平行线之间的距离
平行线间的距离公式
![平行线间的距离公式](https://img.taocdn.com/s3/m/643a51b7ba0d4a7303763a10.png)
的距离公式
点到直线的距离公式 一般地,点 P(x0,y0) 到直线 l:Ax+By+C=0
的距离 d 的公式是
d | Ax0 By0 C | A2 B2
在使用该公式前,须将直线方程化为一般 式A.=0或B=0时,此公式也成立.
求平行线 2x–7y+8=0 和 2x–7y–6=0 的距离. 解:在直线 2x–7y–6=0 上任取一点,如P(3,0) ,
求平行线 x+3y–4=0 和 2x+6y–9=0 的距离. 解:将两方程中 x、y的系数化成对应相等的形式,得
2x+6y–8=0 和 2x+6y–9=0 因此, d | 8 9 | 10 .
22 62 20
求平行线 2x+3y+4=0 和 4x+6y–5=0 的距离.
求与直线3x–4y–20=0平行且距离为3的直线方程. 解:根据题意,可设所求直线方程为3x–4y+m=0,
则两条平行线的距离就是
点 P(3,0) 到直线2x–7y+8=0的距离.
因此,
y
d | 23708| 22 (7)2
–4
14 53 . 53ຫໍສະໝຸດ 2 1 O 12 3 x求平行线 2x+3y+4=0 和 4x+6y–5=0 的距离.
y P l1 怎样求任意两条平行线的距离呢?
Q l2
Ax0 By0 C1
PQ C1 C2 A2 B2
两条平行线的距离公式 一般地,两条平行线l1:Ax+By+C1=0 和l2:
Ax+By+C2=0 间的距离 d 的公式是
d | C1 C2 | A2 B2
用两平行线间距离公式须将方程中x、y的系数 化为对应相同的形式。
所以PP ′⊥l,点P和P ′到直线l 的距离相等.
投影几何学中的平行关系与距离计算
![投影几何学中的平行关系与距离计算](https://img.taocdn.com/s3/m/c2655aea27fff705cc1755270722192e453658d3.png)
投影几何学中的平行关系与距离计算投影几何学是几何学的一个分支,研究的是空间中的平面、直线、点等几何体在投影变换下的性质和关系。
在投影几何学中,平行关系和距离计算是两个重要的概念和计算方法。
本文将介绍投影几何学中的平行关系以及如何计算平行线之间的距离。
一、平行关系的定义在投影几何学中,平行关系是指两条直线在平面上永远不相交,无论它们延伸到多远。
平行线具有以下性质:1. 平行线的斜率相等:如果两条直线的斜率相等,那么它们就是平行线。
斜率可以通过直线上两个点的坐标来计算,即斜率等于纵坐标的差值除以横坐标的差值。
2. 平行线的法向量相等:如果两条直线的法向量相等,那么它们就是平行线。
直线的法向量可以通过直线的一般方程来计算,即直线的一般方程为Ax + By + C= 0,法向量为(A, B)。
3. 平行线的截距相等:如果两条直线在同一平面上,且与该平面的两条平行线的距离相等,那么它们就是平行线。
截距可以通过直线的截距式方程来计算,即直线的截距式方程为x/a + y/b + z/c = 1,截距为(a, b, c)。
二、平行线之间的距离计算在投影几何学中,计算平行线之间的距离是一个常见的问题。
有多种方法可以计算平行线之间的距离,下面将介绍两种常用的方法。
1. 点到直线的距离公式平行线可以看作是同一平面上的两条直线,因此可以使用点到直线的距离公式来计算平行线之间的距离。
点到直线的距离公式如下:d = |Ax + By + C| / √(A^2 + B^2)其中,(x, y)为平面上的任意一点,A、B、C为直线的一般方程的系数。
2. 平行线之间的距离公式平行线之间的距离可以通过两条直线的截距式方程来计算。
假设两条平行线的截距式方程分别为x/a + y/b + z/c = 1和x/a' + y/b' + z/c' = 1,那么它们之间的距离可以通过以下公式计算:d = |1/c - 1/c'| / √(1/a^2 + 1/b^2 + 1/c^2)其中,a、b、c和a'、b'、c'分别为两条直线的截距。
两平行线间的距离公式推导过程
![两平行线间的距离公式推导过程](https://img.taocdn.com/s3/m/c4c6153c5bcfa1c7aa00b52acfc789eb172d9e9d.png)
两平行线间的距离公式推导过程摘要:1.引言:介绍平行线的基本概念和距离公式的背景2.推导过程:详述如何从基本几何概念和公理推导出两平行线间的距离公式3.结论:总结推导结果,并讨论公式的应用和意义正文:一、引言平行线是几何学中的一个基本概念,它们在平面几何和其他几何领域中都有广泛的应用。
在解决与平行线相关的问题时,我们经常需要计算它们之间的距离。
为了方便计算,数学家们已经推导出了两平行线间的距离公式。
在本文中,我们将详细介绍这个公式的推导过程。
二、推导过程1.假设有两条平行线l1 和l2,它们之间的距离为d。
2.从l1 上任选一点A,作一条与l2 垂直的线段AM,M 为线段终点。
3.根据垂直平分线定理,可以得知AM 的长度等于l2 上与M 点对应的线段AN 的长度。
4.连接线段AN 和MN,可以发现三角形AMN 是一个直角三角形,其中∠MAN 为直角。
5.根据勾股定理,直角三角形的斜边长度(即两平行线间的距离)等于直角边的平均值,即d = (AM + MN) / 2。
6.由于MN = AN,所以d = (AM + AN) / 2。
7.根据面积公式,平行线l1 和l2 之间的面积可以表示为S = l1 × d。
8.同时,根据平行线的性质,我们知道l1 与l2 之间的距离等于它们任意一点到对方直线的距离,所以d 也可以表示为S = l2 × h,其中h 为l2 上任意一点到l1 的距离。
9.将公式S = l1 × d 和S = l2 × h 相等,得到l1 × d = l2 × h。
10.将d = (AM + AN) / 2 代入上式,得到l1 × [(AM + AN) / 2] = l2 × h。
11.化简得d = (l1 × AM + l1 × AN) / (2 × l1)。
12.由于AM = AN(根据垂直平分线定理),所以d = (l1 × AM) / l1 = AM。
平行四边形的判定(3)平行线之间的距离
![平行四边形的判定(3)平行线之间的距离](https://img.taocdn.com/s3/m/79f2206bf5335a8102d220ef.png)
用一用:
在同一平面内,已知直线AB∥CD ∥EF,直线AB与直线CD的距离为3 cm,直线AB与直线EF的距离为8cm, 那么直线CD与直线EF之间距离是多少?
