DNDC 模型使用手册_全部
flexiva双向DCDC使用手册
User manualPM3KxxxBidirectional 2.5 kW DC/DC Transformer ModuleArticle No.: BNH-PM3KxxxEdition/Review date: 23.11.2007PrefaceThis technical documentation shall provide an appropriate manipulation of theDC/DC-Transformer Modules PM3Kxxx. The modules serve the purpose ofbidirectional transformation of direct current voltages.The instruction hand book should be preserved.Texts, diagrams and tables shall neither be copied nor reproduced nor shall they bemade available to third parties without our express authorisation.We are also pointing out that this technical documentation is not part of an existing orprevious agreement or consent or part of a legal relationship.All obligations and liability result from the sales contract that also, solely contains theguarantee regulation. The contractual provisions are not affected by the technicaldocumentation.The documentations of the sub-suppliers are also effective to this documentation ofthe manufacturer.As a supplement to this instruction hand book, all the universally valid legal and otherbinding regulations with respect to prevention of accidents and on environmentalprotection shall be respected and instructed.Table of contents1Introduction (6)2Identification (7)2.1Product make and model designation (7)2.2Product versions / Software version / Edition (7)2.3Declaration of compliance with the product standards (8)3Product description (9)3.1General information / Utilisation in accordance with the regulations (9)3.2Technical information and Data (10)3.3Power/Performance connections (12)3.4Signal connections (13)3.5Safety information (16)3.5.1Safety measures during installation (16)3.5.2Residual dangers (16)3.5.3Skills and qualification of the operating staff (17)4Preparation/priming of the product for application (18)4.1Transportation (18)4.2Packaging (18)4.3Storage (18)4.4Initial operation (18)4.4.1Connection DC-Link (ZK) (18)4.4.2Connection variable voltage (VS) (18)4.4.3Setting module into operation (19)5Operation (20)5.1Mode of operation (20)5.1.1Operation modes (20)5.1.2Operation without a digital interface (22)5.1.3Parallel connection of modules on the VS-side (22)5.1.4Virtual capacitor (23)5.1.5Safety disconnection (23)5.1.6Miscellaneous errors (24)5.1.7Reducing current during high variable voltage (24)5.1.8Empty DC-Link (24)5.2Basic parameterisation (26)5.2.1Currents VS-side (26)5.2.2Voltages VS-side (27)5.2.3Voltages ZK-Side (28)5.2.4External (29)5.2.5Information (30)5.2.6Commands (31)5.2.7Oscilloscope (31)5.3Adjustment of the controller (34)5.3.1Controller parameter VS-controller (34)5.3.2Controller parameter ZK-controller (36)5.4Typical application cases / Parameterisation examples (38)5.5Troubleshooting (45)6Programming / Parameterisation (46)6.1Preliminary remarks (46)6.2The utilised ASCII-protocol (47)6.2.1Read / write (47)6.2.2ASCII-long / ASCII-short (49)6.2.3Specific example (50)6.2.4Error messages (50)6.3Communication by means of Terminal-Software (52)6.4Communication by means of ModulConfigSuite (52)7The parameterisation software ...ModulConfigSuite“. (53)7.1Preliminary remarks (53)7.2Installation (53)7.3De-installation (53)7.4Usage of the software (54)7.4.1Outline (54)7.4.2Single-Mode / Multi-Mode (54)7.4.3Groupings with the aid of colors / Background colors (55)7.4.4Meaning of the error codes (55)7.4.5Selection and allocation of the interfaces (56)7.4.6Connecting / disconnecting (57)7.4.7Storage / Loading of parameter settings (58)7.4.8Readout / Parameterising (58)7.4.9Data visualisation / Recording (59)8Maintenance service and repairs by the customer service (61)Table of figuresFig. 1: Principle (9)Fig. 2: Power/performance connections (12)Fig. 3: Signal connections (13)Fig. 4: Block circuit diagram of the voltage regulations (34)Fig. 5: Module parameterisation by means of Terminal-Software (52)Fig. 6: Configuration of the software (54)Fig. 7: Single-Mode / Module 4 (54)Fig. 8: Multi-Mode (55)Fig. 9: Grouping example (55)Fig. 10: Color key (55)Fig. 11: Example of error codes (56)Fig. 12: Meaning of the error codes (56)Fig. 13: Allocation of interfaces (57)Fig. 14: Information during connection interruption (57)Fig. 15: Dialogue for loading parameter setting data (58)Fig. 16: Buttons for Reading / Writing (Single-Mode) (59)Fig. 17: Dialogue box Display / Logging (59)Fig. 18: Recorded ASCII-Data (59)List of tablesTable 1: Pin-configuration SV1 (14)Table 2: Pin-configuration SV4 (15)Table 3: Properties in the operation modes (21)Table 4: Operation modes (21)Table 5: I/O-Special configurations (22)Table 6: Error codes (24)Table 7: Operation modes oscilloscope (33)Table 8: State values oscilloscope (33)Table 9: Settings RS232 (46)Table 10: General command sequences (47)Table 11: Complete summary of all the command codes (48)Table 12: Module answer during reading of a parameter /value (49)Table 13: Module answer during writing of a parameter / value (49)Table 14: Protocol switch over (49)Table 15: Reading ASCII-long (50)Table 16: Reading ASCII-short (50)Table 17: Writing ASCII-long (50)Table 18: Writing ASCII-short (50)Table 19: Error messages (51)In order to ensure the operator’s safety as well as to avoid possible damages on the module, it must be unconditionally assured, before utilisation of the module or facility