也是线性无关的特征向量,且它们对应的特征值分别为λ1, λ2, …, λn。

幂等矩阵可对角化证明

幂等矩阵可对角化证明

幂等矩阵可对角化证明
1.首先证明幂等矩阵A的特征值只可能是0或1。

因为如果λ是A的特征值,则存在非零向量x满足Ax=λx,同时又有A^2=A,则有A(Ax)=A^2x=Ax=λx,即A^2x=λx,因此λ^2=λ,即λ=0或1。

2. 接着证明对于任意幂等矩阵A,它都可以对角化。

设A的特征值为λ1,λ2,...,λk,则根据特征值的定义,存在k个线性无关的特征向量x1,x2,...,xk,满足Ax1=λ1x1,Ax2=λ2x2,...,Axk=λkxk。

将这些特征向量按列排成矩阵P=[x1,x2,...,xk],则有
AP=[Ax1,Ax2,...,Axk]=[λ1x1,λ2x2,...,λkxk]=PΛ,其中Λ
=diag(λ1,λ2,...,λk)是对角矩阵。

因此,A可以对角化为A=PΛP^-1。

3. 最后,证明对于任意幂等矩阵A,它的特征值个数等于它的秩rank(A)。

设r=rank(A),则由矩阵秩的定义可知,存在r个线性无关的列向量或行向量可以构成A的列空间或行空间。

而这些列向量或行向量也是A的特征向量。

另外,由于A的特征向量个数等于A的特征值个数,因此A的特征值个数也等于r。

- 1 -。

第五章 矩阵的对角化问题

第五章 矩阵的对角化问题

矩阵 A 的相似标准形。 (2)可逆矩阵 P 由 A 的 n 个线性无关的特征向量 作列向量构成。
22
例1: 判断下列实矩阵能否化为对角阵?
1 2 2 2 2 4 (1) A 2 4 2
解:
2 1 2 5 3 3 (2) A 1 0 2 2 2 4 2
3
2 p2 3 p3
取 P p1
1

p2
1 p1 p2 p3 2 1 1 1 p3 0 1 2 1 0 1

2
0 3
21
定理1: n 阶矩阵 A 可对角化(与对角阵相似)
A 有 n 个线性无关的特征向量。
推论:若 n 阶方阵 A 有 n 个互不相同的特征值,
则 A 可对角化。(与对角阵相似) (逆命题不成立) 注:(1)若 A , 则 的主对角元素即为 A 的特征值,
如果不计
k 的排列顺序,则 唯一,称之为
1 2
(1) A E 2
2 4
的 n 个特征值为 , ,,
1 2
n
1+2++n a11 a22 ann
aii tr ( A)
i 1 n
称为矩阵A的迹。(主对角元素之和)
2)

i 1
n
i
12 n= A
9
例2 :设 为矩阵 A 的特征值,求 A2 2 A E 的特征值; 若 A 可逆,求 A , E A
等号左边第二个矩阵的行列式为Vandermonde行列式, 当 i 各不相同时,该行列式的值不等于零,所以存在逆矩阵。