★ 等积法 ★
3、已知平行四边形ABCD的周长为 25cm,对边的距离分别为 AE=2cm,AF=3cm,求这个平行四边形 的面积?
x
知识点二: 应用一(面积问题)
1、如图,已知AD//BC,判断 S
ABC
与
SDBC
是否相等,并说明理由。
A
D
SABC SDBC
B
E
C
F
3、如图:甲、乙两户的承包田由折线ABC 分割,现需把分割线改成直线,并且两户 农田面积不变,道路的一端点仍为A,问应 该怎么改?画出示意图,并说明理由。
证明:两条平行线之间的距离处处相等 Nhomakorabea已知,如图,直线a//b,A,B是直线a 上的任意两点,AC b,BD b,垂足分 别是C,D 求证:AC=BD
a
b
A
B
C
D
知识点一: 两平行线间距离的定义和性质
A
B
a
b
C
D
2、性质:两条平行线之间的距离处处相等
夹在两条平行线间的平行线段一定相等
1、如图是山坡上两棵树,你能量出他们
平行四边形的判定(三)
平行线之间的距离
A 两点间的距离:
B
连结两点的线段的长度叫两点间的距离 P 点到直线的距离: 从直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
在笔直的铁轨上,夹在两根铁轨之间的平 行枕木是否一样长?
A
D
E
B
C
F
平行线间的距离例题
![平行线间的距离例题](https://img.taocdn.com/s3/m/a32cfa3e78563c1ec5da50e2524de518964bd39a.png)
平行线间的距离例题
平行线是同一平面内不相交的两条线。
在平面几何中,我们经常需要计算平行线之间的距离。
下面是一个关于平行线间距离的例题。
例题:已知两条平行线L1和L2,L1上有一点P,L2上有一点Q。
设点P到直线L2的距离为d,求点Q到直线L1的距离。
解题思路:首先,我们需要知道平行线之间的距离定义。
在同一平面内,两条平行线之间的距离是它们之间的任意一条垂线的长度。
因此,我们可以先通过点P和直线L2构造垂线L3,然后计算L3的长度d。
接下来,我们需要构造点Q到直线L1的垂线L4,然后计算L4的长度即可。
步骤如下:
1. 构造垂线L3:从点P向直线L2作垂线L3。
2. 计算L3的长度:根据勾股定理,L3的长度等于线段PQ的长度乘以sinθ,其中θ为直线L1和L2的夹角,而线段PQ与直线L1和L2平行,因此θ可由线段PQ和直线L1的斜率求得,即:θ = arctan(k1) - arctan(k2)
其中,k1和k2分别为直线L1和L2的斜率。
3. 构造垂线L4:从点Q向直线L1作垂线L4。
4. 计算L4的长度:同样利用勾股定理,L4的长度可表示为线段PQ的长度乘以cosθ,即:
L4 = PQ*cosθ
5. 得出结果:将步骤2和步骤4中计算出的距离代入公式,即
可得到点Q到直线L1的距离:
d(Q,L1) = d*sinθ = PQ*cosθ*sinθ
这样,我们就成功地求出了点Q到直线L1的距离。
需要注意的是,如果两条直线不在同一平面内,则无法计算它们之间的距离。
同时,在实际应用中,我们也可以利用向量或矩阵的方法来求解平行线之间的距离。
两条平行线间的距离公式推导方法
![两条平行线间的距离公式推导方法](https://img.taocdn.com/s3/m/432ef092185f312b3169a45177232f60ddcce727.png)
两条平行线间的距离公式推导方法
要推导两条平行线之间的距离公式,我们可以采用几何方法或者向量方法。
首先,我们来看几何方法:假设我们有两条平行线L1和L2,距离为d,我们可以从平行线上取两个点P1和P2,分别连接成一条线段,并做垂线PH1和PH2,垂线的交点为H。
利用几何知识,我们可以得到一个三角形PH1H2,其中PH1和PH2是直角边,而H1H2就是两条平行线之间的距离d。
这时,我们可以利用直角三角形的勾股定理来推导出两条平行线之间的距离公式。
其次,我们来看向量方法:假设L1和L2的一般方程为ax + by + c1 = 0 和ax + by + c2 = 0,其中(a, b)是平行线的方向向量。
我们可以利用向量的性质,找到两个点P1和P2分别在L1和L2上,那么向量P1P2就是平行线方向的向量。
此外,我们可以通过向量P1P2在垂直于平行线的方向上的投影得到两条平行线之间的距离d的绝对值。
最后,通过选择合适的点P1和P2,并且考虑到距离为正或负的情况,我们可以得到两条平行线之间的距离公式。
点与平行线之间的距离关系
![点与平行线之间的距离关系](https://img.taocdn.com/s3/m/7c26db44a31614791711cc7931b765ce05087a3f.png)
点与平行线之间的距离关系一、平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
二、点到直线的距离:从直线外的一个点向这条直线所画的垂直线段的长度,叫做这点到直线的距离。
三、平行线之间的距离:平行线之间的距离,就是两条平行线之间的垂直线段的长度。
四、点到平行线的距离:从直线外的一个点向这两条平行线所画的垂直线段的长度,叫做这点到平行线的距离。
五、点与平行线之间的位置关系:1.点到平行线的距离相等:当一个点位于两条平行线之间时,这点到两条平行线的距离相等。
2.点到平行线的距离不等:当一个点不位于两条平行线之间时,这点到两条平行线的距离不等。
六、平行线之间的距离变化规律:1.平行线之间的距离随着线段长度的增加而增加。
2.平行线之间的距离随着线段长度的减少而减少。
七、点与平行线之间的距离计算:1.已知点到一条平行线的距离,求点到另一条平行线的距离:两点之间的距离等于这两条平行线之间的距离。
2.已知点到一条平行线的距离和这条平行线与另一条平行线的距离,求点到另一条平行线的距离:两点之间的距离等于已知点到这条平行线的距离加上这条平行线与另一条平行线的距离。
八、平行线之间的距离应用:1.在日常生活中,平行线之间的距离应用广泛,如道路、铁路、楼房等建筑物的设计。
2.在数学中,平行线之间的距离是解决几何问题的重要工具,如求解三角形、四边形的面积等。
九、注意事项:1.理解并掌握平行线之间的距离概念及其应用。
2.注意点与平行线之间的位置关系,正确判断点到平行线的距离。
3.在实际应用中,注意考虑平行线之间的距离变化规律,合理计算。
通过以上知识点的学习,学生可以系统地掌握点与平行线之间的距离关系,并在实际问题中灵活运用。
习题及方法:1.习题:已知点A(2,3)到直线x=4的距离是多少?答案:点A(2,3)到直线x=4的距离是2,因为点A的横坐标是2,而直线x=4与y轴平行,所以点A到直线x=4的距离就是点A的横坐标与直线x=4的横坐标的差的绝对值,即|2-4|=2。