connected thereto, that this user manual is completely read.The present user manual shall thereby help to better understanding of the DC/DC module as well as to be able to appropriately make use of the application/employment possibilities in accordance with the regulations.The operating personnel shall be very acquainted with all the components before start of operation. Special attention shall be paid to the section safety.The present user manual contains important information on the proper and economical utilisation of the DC/DC-Module. Observation of these instructions shall contribute to avoidance of danger, reduction of repair and maintenance costs as well as reduction of the breakdown periods, and an increase in the lifespan of the module.In the chapters of this manual there are some symbols at the margins. These symbols refer to function of the corresponding text paragraph, and are of importance with respect to the operation or maintenance. They refer to important descriptions or remarks:Caution!All sections with this symbol give hints on avoidance of damages on the equipment.InformationSections with this symbol give important information on an effective utilisation..The work steps that have been illustrated in logical sequence at the side of this symbol instruct the operator on the most ergonomical procedure of the operation..2.1 Product make and model designationZEMIS® PM3Kxxx2.2 Product versions / Software version / EditionProduct versions: PM3K030PM3K045PM3K060PM3K120Software version: 01.02Edition: 11/20072.3 Declaration of compliance with the product standards3 Productdescription3.1 General information / Utilisation in accordance with the regulationsThe DC/DC transformer module serves the purpose of interconnection, through aDC-Link, between different sources, drains and storage elements of electrical energywith different operation voltage ranges between 12V and 120V. It possesses anelectrical isolation, high degree of efficiency, flexible control as well as a digitalinterface. A simple connection of a 230V alternating current network is possible dueto the DC-Link voltage of 375V.Terms and definitions and abbreviationsFig. 1: PrincipleZK: DC-Link – Is hereby understood to be the side of the modulewhere the connection with other DC/DC modules or the couplingwith any other 380V DC component (e.g. inverter) can take place.VS: Variable voltage – Is hereby known as the side of the module onwhich the components are connected. The appellation outlet canequally be used, but however not very correct here due to thebidirectional mode of operation.Set-up operation: Designates the power flow from the VS side to the ZK side. Thesign of the current (vs_isoll) is hereby positive.Set-down operation: Designates the power flow from ZK-side to the VS-side. The sign of the current (vs_isoll) is hereby negative.3.2 Technical information and DataPerformance data:Maximum power output 2.5 kWVoltage and electricity ranges VS-side-100..0..100ADCPM3K030 0..30V-75..0..75ADCPM3K045 0..45VDC-50..0..50A PM3K060 0..60V-25..0..25ADCPM3K120 0..120VDC-Link voltage 365..385 V DCStation supply stand by: 5 W Operation: maximum 10 WInterfaces RS232 (CMOS-level), electrically isolatedDigital outputs 3 x 0…5 V (current limited with 330 Ω)Digital inputs 3 x 0...5 V (CMOS-level)Analogue input 2 x 0..10 V (internal resistance 55 kΩ)Cooling system Air conditioning (temperature controlled ventilator)Degree of efficiency > 90 %Ambient conditionsAmbient temperature range -20…50°C (during operation)Degree of protection IP 00Maximum humidity up to 90% (not condensed)Pollutants The surroundings should not have a great amountof dust, and especially no metal or graphite dust.EnclosureBodywork openframeDimensions 230 mm x 80 mm x 100 mmDeadweight ca. 1.7 kgScope of delivery•DC/DC-Module PM3Kxxx (pre-parameterised according to the model ofthe module)•Data storage media (CD)•Parameter settings for common applications (on CD)•Software for visualisation and parameterisations (on CD)•User manual (on CD)Optional•Device system for a maximum of 4 modules (alternative/model on demand) •Pre-parameterisation in accordance with the planned application•Initial operation in the client’s premises3.3 Power/PerformanceconnectionsFig. 2: Power/performance connectionsX1: ZK-connection•Connector with clamp maximum 2.5mm²X2: Auxiliary power supply•Connector with clamp maximum 2.5mm²•The module requires an auxiliary power supply 12...30V approx. 10W during operation, approx. 5W stand by.•Isolated onto the VS-Side with testing voltage. 600V DC onto the ZK-voltage. 6kVpX3: VS-connection•Cooling element – facing side is negative terminal•Bolted connection for power connection with screw M5•Please do not exercise excessive bending force on the printed circuit board, that is, bus bar / sheeting in the enclosure!connections3.4 SignalFig. 