关于矩阵对角化的一种判别方法

关于矩阵对角化的一种判别方法

关于矩阵对角化的一种判别方法矩阵对角化是线性代数中一种重要的运算。

对于一个方阵A,如果存在可逆矩阵P,使得P⁻¹AP为对角矩阵D,那么矩阵A就是可对角化的,且称P为A的相似变换矩阵。

对角化使得矩阵的计算更加简单,因为对角矩阵的主对角线上的元素就是矩阵的特征值。

本文将介绍一种判别矩阵对角化的方法:可逆矩阵的秩。

矩阵对角化的条件是存在可逆矩阵P使得P⁻¹AP=D,其中D为对角矩阵。

通过这个等式,我们可以得到两个推论:1.矩阵A与其特征向量相关。

由于D为对角矩阵,P的列向量正是A的特征向量。

这意味着矩阵A可对角化的条件之一是存在足够数量的线性无关的特征向量。

2.矩阵A的秩与对角化有关。

考虑等式A=PDP⁻¹,我们可以通过两边乘以P得到AP=PD,再乘以P⁻¹得到A=PD(P⁻¹)。

根据矩阵乘法的结合律,上述等式可以改写为A=(PD)(P⁻¹),又由于(PD)和(P⁻¹)都是可逆矩阵,我们可以将其记作B和C:A=BC。

矩阵乘积的性质表明,矩阵A的秩等于可逆矩阵B和矩阵C的秩之积。

也就是说,如果一个方阵A可对角化,那么它的秩等于它相似的对角矩阵的秩。

在理解了上述推论之后,我们可以将矩阵对角化的问题转化为寻找矩阵A的秩的问题。

下面将介绍一种基于矩阵秩的判别方法。

1.首先,计算方阵A的特征值和特征向量。

2.将特征向量按列组成矩阵P,即P=[v₁,v₂,...,vₙ],其中v₁,v₂,...,vₙ为特征向量。

3. 计算矩阵A的秩rank(A)。

4. 如果rank(A)=n(其中n为方阵A的阶数),那么矩阵A是可逆矩阵,且可对角化。

5. 如果rank(A)<n,那么矩阵A不是可逆矩阵,也不可对角化。

通过这种方法,我们可以通过计算矩阵的秩来判断矩阵是否可对角化。

在实际应用中,这种方法能够有效判断矩阵的对角化性质,并且能够简化对角化运算。

然而,需要注意的是,并不是所有的矩阵都可以对角化。

矩阵可对角化的条件

矩阵可对角化的条件
则 A x A x Ax x x.
于是有 xT Ax xT Ax xTx xT x
及 xT Ax xT AT x AxT x xT x xT x.
两式相减,得
xT x 0.
但因为 x 0,
n
n
所以 xT x xi xi xi 2 0, 0,
17.解:
因为矩阵A和相似,所以它们的特征值相同,有
5 0
0
E 0 4 0
0
0 y
(5 )(y )(4 )
则矩阵的特征值为5,y, 4,
所以矩阵A的特征值也是5,y, 4.
于是
5 2 4 1 4 1
. 0 A 4E 2 x 4 2 2 x 4 2 4 2 5 4 2 5
P
1
,2
,3
1
0 2
1 0 0 1 2
1 2 0 1 2

P 1 AP
2 0
0 4
0 0.
0 0 4
三、小结
1. 对称矩阵的性质: (1)特征值为实数; (2)属于不同特征值的特征向量正交; (3)特征值的重数和与之对应的线性无关的
特征向量的个数相等; (4)必存在正交矩阵,将其化为对角矩阵,
解由
1 1 1 1 0 A E 1 1 r1 r2 1 1
1 1
1 1
c1 c2 1
00
1 1 1
1
2
(1 )(2 2) ( 1)2( 2)
求得A的特征值为 1 2,2 3 1.
对应 λ12解方程(A+2E) x=0,由
2 A 2E 1
0 1 3
解 (1)第一步:求A的特征值
2 2 0
A E 2 1 2 4 1 2 0

矩阵可对角化的充要条件

矩阵可对角化的充要条件

矩阵可对角化的充要条件引言矩阵对角化是矩阵理论中的一个重要概念,它能够让我们更好地理解矩阵的性质和运算。

在实际应用中,对角化可以简化计算和分析过程,因此对于一个矩阵是否可对角化的问题,是值得我们深入研究和探讨的。

本文将探讨矩阵可对角化的充要条件,通过理论推导和实例分析,将会全面、详细、完整地讲解矩阵可对角化的各种情况及其判定条件。

I. 列举与分析矩阵的特殊情况为了更好地理解什么样的情况下一个矩阵可对角化,我们先来列举一些特殊的矩阵情况,并分析它们是否可对角化。

1. 对角矩阵对角矩阵是指主对角线以外的元素都为零的矩阵。

例如:[ A =]对于任意的对角矩阵,由于它的非零元素只存在于主对角线上,所以它必然是一个可对角化的矩阵。

2. 对称矩阵对称矩阵是指矩阵的转置等于其本身的矩阵。

例如:[ B =]对于任意的对称矩阵,它必然是一个可对角化的矩阵。

这是因为对于对称矩阵,其特征值都是实数,且对应不同特征值的特征向量是相互正交的,因此可以通过特征向量的线性组合来表示整个矩阵。

3. 可逆矩阵可逆矩阵是指存在逆矩阵的矩阵。

例如:[ C =]对于任意的可逆矩阵,它必然是一个可对角化的矩阵。

这是因为可逆矩阵的特征值都是非零的,且可逆矩阵可以表示为一个对角矩阵和一个正交矩阵的乘积,而正交矩阵的转置等于其逆矩阵,因此可逆矩阵可以通过正交矩阵的逆变换为对角矩阵。