坐标轴两条平行线的距离公式
![坐标轴两条平行线的距离公式](https://img.taocdn.com/s3/m/7569c03ebf23482fb4daa58da0116c175e0e1e44.png)
坐标轴两条平行线的距离公式在我们平常的生活中,经常会碰到一些需要计算距离的情况,比如从家里到超市有多远?从公司到电影院走路要多久?这些都是我们日常生活中常常计算的“距离”。
但是今天咱们要聊的,不是那种走路的距离,也不是你和朋友约定见面的距离,而是一个稍微数学化一点的“距离”问题——坐标轴上两条平行线的距离。
好了,别被“坐标轴”和“平行线”这些听起来有点学术气息的词吓到,其实这个问题并不难理解。
你可以想象,坐标轴就像是我们平常说的“横坐标”和“纵坐标”的那两条线,而平行线嘛,就是那种永远不相交的两条线。
它们之间的距离,不像两点之间的距离那样需要直接用勾股定理去计算,而是有一个特别简单的公式,可以让你快速算出它们之间的“空隙”有多大。
不过你可能会问了,这两条平行线究竟该怎么定义呢?好嘛,不用着急,我们一步步来。
假设我们有两条平行线,它们的方程分别是:1. (Ax + By + C_1 = 0) 。
2. (Ax + By + C_2 = 0) 。
看上去是不是挺复杂?不过别怕,这两条线不过是斜的或是水平的,只有常数部分(也就是C_1和C_2)不同而已。
而且因为它们是平行的,斜率肯定是一样的。
好啦,公式出来了,要是你想知道这两条平行线之间的距离,记住这句话:。
距离 = (frac{|C_2 C_1|{sqrt{A^2 + B^2)。
这么一看,好像又回到了老套路,数学公式,求距离,根本没有什么新鲜感,对吧?不过你要是把这个公式一眼看明白,就会觉得其实没什么可怕的。
咱们把C_2和C_1之间的差取个绝对值,因为无论差值是正还是负,距离永远是个正数,不能让它成负数。
然后,下面的那个根号A²+B²就是线的斜率相关的内容,它让你知道两条线的“倾斜度”,或者说,它反映了两条线的方向。
如果线是水平的,那A和B就是0和1的组合,根号下的东西就会很简单。
如果是斜的,就得算一下它的斜率,才能搞清楚两条线的实际“距离”。
两条平行线的距离公式推导过程
![两条平行线的距离公式推导过程](https://img.taocdn.com/s3/m/7cade05a9a6648d7c1c708a1284ac850ad0204ed.png)
两条平行线的距离公式推导过程平行线的距离公式是解决平行线之间的距离问题的重要工具。
在几何学中,平行线是指在同一个平面内永不相交的直线。
平行线之间的距离是指两条平行线之间的最短距离。
在本文中,我们将通过推导过程来了解平行线的距离公式。
假设有两条平行线L1和L2,我们的目标是求出这两条平行线之间的距离。
为了方便计算,我们可以选择一条直线L3与L1和L2相交,并且垂直于这两条平行线。
这样,我们可以将问题简化为求L3与L1和L2的交点之间的距离。
我们可以选择L3上的一个点A,并连接A与L1和L2上的相应点B和C。
由于L3与L1和L2垂直,所以角ABC是直角。
根据直角三角形的性质,我们可以得知三角形ABC是一个直角三角形。
接下来,我们可以利用三角形ABC的性质来求解平行线L1和L2之间的距离。
根据勾股定理,我们可以得到以下关系式:AB² + BC² = AC²由于我们已知L1和L2是平行线,所以AB和BC之间的距离是相等的。
我们可以将AB和BC之间的距离表示为d,即d²。
因此,上述关系式可以重新写成以下形式:d² + d² = AC²化简上述方程,我们可以得到:2d² = AC²通过移项和开方运算,我们可以得到:d = √(AC²/2)因此,我们得到了平行线L1和L2之间的距离公式:d = √(AC²/2)这就是平行线的距离公式。
通过这个公式,我们可以通过已知平行线的方程来求解它们之间的距离。
我们只需要计算出交点的坐标,然后使用距离公式来求出距离。
需要注意的是,这个公式只适用于平行线之间的距离。
如果我们想要求解一条直线与一条曲线之间的最短距离,我们需要使用其他方法来解决这个问题。
总结一下,通过推导过程,我们得到了平行线的距离公式。
这个公式可以帮助我们求解平行线之间的最短距离。
通过选择一条垂直于平行线的直线,并计算出交点的坐标,我们可以使用这个公式来求解平行线之间的距离。
两平行线之间的距离
![两平行线之间的距离](https://img.taocdn.com/s3/m/9450d39fcf2f0066f5335a8102d276a2002960cb.png)
距离公式的几何意义
点到直线的距离
01
两平行线之间的距离实际上是任意一点到其中一条直线的垂直
距离。
平行四边形的性质
02
两平行线之间的距离等于平行四边形的高,而这个高也是平行
四边形的对角线的一半。
三角形的中位线性质
03
在三角形中,中位线与相对边平行且等于相对边的一半,而中
位线的长度就是两平行线之间的距离。
平行线的性质
性质1
性质2
同位角相等:两条平行线被一条横截线所 截,同位角相等。
内错角相等:两条平行线被一条横截线所 截,内错角相等。
性质3
性质4
同旁内角互补:两条平行线被一条横截线 所截,同旁内角互补。
平行线间的距离处处相等:两条平行线被 一条横截线所截,那么这两条横截线到各 自直线的距离是相等的。
THANKS
感谢观看
在工程学中的应用
机械零件设计
建筑设计
在机械设计中,两平行线之间的距离 常用于确定零件的尺寸和位置,以确 保机械运转的准确性和稳定性。
在建筑设计中,两平行线之间的距离 用于确定墙体的位置、窗户的高度等, 以确保建筑结构的稳定性和美观性。
电路板布线
在电子工程中,两平行线之间的距离 是电路板布线的重要参数,它决定了 信号传输的质量和稳定性。
02
两平行线之间的距离公式
距离公式的推导
平行线性质
两平行线之间的距离与它们的方 向向量成正比,与它们之间的垂
直距离成反比。
距离公式推导
基于平行线性质,通过向量运算和 几何变换,推导出两平行线之间的 距离公式。
公式形式
$d = frac{|c_2 - c_1|}{sqrt{a^2 + b^2}}$,其中$a, b$是直线方向向 量的分量,$c_1, c_2$是直线方程 $ax + by + c = 0$中的常数项。
图形的平移 (核心考点讲与练)-2021-2022学年七年级数学下学期考试满分全攻略(苏科版)
![图形的平移 (核心考点讲与练)-2021-2022学年七年级数学下学期考试满分全攻略(苏科版)](https://img.taocdn.com/s3/m/8da0cc7aae1ffc4ffe4733687e21af45b307fefb.png)