II. 可对角化的充分条件在上一节中,我们列举了一些特殊的矩阵情况,并发现它们对应的矩阵都是可对角化的。

接下来,我们将推导出可对角化的充分条件,并用定理的形式表述出来。

定理1对于一个n阶矩阵A,如果它有n个线性无关的特征向量,那么A是可对角化的。

证明:假设A有n个线性无关的特征向量,分别为v1, v2, …, vn,相应的特征值分别为λ1, λ2, …, λn。

根据特征值与特征向量的定义,我们可以得到以下等式:Av1 = λ1v1Av2 = λ2v2…Avn = λnv现在,我们将这n个特征向量构成一个矩阵V,即:V = [v1, v2, …, vn]同时,将这n个特征值构成一个对角矩阵Λ,即:Λ = []根据上述等式,我们可以得到:AV = [Av1, Av2, …, Avn] = [λ1v1, λ2v2, …, λnvn] = VΛ由于V是一个可逆矩阵(因为v1, v2, …, vn是线性无关的),所以可以将上述等式两边都左乘V的逆矩阵V^-1,得到:AVV^-1 = VΛV^-1即:A = VΛV^-1因此,我们证明了如果一个n阶矩阵A有n个线性无关的特征向量,那么A是可对角化的。

线性代数中矩阵可对角化的几种实用方法

线性代数中矩阵可对角化的几种实用方法

科技视界Science &Technology VisionScience &Technology Vision 科技视界0引言线性代数中矩阵可对角化即矩阵与对角矩阵相似是矩阵论中一个重要的概念。

有关n 阶方阵对角化问题的研究有很多(见[1]-[4]),但是这些文章中所用到的理论都是针对数学系的学生,对于数学基础薄弱的工科生来说,这些理论有些高深莫测,本文就给出一些简单、实用、明了的可对角化的判别法。

1有关定义定义在实数域上,若n 阶方阵A 存在一个可逆矩阵P 使P -1AP 为对角形矩阵,则称矩阵A 可对角化,当A 可对角化时,我们说将A 对角化,即求可逆阵P 使P -1AP 为对角形矩阵。

命题1n 阶方阵A 有n 个不同的特征值,则A 与对角阵相似。

命题2n 阶方阵A 与对角阵相似的充分必要条件是A 有n 个线性无关的特征向量。

命题3n 阶方阵A 与对角阵相似的充分必要条件是对于每一个n i 重特征根λi ,r (λi I -A )=n -n i 。

2矩阵对角化的方法2.1利用特征值和特征向量步骤:①计算特征多项式λI -A②特征方程λI -A =0的根就是A 的特征值③对每一个特征值λi (n i 重根),求出齐次线性方程组(λi I -A )x =0的一个基础解系ξ1,ξ2,…,ξr ,若基础解系所含线性无关向量的个数等于λi 的重数n i ,则A 可对角化,且P =(ξ1,ξ2,…,ξr )。

此种方法过程比较基础、简单、机械,难点在特征多项式上,因为它是一个含有参数的行列式,求解起来比较麻烦,资料[5]都有详细介绍。

2.2利用初等变换定理如果{(λI -A )T ,I }经过初等变换化为{D (λ),P (λ)},其中D (λ)为对角矩阵,则(1)A 的特征值为D (λ)对角线上元素乘积所得的关于λ多项式的根(2)对于A 的每一个特征值λi ,其特征向量是P (λi )中与D (λi )的零行对应的行向量。

矩阵的对角化与相似矩阵

矩阵的对角化与相似矩阵

矩阵的对角化与相似矩阵矩阵是线性代数中的一个重要概念,它在各种数学和应用领域都有广泛的应用。

在矩阵的理论中,对角化是一个重要的概念,它与相似矩阵密切相关。

本文将介绍矩阵的对角化以及相似矩阵的概念与性质。

一、矩阵的对角化矩阵的对角化是指将一个矩阵通过相似变换转化为对角矩阵的过程。

对于一个n阶矩阵A,如果存在一个可逆矩阵P,使得P^{-1}AP为对角矩阵D,即P^{-1}AP = D其中D是一个对角矩阵,那么我们说矩阵A是可对角化的,且P是对A的对角化矩阵。

对角化的一个重要性质是对角矩阵的特殊性,对角矩阵的非零元素位于主对角线上,其余元素均为0。

对于一个可对角化的矩阵A,我们可以通过矩阵的特征值与特征向量来进行对角化。

特征值与特征向量是矩阵理论中的另外两个重要概念,特征值表示线性变换后特征向量方向上的缩放比例。

设矩阵A的特征值为λ_1, λ_2, ..., λ_n,对应的特征向量为v_1,v_2, ..., v_n,那么我们可以将这些特征向量按列排成一个矩阵P,即P = [v_1, v_2, ..., v_n]根据特征值与特征向量的定义,我们有AP = PD其中D是一个对角矩阵,其主对角线上的元素为矩阵A的特征值,其余元素为0。

由此可得到可逆矩阵P和对角矩阵D的关系P^{-1}AP = D因此,如果我们找到了矩阵A的特征向量和特征值,就可以通过特征向量构成的矩阵P来实现矩阵的对角化。

二、相似矩阵在矩阵的理论中,还有一个与对角化相关的概念是相似矩阵。

如果存在一个可逆矩阵P,使得矩阵A和B之间存在如下关系B = P^{-1}AP那么我们称矩阵A和B是相似的,且P是从矩阵A到矩阵B的相似变换矩阵。

相似矩阵具有许多重要的性质。

首先,相似矩阵具有相同的特征值,也就是说,如果A和B是相似矩阵,那么它们的特征值是相同的。

其次,相似矩阵具有相似的行列式、迹等性质。

此外,相似变换不改变矩阵的秩和行列式的性质。

相似矩阵在线性代数中有着广泛的应用。

第五章矩阵的对角化

第五章矩阵的对角化

所以1 , 2 , 3线性无关.
2 1 2 ( 2) A 5 3 3 1 0 2 2 1 A E 5 1 3 0
2
3 3 1 2
所以A的特征值为1 2 3 1. 把 1代入 A E x 0, 解之得基础解系 T (1,1,1) ,
0 1 2 5 100 2 3 1 1 5 52
100
5 2101

2. 求行列式
例5:设 A 是 n 阶方阵,2,4, 计算 A 3 E .
,2n 是A 的 n个特征值,
解:
已知 A 有 n 个不同的特征值,所以 A 可以对角化,
即存在可逆矩阵 P , 使得 2 P 1 AP 1
说明 如果 A 的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵 A不一定能 对角化,但如果能找到 n个线性无关的特征向量, A 还是能对角化.
可逆矩阵 P就 是 以 这 n个 线 性 无 关 的 特 征 向 量 作为列向量而成的。
定 理3、 设 0 是n阶 方 阵 A的 一 个 k重 特征值,则 A的 属 于 特 征 值 0的 特 征 向 量 中 , 极 大 线 性 无 关 组含 包的 向 量 个 数 不 多 于k个 。 即 齐 次 线 性 方 程 组 ( 0 E A)x 0 的 基 础 解 系 包 含 的 向个 量数 最 多 有 k个 。
定理2、设λ 1,λ2, λm 是方阵A的m个互不相 同的特征值,α i1 , α , α i2 , isi 是A的属于特征值λ i (i 1,2,,m)的线性无关的特征 向量,则有所有 这些特征向量组成的向 量组 α ,α1s1, α21 , α22 , , α2s2 , , αm1 , 11,α 12, αm2 , , αms m 是线性无关的。