第03讲图形的平移 (核心考点讲与练)一.平行线之间的距离(1)平行线之间的距离从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.(2)平行线间的距离处处相等.二.生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.三.平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.四.作图-平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.五.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.一.平行线之间的距离(共3小题)1.(2019春•桂平市期末)如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有()A.1个B.2个C.3个D.4个【分析】根据两平行直线之间的距离相等,再根据等底等高的三角形的面积相等,找出与△ABD等底等高的三角形即可.【解答】解:∵AB∥DC,∴△ABC与△ABD的面积相等,∵AE∥BD,∴△BED与△ABD的面积相等,∵ED∥BC找不到与△ABD等底等高的三角形,∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.故选:B.【点评】本题主要考查了平行线间的距离相等,等底等高的三角形面积相等的性质,找出等底等高的三角形是解题的关键.2.(2021春•宁德期末)如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是点M到直线CD的距离,线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离,点N到直线MG的距离是线段GN的长度.【分析】点到直线的距离是指直线外一点到这条直线的垂线段的长度,根据这一定义结合图形进行填空即可.【解答】解:线段GM的长度是点M到直线CD的距离;线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离;点N到直线MG的距离是线段GN的长度.【点评】正确理解点到直线的距离的定义是解决此类问题的关键.3.(2019春•如东县期末)如图,两条平行线间依次有三个图形:△ABC,▱CDEF和梯形DGMN.根据图中所标数据比较它们的面积,其中面积最大的是()A.△ABC B.▱CDEF C.梯形DGMN D.无法比较【分析】根据两条平行线之间的距离处处相等,分别算出三个图形的面积进行比较,即可得出答案.【解答】解:设平行线之间的距离为x,三角形ABC的面积==6x,平行四边形CDEF的面积=7x,梯形DGMN的面积==5.5x,∴面积最大的是平行四边形CDEF.故选:B.【点评】此题考查三角形、平行四边形、梯形的面积公式,利用平行线之间的距离处处相等是解决问题的关键.二.生活中的平移现象(共10小题)4.(2021春•大丰区月考)下列现象是数学中的平移的是()A.树叶从树上落下B.电梯从底楼升到顶楼C.骑自行车时轮胎的滚动D.钟摆的摆动【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:A、树叶从树上落下,不是平移,故此选项不符合题意;B、电梯从底楼升到顶楼是平移,故此选项符合题意;C、骑自行车时的轮胎滚动是旋转,故此选项不符合题意;D、钟摆的摆动,不是平移,故此选项不符合题意;故选:B.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动叫平移,学生混淆图形的平移与旋转或翻转,而误选.5.(2021春•海州区期末)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.甲和乙同时到B.甲比乙先到C.乙比甲先到D.无法确定【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【解答】解:∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选:A.【点评】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.6.(2021春•许昌期末)下列运动属于平移的是()A.小朋友荡秋千B.自行车在行进中车轮的运动C.地球绕着太阳转D.小华乘手扶电梯从一楼到二楼【分析】在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.根据平移的概念进而得出答案.【解答】解:A、小朋友荡秋千,属于旋转变换,此选项错误;B、行驶的自行车的车轮,属于旋转变换,此选项错误;C、地球绕着太阳转,属于旋转变换,此选项错误;D、小华乘手扶电梯从一楼到二楼,属于平移变换,此选项正确;故选:D.【点评】此题主要考查了生活中的平移,正确掌握平移的概念是解题关键.7.(2021春•徐州期末)木匠有32m的木板,他想要在花圃周围做围栏.他考虑将花圃设计成以下的造型上述四个方案中,能用32m的木板来围成的是①③④(写出所有可能的序号).【分析】根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【解答】解:①周长=2(10+6)=32(m);②∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32(m),∴周长一定大于32m;③周长=2(10+6)=32(m);④周长=2(10+6)=32(m);故答案为:①③④.【点评】本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第一个图形,第三个图形的周长相当于矩形的周长是解题的关键.8.(2021春•南开区期末)一个长方形花园,长为a,宽为b,中间有两条互相垂直的宽为c的路,则可种花的面积为ab﹣ac﹣bc+c2.【分析】将路平移到花园的两边,即可找到种花的两边的长度即可求面积.【解答】解:将路平移到花园两边,所得种花的两边的长度分别为:(a﹣c)、(b﹣c).∴种花的面积为:(a﹣c)(b﹣c)=ab﹣ac﹣bc+c2故答案为:ab﹣ac﹣bc+c2.【点评】本题考查了列代数式,以及平移的知识,能根据题意正确列出代数式是解此题的关键.9.(2021春•江都区校级期末)白云宾馆在装修时,准备在主楼梯上铺上红地毯.已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买这种地毯至少需要504元.【分析】根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为5.8米,2.6米,即可得地毯的长度为2.6+5.8=8.4(米),地毯的面积为8.4×2=16.8(平方米),故买地毯至少需要16.8×30=504(元).