关于矩阵等价 合同 相似以及可对角化的性质和判别条件的总结

关于矩阵等价 合同 相似以及可对角化的性质和判别条件的总结

6.对于实对称矩阵A、B,A B A与B合同,反之不成立
A B A和B具有相同的特征值 A与B合同
矩阵A与B等价、合同、相似的判别条件
矩阵A与B等价
可逆矩阵PQ,使得B PAQ r( A) r(B),且A与B为同型矩阵
故矩阵A与B等价 r( A) r(B),反之不一定成立
r( A) r(B) A 与 B 同号 矩阵A与B合同 A与B具有相同的特征值 A与B的正、负特征值个数分别相等, 即正特征值个数相等,负特征值个数相等
可逆矩阵C,使得CT AC B
xT
Ax与xT
Bx有相同的正负惯性指数
1.矩阵A与B合同 A与B的特征值中,正特征值个数相等,负特征值个数相等
r A r B
A B
A有n个线性无关的特征向量
2.n阶矩阵A可对角化
对于A的每个特征值i ,其重数ki
A有n个不同的特征值
n
r iE
A
A为实对称矩阵
0
A
a11a22
ann
aii 0,i 1, 2, , n.
5.矩阵A与B相似:即可逆矩阵P,使得B P1AP.
r A r B
A、B具有相同的特征多B具有许多相同的性质
A、B具有相同的特征值 AB
tr A tr B,即: aii bii
A1 B1、AT B、A* B、f ( A) f (B),其中f (x)为关于x的多项式
矩阵A与B的相似问题一般只对实对称矩阵而言,
即矩阵A与B均为实对称矩阵。
实对称矩阵A与B相似 A与B具有相同的特征值
此外还可以根据A与B相似的必要条件进行判别
A
Ann



A是否为实对称矩阵

7.6 可对角化矩阵

7.6  可对角化矩阵

的特征多项式是
−3
2
−3
−2
1
+2
−2 = 3 − 12 + 16 = ( − 2)2
−6
+1
特征根是 2,2,-4.
对于特征根-4,求出齐次线性方程组
−7 −2
2 −2
−3 −6
的一个基础系
1
2
, − ,1
3

1
−2
−3
1
0
2 = 0
3
0
对于特征根 2,求出齐次线性方程组

根据归纳法假设, 1 , 2 , ⋯ , −1 线性无关,所以
( − ) = , = , , ⋯ , − .
但 1 , 2 , ⋯ 两两不同,所以 1 = 2 = ⋯ = −1 = 0 ,再代入(3),
因为 ≠ 0, 所以 = 0. 这就证明了 , , ⋯ , 线性无关。
()
+ + ⋯ + = . ∈ ,
推论7.6.2 设σ是数域F上向量空间V的一个线性变换, 1 , 2 , ⋯ , 是σ的
互不相同的特征值。又设 1 , ⋯ , , = 1, ⋯ , , 是属于特征值 的线性
无关的特征向量, 那么向量 11 , ⋯ , 11 , ⋯ , 1 , ⋯ , 线性无关.
如果等式
()
+ + ⋯ + = . ∈ ,
成立,那么以 乘(3)的两端得
()
+ + ⋯ + = .
另一方面,对(3)式两端施行线性变换σ,
注意到等式(2),我们有
()

5.2矩阵的对角化

5.2矩阵的对角化
P p1 , p2 ,, pn

P 1 AP diag{1 , 2 ,, n}
例3
0 0 1 A 1 1 1 1 0 0
1 2 3 B 0 1 2 0 0 1
问A
B
是否可对角化?若可以,求
则 1 , 2 ,, n 两两正交。
继续令
n 1 2 1 , 2 , , n 1 2 n
则 1 , 2 ,, n 为一组单位正交向量。
向量组
施密特正交化 单位化
单位 正交向量组
5 正交阵 T A A n 设 是 阶方阵,如果满足 A I , 则称 A 为正交阵. (证明正交阵常用方法)
定理5.2.4 属于实对称阵的不同特征值 的特征向量彼此正交. 即 1 2 , p1 , p2 分别是属于1和 2 的特征向量, 则 p1 , p2 0.
2 实对称阵可对角化 定理5.2.5 设 A 是 n 阶实对称阵,则必有正交阵 Q, 1 使 Q AQ diag(1 , 2 ,, n ). 3 求正交阵 Q ? 正交阵 Q 可逆阵 P ( p11 , p1r ,, ps1 , psr )
求正交阵 Q, 使 Q AQ 为对角阵.
1
作业 T 1.设 为n 维实列向量, 且 2, T A I 求证 为正交矩阵. 习题5.2, 3(3)
B 的属于 2 4的特征向量
注2 特征值相同的矩阵未必相似
2)若f x 为多项式,则 f ( A)与 f (B) 相似. 1 1 A B A B 3)若 与 均可逆,则 与 相似. 例1
1 1 设矩阵 A 与 0 1 0 0 * 2 1 A , A 2 A I . 求 a b 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵可对角化的总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-矩阵可对角化的总结莆田学院数学系02级1班连涵生 21041111[摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。

[关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。

当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。

只要适当扩大原本数域使得满足以上条件就可以。

复数域上一定满足,因此这样假设,就不用再去讨论数域。

引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。

本文主要是讨论矩阵可对角化。

定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。

矩阵P称为由A到B的相似变换矩阵。

[]1[]2[]3[]423定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。

[]1[]2[]3[]4定义3:设A 是数域P 上一个n 级方阵,若多项式()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。

[]2定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。

[]1[]2[]3一、 首先从特征值,特征向量入手讨论n 级方阵可对角化的相关条件。

定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。

[]1[]2[]3[]4证明:必要性:由已知,存在可逆矩阵P ,使121n P AP λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦即12n AP P λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦把矩阵P 按列分块,记每一列矩阵为 12,,,n P P P 即412[,,,]n P P P P = 于是有12[,,,]n A P P P ==1212[,,,]n n P P P λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 即 121122[,,,][,,,]n n n AP AP AP P P P λλλ=于是有 ,1,2,,i i i AP P i n λ==。

由特征值,特征向量定义,表明P 的每一列都是A 的特征向量,因为P 是可逆的,因此12,,,n P P P 是A 的n 个线性无关特征向量,其中12,,,n λλλ为A 的特征值。

充分性:若A 有n 个线性无关的特征向量12,,,n P P P 则有,1,2,,i i i AP P i n λ==,其中i λ是对应于特征向量i P 的A 的特征值。

5以12,,,n P P P 为列作矩阵12[,,,]n P P P P =,因为12,,,n P P P 线性无关,所以矩阵P 是可逆的。

由 12[,,,]n AP A P P P ==121122[,,,][,,,]n n n AP AP AP P P P λλλ==1212[,,,]n n P P P λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=12n P λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦则有 121n P AP λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦即A 与对角矩阵相似从以上证明中可知:6(1) 与矩阵A 相似的对角矩阵主对角线上的元素是A 的特征值,而相似变换矩阵P 的列是A 的n 个线性无关特征向量。

(2) 12,,,n λλλ在主对角线上的次序应与其对应的特征向量在P 中的次序相对应,如果12,,,n λλλ的次序改变,那么12,,,nP P P 在P 中的次序也要作相应的改变。

但这时P 就不是原来的P 了。

因此相似变换矩阵不是唯一的。

若不计k λ的排列顺序,则对角矩阵是唯一的,称它为A 的相似标准形。

由相似是一种等价关系知:与A 相似的矩阵都有相同的相似标准形。

7定理2:矩阵A 的属于不同特征值的特征向量是线性无关的。

[]1[]2[]3[]4由此给出了一个推论:n 级方阵可对角化的充分条件A 有n 个互不相同的特征值。

[]1[]2[]3[]4证明:由定理1及定理2可得。

但这个推论的逆不成立。

例如:n 级单位阵E ,显然它是可对角化的,但它的特征值为1(n 重根)。

那我们要问若有重根时,要满足什么条件才可对角化?定理3:n 阶矩阵A 可对角化的充要条件是:A 的每个特征值对应的特征向量线性无关的最大个数等于特征值的重数(即A 的每个特征子空间iV λ的维数等于特征值i λ的重数) []48这个定理又可以这样叙述:矩阵A 的每个特征值的代数重数等于对应子空间的(几何)重数。

[]2[]3引理1:如果1,,k λλ是矩阵A 的不同特征值,而12,,,i i i ir ααα 是属于i λ的线性无关的特征向量,12,,,i k = 那么向量组 111121,,,,,kr kr αααα也线性无关。

[]1[]2[]3即:给出一个n 级矩阵,求出属于每个特征值的线性无关向量,把它们合在一起也是线性无关的。

引理2:设0λ是n 阶矩阵A 的一个k 重特征值,对应于0λ的特征向量线性无关的最大个数为l ,则k l ≥。

[]4证明:反证法。

设 l k < ,由已知 0012,,,,,i i i A i l αλαα=≠=。

(1)912,,,l ααα 线性无关。

将 12,,,l ααα 扩充为n 维向量空间V 的一组基:121,,,,,,l l n ααααα+ 其中 1,,l n αα+一般不是A 的特征向量,但1,,,m A V m l n α∈=+ ,可用上述的一组基线性表示,即1111'''',,,,m m l m l l m l n m n A a a a a ααααα++=+++++ 其中1(,,)m l n =+ (2)用矩阵可表示为:()121,,,,,,l l n A ααααα+10()011100112111110'',,'',,'',,'',,,,,,,,l n l l l n l l n l l l n n l n n a a a a a a a a λλλααααα+++++++⎛⎫⎪ ⎪ ⎪ ⎪ ⎪=⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭(3)记 ()121,,,,,,l l n P ααααα+= 则P是可逆的。