故答案为:504.【点评】此题考查了平移的应用,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.10.(2021春•依安县期末)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98米.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.11.(2020秋•海州区校级期中)某公园准备修建一块长方形草坪,长为30米,宽为20米,并在草坪上修建如图所示的十字路,已知十字路宽x米,请回答下列问题:(1)草坪(阴影部分)的面积是多少平方米?(2)修建十字路的面积是多少平方米?(3)如果十字路宽4米,那么草坪(阴影部分)的面积是多少平方米?【分析】(1)阴影面积等于矩形面积减去道路面积;(2)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【解答】解:(1)30×20﹣(30x+20x﹣x2)=600﹣50x+x2(平方米),答:草坪(阴影部分)的面积是(600﹣50x+x2)平方米;(2)30x+20x﹣x2=50x﹣x2(平方米),答:修建十字路的面积是(50x﹣x2)平方米;(3)600﹣50x+x2=600﹣50×4+4×4=416(平方米),答:草坪(阴影部分)的面积416平方米.【点评】本题考查了列代数式及代数式求值的问题,解题的关键是灵活运用公式:整体面积=各部分面积之和,阴影部分面积=原面积﹣空白的面积.12.(2020秋•江阴市校级月考)根据图中标示的数据,计算图形的周长(单位:mm)【分析】经过线段的平移,该图形可变为一个长为(29+14),宽为(10+11+2)的长方形.【解答】解:如图形的周长=(29+14+10+11+2)×2=132mm.【点评】本题主要考查的是平移的性质,经过线段的平移将原图形转化为一个矩形的周长是解题的关键.13.(2015春•宝应县期中)在长为12m,宽为9m的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,求其中一个小长方形花圃的长和宽.【分析】由图形可看出:小矩形的2个长+一个宽=12m,小矩形的2个宽+一个长=9m,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为5m,宽为2m.答:小矩形花圃的长和宽分别为5m,2m.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.三.平移的性质(共10小题)14.如图,△ABC向右平移2cm得到△DEF,如果△ABC的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.22cm【分析】根据平移的性质得到BE=AD=CF,DF=AC,根据四边形的周长公式计算,得到答案.【解答】解:∵△ABC向右平移2cm得到△DEF,∴BE=AD=CF=2(cm),DF=AC,∵△ABC的周长是16cm,∴AB+AC+BC=16cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=16+2+2=20(cm),故选:C.【点评】本题考查的是平移的性质,根据平移的性质求出AD和CF以及DF=AC是解题的关键.15.如图,在△ABC中,BC=7,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF 的位置,若CF=4,则下列结论中错误的是()A.DF=7B.∠F=30°C.AB∥DE D.BE=4【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=7,∠A=80°,∠B=70°,∴EF=BC=7,CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴B、C、D正确,A错误,故选:A.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.16.(2021春•凤山县期末)如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2B.4C.6D.8【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=6﹣2=4,进而可得答案.【解答】解:由题意平移的距离为BE=BC﹣EC=6﹣2=4,故选:B.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.17.(2021春•罗湖区校级期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.18.(2021春•河源期末)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.26【分析】由S△ABC=S△DEF,推出S四边形ABEH=S阴即可解决问题;【解答】解:∵平移距离为4,∴BE=4,∵AB=8,DH=3,∴EH=8﹣3=5,∵S△ABC=S△DEF,∴S四边形ABEH=S阴∴阴影部分的面积为=×(8+5)×4=26故选:D.【点评】此题主要考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,要熟练掌握.19.(2021春•江都区期中)如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2﹣∠1=60°.【分析】作OC∥m,如图,利用平移的性质得到m∥n,则判断OC∥n,根据平行线的性质得∠1=∠OBC=30°,∠2+∠AOC=180°,从而得到∠2+∠3的度数.【解答】解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠BOC,∠2+∠AOC=180°,∠AOC=∠3﹣∠1,∴∠2+∠3﹣∠1=180°,∴∠2﹣∠1=180°﹣120°=60°,故答案为:60°.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.20.(2021春•兴化市期末)把一副直角三角尺如图摆放,∠C=∠F=90°,∠CAB=60°,∠FDE=45°,斜边AB、DE在直线l上,△ABC保持不动,△DEF在直线l上平移,当以点A、E、F三点为顶点的三角形是直角三角形时,则∠CAF的度数是15或30.【分析】有两种情形,当点D运动到与A重合时,△AEF是直角三角形,当点D运动到A是DE中点时,△AEF是直角三角形.【解答】解:当点D运动到与A重合时,△AEF是直角三角形,此时∠CAF=60°﹣45°=15°当点D运动到A是DE中点时,△AEF是直角三角形,此时∠CAF=90°﹣60°=30°,∴∠CAF的度数为15或30,故答案为:15或30.【点评】本题考查平移的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.21.(2021春•镇江期末)如图,在三角形ABC中,∠ABC=90°,BC=7,把△ABC向下平移至△DEF后,AD=CG=4,则图中阴影部分的面积为20.【分析】先根据平移的性质得到AD=BE=4,EF=BC=6,S△ABC=S△DEF,则BG=3,由于S阴影部分=S梯形BEFG,所以利用梯形的面积公式计算即可.【解答】解:如图,∵△ABC向下平移至△DEF,∴AD=BE=4,EF=BC=6,S△ABC=S△DEF,∵BG=BC﹣CG=7﹣4=3,∴S梯形BEFG=(3+7)×4=20,∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,∴S阴影部分=S梯形BEFG=20.故答案为:20.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.22.(2020春•惠来县期末)如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD =∠CAE,AF平分∠BAE.(1)∠CAF=65°;(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD 度数;若不存在,说明理由.【分析】(1)证明∠CAF=∠BAD,求出∠BAD即可.(2)证明∠EAC=∠ECA,再利用三角形的外角的性质解决问题即可.(3)设∠ACD=x,∠CAD=y.则有x+y=130°,构建方程组解决问题即可.【解答】解:(1)∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=50°,∴∠BAD=130°,∵AF平分∠BAE,∴∠BAF=∠EAF,∵∠CAD=∠CAE,∴∠CAF=∠BAE+∠DAE=∠BAD=65°,故答案为65.(2)结论:∠ACB与∠AEB度数的比值不变.理由:∵AD∥BC,∴∠CAD=∠ACE,∵∠CAD=∠CAE,∴∠ACE=∠CAE,∵∠AEB=∠ACE+∠CAE=2∠ACB,∴∠ACB:∠AEB=1:2.(3)设∠ACD=x,∠CAD=y.则有x+y=130°,∵∠AFB=∠ACD=∠ACB+∠CAF,∴x=65°+y,解得x=97.5°,∴∠ACD=97.5°.【点评】本题考查平行线的性质,平移变换,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(2019春•江宁区期中)如图1,已知直线a∥b,点A、E在直线a上,点B、F在直线b上,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧.若将线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.试探索∠1的度数与∠EPB的度数有怎样的关系?为了解决以上问题,我们不妨从EF的某些特殊位置研究,最后再进行一般化.【特殊化】(1)如图2,当∠1=40°,且点P在直线a、b之间时,求∠EPB的度数;(2)当∠1=70°时,求∠EPB的度数;【一般化】(3)当∠1=n°时,求∠EPB的度数.(直接用含n的代数式表示)【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P 在直线a上方或直线b下方时.【解答】解:(1)如图2,作PG∥a,∴∠EPG=∠EFC=40°∵a∥b∴PG∥b∴∠GPB+∠CBD=180°,又∵BD是∠ABC平分线,且∠ABC=100°,∴∠GPB=180°﹣2(1)∠ABC=130°∴∠EPB=∠EPG+∠GPB=170°,(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当n>50°时,交点P在直线a上方,∠EPB=n﹣50°,交点P在直线a、b之间,∠EPB=230°﹣n交点P在直线b下方,∠EPB=n﹣50°,②当n<50°时,交点P在直线a上方,∠EPB=50°﹣n交点P在直线a、b之间,∠EPB=130°+n交点P在直线b下方,∠EPB=50°﹣n.【点评】本题考查了平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.四.作图-平移变换(共2小题)24.(2009春•宿豫区期中)将图中的三角形ABC向右平移6格.略.【分析】分别作出点A、B、C的对应点,顺次连接即可.【解答】解:【点评】本题需注意,作平移图形时,找关键点的对应点是主要的一步.25.(2021春•睢宁县月考)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)请在图中画出△ABC向上平移3个单位后的△A1B1C1;(2)图中AC与A1C1的关系是:AC=A1C1,AC∥A1C1.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是8.【分析】(1)将各点的横坐标不变、纵坐标加3可得;(2)根据平移的性质解答即可.(3)从C点向AB的延长线作垂线,垂足为点D,CD即为AB边上的高;(4)根据三角形面积公式即可求出△ABC的面积.【解答】解:(1)如图所示:(2)AC=A1C1,AC∥A1C1;故答案为:AC=A1C1,AC∥A1C1;(3)如图所示;(4)△ABC的面积=;故答案为:8.【点评】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.五.利用平移设计图案(共3小题)26.(2021春•江都区期中)下列所示的车标图案,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念;在平面内,将一个图形整体沿某一方向移动,这种图形移动,叫做平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知C符合题意,故选:C.【点评】本题主要考查了图形的平移,注意区分图形的平移、旋转、翻折是解题的关键.27.