因此上式可表为 01011220ll E A E A AP P P AP A A λλ-⎛⎫⎛⎫=⇒=⎪ ⎪⎝⎭⎝⎭根据相似矩阵有相同的特征多项式,得111()n n n n E A P E A P P E A P E P AP λλλλ----=-=-=-01022()()ll n l n l E A E E A E A λλλλλλ----==---02()l n l E A λλλ-=-- (4)11 令2()n l g E A λλ-=-是λ的n l -次多项式,由(4)式知0λ至少是A 的l (l k >)重特征值。

与0λ为A 的k 重特征值,矛盾,所以l k ≤。

由上面的两个引理作基础,下证定理3: 证明:不妨设1()i mr i i E A λλλ=-=-∏其中1,,m K λλ∈ 又 1mi i r n ==∑。

(在复数域中)充分性:由于对应于i λ的特征向量有i r 个线性无关,又m 个特征值互异。

由引理1知A 有n 个线形无关的特征向量,依据定理1,A 与对角阵相似。

必要性:用反证法:设有一个特征值i λ所对应的线性无关的特征向量的最大个数i i l λ<的重数为i r ,则由引理2知,12A 的线性无关的特征向量个数小于n ,故A 不能对角化,与题设矛盾,假设不成立。

即A 的每个特征值对应的特征向量线性无关的最大个数i l 等于特征值的重数i r 。

[]4推论:n 级方阵A 可对角化的充要条件是对于A 的每一个特征根λ,有秩()E A n S λ-=-,其中s 是λ的重数。

[]2证明:()0E A X λ-=的解空间V λ的维数等于特征值λ的重数即维()V S λ=(由定理3知)。

又维()V n λ=-秩()E A λ-。

所以,秩()E A n S λ-=- 成立。

以上给出的可对角化的几个条件都是以特征值,特征向量为基础。

其中条件1(也是定理1)是最基础的,可以把它看作是矩阵可对角化的实质。

其它条件都是它的扩展。

下面我们用λ-矩阵及若尔当标准形来讨论矩阵可对角化。

定理4:复数域上每一个n阶矩阵A都与一个若尔当标准形相似。

这个若当形矩阵除去其中若当块的排列次序外是被矩阵A唯一决定的。

它称为A的若尔当标准形。

[]1[]2[]3[]4由相似是一个等价关系知,与A相似的矩阵都有相同的若尔当标准形。

从这个意义上讲,我们可以把n级方阵划分为以若当标准形为代表元素的等价类。

等价类中的每个元素是相似的。

由若尔当标准形的构造知,它包含对角形矩阵为它的特殊情况。

那么当它1314满足什么条件时,一个若尔当标准形是一个对角矩阵,也就是可对角化的条件。

由于每个初等因子对应一个若当块,例如初等因子为()i r i λλ-,那它对应的若当块为11i ii i i i r r J λλλ⨯⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 而若当形矩阵是由这样的若当块组成的。

例: 12S J J J J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 所以如果每一个若当块都是1阶,那么,这个若当形矩阵J 就成了对角阵,那么与之对应的初等因子都是一次的。

由上面讨论给出矩阵可对角化的几个条件:15定理5:n 级方阵可对角化的充要条件它的初等因子都是一次的。

[]1[]2[]3推论1:n 级方阵可对角化的充要条件它的不变因子无重根。

[]1[]2[]3推论2:n 级方阵可对角化的充要条件它的最小多项式无重根。

[]1[]2[]3这三个充要条件充分利用了不变因子,初等因子及最小多项式之间的关系,但在具体的解题过程中很少直接去求不变因子和初等因子,一般情况下是通过求最小多项式来解题的。

例:由最小多项式的定义知,对于任一个零化多项式()f x 都满足()|()A m x f x ,()A m x 表示矩阵A 的最小多项式。

因此若()f x 无重根,则()A m x 一定无重根。

当然这只是一种方法。

相关文档
最新文档