(2021春•鼓楼区校级月考)平移小平行四边形◇可以得到美丽的“中国结”图案,下面四个图案是由小平行四边形◇平移后得到的类似“中国结”的图案,按图中规律,在第n个图案中,小平行四边形◇的个数是2n2个【分析】仔细观察图形发现第一个图形有2×12个小平行四边形,第二个图形有2×22个小平行四边形,第三个图形有2×32个小平行四边形,…由此规律得到第n个图形有2n2个小平行四边形,可求得答案.【解答】解:第一个图形有2×12=2个小平行四边形,第二个图形有2×22=8个小平行四边形,第三个图形有2×32=18个小平行四边形,…第n个图形有2n2个小平行四边形.故答案为:2n2.【点评】此题考查了图形的变化类规律,解题的关键是仔细观察图形的变化,并找到图形的变化规律,利用规律解决问题.28.(2021春•新吴区月考)请把下面的小船图案先向上平移3格,再向右平移4格.【分析】分别作出△MNE和梯形ABCD向上平移3格,再向右平移4格的对应位置即可.【解答】解:如图所示:.【点评】此题主要考查了图形的平移,关键是掌握平移后图形的大小和形状不发生改变.题组A 基础过关练一.选择题(共4小题)1.(2021春•高邮市期末)现实世界中,平移现象无处不在,中国的方块字中有些也具有平移性,下列汉字是由平移构成的是()A.B.C.D.【分析】根据平移的基本性质,汉字只需由两或三个完全相同的部分组成即可.【解答】解:根据题意,由两或三个完全相同的部分组成的汉字即可,∴“朋”可以通过平移得到.故选:B.【点评】本题考查了平移的基本性质的运用,熟知图形平移不变性的性质是解答此题的关键.2.(2020•如皋市一模)如图,△ABC沿着由点B到点E的方向,平移到△DEF.若BC=5,EC =3,则平移的距离为()A.7B.5C.3D.2分层提分【分析】根据平移的性质即可解决问题.【解答】解:由题意得平移的距离为:BE=BC﹣EC=5﹣3=2,故选:D.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.3.(2021春•汉阳区期末)下列生活现象中,属于平移的是()A.足球在草地上滚动B.拉开抽屉C.把打开的课本合上D.钟摆的摆动【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【解答】解:A.足球在草地上滚动方向变化,不符合平移的定义,不属于平移,故本选项错误;B.拉开抽屉符合平移的定义,属于平移,故本选项正确;C.把打开的课本合上,不符合平移的定义,不属于平移,故本选项错误;D.钟摆的摆动是旋转运动,不属于平移,故本选项错误;故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而选择错误.注意平移是图形整体沿某一直线方向移动.4.(2021春•郫都区校级期中)如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC 沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4B.∠F=30°C.AB∥DE D.DF=5【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=80°,∠B=70°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴A、B、C正确,D错误,故选:D.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.二.填空题(共10小题)5.(2020•蠡县一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为20cm.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6.(2021春•鼓楼区期中)如图,这个图形的周长是18.【分析】本题可将图形的边长拆分、拼成一个矩形,从而求得周长.【解答】解:将图形的上面部分的边都向上和向左右、平移,可得一个长为5、宽为4的矩形,∴这个图形的周长为4+4+5+5=18.故答案为:18.【点评】解答本题的关键是将这个图形拼成学过的简单图形,从而求解.7.(2018春•新沂市期中)如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为3cm.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.(2018春•镇江期末)如图所示,一块长为m,宽为n的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d的长度,则由此产生的裂缝面积是dn.【分析】利用新长方形的面积减去原长方形的面积得到产生的裂缝的面积.【解答】解:产生的裂缝的面积=(m+d)n﹣mn=dn.答:产生的裂缝的面积是dn.故答案为:dn.【点评】本题考查了生活中的平移现象.解题的关键是掌握平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.9.(2021春•姜堰区期末)如图,在△ABC中,D是BC的中点,将△ABC沿BC向右平移得△A'DC',若点A平移的距离AA'=4cm,则BC=8cm.。
平行线之间的距离处处相等
![平行线之间的距离处处相等](https://img.taocdn.com/s3/m/8de6d9296d85ec3a87c24028915f804d2b1687ad.png)
平行线之间的距离处处相等
根据垂直与平行的定义可知,平行线之间的距离处处相等。
两条平行线间的距离是指两条平行线之间的垂直线段的长度,因为平行线之间的距离是两条平行线的垂线段的长度,所以两条平行线之间的距离处处相等。
几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。
平行线公理是几何中的重要概念。
欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。
而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
初中数学两条平行线之间的距离知识点讲解
![初中数学两条平行线之间的距离知识点讲解](https://img.taocdn.com/s3/m/65e93a2411661ed9ad51f01dc281e53a58025188.png)
初中数学两条平⾏线之间的距离知识点讲解
来源:京翰1对1
两条平⾏线之间的距离:
是指从两条平⾏直线中的⼀条直线上的⼀点作另⼀条直线的垂线段的长;
注:
①能表⽰两条平⾏线之间的距离的线段与这两条平⾏线都垂直;
②平⾏线的位置确定之后,它们之间的距离是定值,它不随垂线段位置的改变⽽改变;
③平⾏线间的距离处处相等。
三种距离定义:
1.两点间的距离——连接两点的线段的长度;
2.点到直线的距离——直线外⼀点到这条直线的垂线段的长度;
3.两平⾏线的距离——两天平⾏线中,⼀条直线上的点到另⼀条直线的垂线段长度。
两直线间的距离公式:
设两条直线⽅程为
Ax+By+C1=0
Ax+By+C2=0
则其距离公式为|C1-C2|/√(A2+B2)
推导:两平⾏直线间的距离就是从⼀条直线上任⼀点到另⼀条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,
则满⾜Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为
d=|Aa+Bb+C2|/√(A²+B²)=|-C1+C2|/√(A²+B²)
=|C1-C2|/√(A²+B²)。
平行和垂直线的关系和应用
![平行和垂直线的关系和应用](https://img.taocdn.com/s3/m/ab64be544531b90d6c85ec3a87c24028915f8592.png)
平行和垂直线的关系和应用在几何学中,平行和垂直线是两个基本的概念,并且它们在现实生活中有着广泛的应用。
在本文中,我们将探讨平行和垂直线的定义、性质以及它们在几何学和实际问题中的具体应用。
一、平行线的定义和性质平行线是指在同一个平面内永不相交的直线。
形式上,假设有两条直线l₁和l₂,如果l₁和l₂之间没有共同的点,那么我们可以称它们为平行线,记作l₁ // l₂。
平行线有以下几个重要性质:1. 平行线之间的距离是始终相等的。
也就是说,设有一条平行线l₃与l₁、l₂分别相交于点A和B,那么点A到l₂的距离等于点B到l₁的距离。
2. 平行线对应的内角相等,即对于平行线l₁ // l₂,当一条直线与l₁和l₂相交时,对应的内角相等。
3. 平行线之间不存在交点。
这是平行线定义的基本特点。
二、垂直线的定义和性质垂直线是指在同一个平面内成直角的两条线段,也可以理解为互相垂直的直线。
形式上,如果有两条直线l₃和l₄,当l₃和l₄的夹角为90°时,我们可以称它们为垂直线,记作l₃⊥l₄。
垂直线的重要性质如下:1. 垂直线之间的夹角为90°。
这是垂直线的定义特点,无论两条直线在何种交叉形式下,只要它们的夹角等于90°,就可以称之为垂直线。
2. 垂直线上的任意两条相交线段互相垂直。
也就是说,在同一条垂直线上的两个线段,无论它们在何种形式下相交,都满足互相垂直的条件。
三、平行线和垂直线的应用1. 平行线的应用:平行线在几何学中有着广泛的应用,特别是在计算几何和图形的设计中。
以下是一些常见的应用场景:- 制作等距离线:在地图的绘制和工程设计中,我们经常使用平行线来表示等距离线,以便更好地展示地形或者设计的特定尺寸。
- 各种线段的相似性判断:利用平行线的性质,我们可以判断两个或多个线段是否相似,并进一步应用到比例计算和图形设计中。
- 判断角的关系:通过分析平行线和交叉线的角关系,我们可以判断角的相等、不等和大小关系。
两条平行线之间的距离处处相等对吗
![两条平行线之间的距离处处相等对吗](https://img.taocdn.com/s3/m/b2eafa1b5627a5e9856a561252d380eb6294239a.png)
两条平行线之间的距离处处相等对吗对的。
解析:
根据垂直与平行的定义可知,平行线之间的距离处处相等。
两条平行线间的距离是指两条平行线之间的垂直线段的长度,因为平行线之间的距离是两条平行线的垂线段的长度,所以两条平行线之间的距离处处相等。
几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。
平行线公理是几何中的重要概念。
欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。
而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出独立于欧氏几何的非欧几何。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如若a∥b,b∥c,则a∥c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过上述实验,你发现了什么?
两条平行线中,一条直 A
Ba
线上的点到另一条直线
的距离处处相等。
b
C
D
这个距离就叫做这两条平行线之间的距离。
如上图的线段AC,BD的长相等,它就是平 行线a,b之间的距离。
注意是垂线段的长,而不是垂线段
做一做:
如图,直线a∥b.请量出这两条平 行线之间的距离.
a
b
a, b, c是 在 同 一 平 面 内 的 三 条直 线 , 已 知a // b // c,a与b之 间 的 距 离 为2cm, b与c之 间 的 距 离 为4cm, 则 a与c之 间 的 距 离 是_______
如图,已知AD//BC,判断SABC与 S是DBC
否相等,并说明理由。
A
D
O
3.两平行线间的距离
——两条平行线中,一条直线上的点到另 一条直线的垂线段的长度
如图是一个平行四边形,请过点A作出 图中的平行线AD与BC之间的距离.
A
D
BE
CF
例1、已知直线 l ,把这条直线平移, 使经平移后得的像与直线 l 的距离 为1.5cm ,求作直线 l 平移后所得的
像。
l
此例中,你能 作出几条符合 要求的直线?
aA
D
D
a
b B
B
c
C
• 如图a∥b,AB⊥a于A,CD⊥b于C,
• 1)点B与点D的距离是指线段 的长;
• 2)点D到直线b的距离是指
;
• 3)两平行线a,b的距离是 或
;
• 4)线段AB的长可指
的距离.
三种距离的定义:
1.两点间的距离
——连接两点的线段的长度.
2.点到直线的距离
——直线外一点到这条直的垂线段的长度.
河A
河
的
的
西
东
岸B
岸
假设两河岸平行,两只小蚂蚁游泳的速 度一样,且分别站在A 、B两点,同时垂 直地游向对岸,问哪只小蚂蚁会先到达 对岸来觅食。
A
B
连结两点的线段的长度叫两点间的距离 P
从直线外一点到习
请任意画两条互相平行的直线a、b,
在直线a上,任意取两点A,B。然后量出
点A、B到直线b的距离,并加以比较,你
能得到什么结果?
A
Ba
b
C
D
AC=DB
a b
把一把三角尺的一条直角边沿着直线b 移动,请观察三角尺的另一条直角边与直 线a交点处的刻度,问:刻度有改变吗?
B
C
若SAOB 3,则SCOD是多少?
已知AG // BE, AD DG, BC EF 请 比 较 四 边 形ABCD和 四 边 形DEFG 的 面 积 的 大 小 。 请 说 明理 由
ADG
B C EF
如图是山坡上两棵树,你能量出 他们之间的距离吗?
在小河的东边的西岸住着两户蚂 蚁家庭,它们都筑了自已的小窝,一 天两户人家都各派出了一只小蚂蚁去 对岸觅食。