3: Signal connectionsJP1: Write protection electronic potentiometerJumper JP1 must be position in order to be able to describe/write the electronicpotentiometer for over current disconnection and over voltage /under voltagedisconnection, on the side of the hardware.JP2: Allocation power limitsThe current limits can be fixed with the help of the jumper field JP2. There are 3possibilities hereto:•Upper and lower limits of the electronic potentiometer (lower value negated)•Upper limit of the electronic potentiometer, lower 0 (only set-up operation possible)•Lower limit of the electronic potentiometer (negated), upper 0 (only set-down operation possible)SV1: Communication interfaceCommunication with the module takes place via an optically isolated serial interface.A supply voltage of 5V (approximately 30mA) shall be provided for the control of theopto-electronic coupler. The signals RXD and TXD can be switched on with the helpof SELECT, in order to activate several modules by a simple method. If SELECT islow, TXD will be highly resistive and RXD shall receive no signals. Hence, in case ofutilisation of several modules, the RXD and TXD lines can be switched on parallel,and the module currently activated can be selected with the aid of SELECT.Data rate: 115200bps,Format: 8bit+1 StoppbitThe signals OC_OK and OC_EN are provided for an additional safety feature:OC_OK shall be low if the DC-Link voltage exceeds the upper limit. Hence a module can inform all the others when this event occurs, whereby all the OC – OK signals are UND linked and OC – EN added. Through this means, it is then possible to avoid large scale damages during breakdown of the DC-Link voltage measuring amplifier.Pin abbreviationExplanation1 GND Ground2 VCC +5V3 OC_OK H: no ZK-over voltage4 NC Notused5 NC notused6 SELECT H: Serial interface activatedL: Serial interface deactivated7 OC_EN H: Module enabled8 RXD Inputdata9 NC notused10 TXD OutputdataTable 1: Pin-configuration SV1SV2 / SV3: Service interfacesSV2 and SV3 are programming connections for the micro controllers of the modules. They are not required for the operation and have to be left a lone.SV4: External signal inputs / signal outputsThe module is equipped with additional inputs and outputs. These are 3 digital inputs, 3 digital outputs and 2 analogue inputs, in order, either to collect data from connected components or to operate the module by means of the applied signals on these inputs.The ground of these connections is connected to the power ground of the VS – side.A direct connection of these two grounds should not be carried out, else a ground loop shall be produced and this will lead to malfunctioning and destruction of the module or the components connected thereto.Digital inputs: 0...5 V CMOS-level, rather not protection-wired Digital outputs: 0…5 V, power limited with 330Ohm-resistance Analogue inputs: 0..10 V Ù 0..1000, internal resistance 55kOhmPin AbbreviationExplanation1 GND Ground2 DA2 Digital output 23 AIN1 Analogue input 14 DA1 Digital output 15 AIN2 Analogue input 26 DE3 Digital input 37 VCC +5V8 DE2 Digital input 29 DA3 Digital output 110 DE1 Digital input 1 Table 2: Pin-configuration SV43.5 SafetyinformationThe DC/DC-Transformer –Module was designed and manufactured according torecognised regulations and provisions of technology, and came under safety testscrutiny before delivery.There is however danger for persons and for the DC/DC-Transformer module itself, incase of faulty operation.Every person, who installs, operates or carries out maintenance on the module must:1. read and particularly respect the instructions in this user manual,2. must be trained for this function and be well instructed.Protection rating IITest voltage between the ZK-Side and all the other potentials 6kVpTest voltage between auxiliary power supply and the VS-side 600Vp3.5.1 Safety measures during installationIn order to ensure a trouble-free operation and to obtain durability of the electroniccomponents, heat accumulation shall be avoided, especially on the front side of themodule (ventilator and opposite side). The installation location must be appropriatelychosen, so that the module can be adequately ventilated or aerated during operation.Caution!The cooling elements are connected to potentials, i.e. it is not permitted to touch them!3.5.2 ResidualdangersThe described product meets the technological standards and the recognisedtechnical safety provisions. However danger might still occur.The possible residual dangers in connection with the operation of the module thatmight occur, can originate through:•Utilisation of electrical / electronic components (sources, drains, storage or accumulators) of the third party supplier.• Electricity itselfThe effective specifications and safety instructions of all the correspondingcomponents mounted hereby, with respect to the operation and installation ormounting location must be respected and followed.3.5.3 Skills and qualification of the operating staffPlacing into operation and the connection of the module shall be carried out only bypersons who have undergone professional training in electro-technics or electricalengineering and who are in position to carrying out the power connectionsprofessionally.Basic knowledge of PCs and handling of the current WINDOWS operating system isnecessary for the utilisation of the delivered software in the scope of delivery. Detailsin this respect are found in the enclosed comprehensive programme description.4 Preparation/priming of the product for application4.1 TransportationDuring transportation the module shall not be exposed to vibrations, intenseagitations as well as thrust, else this might possibly lead to damages of the sensiblecomponents.4.2 PackagingBasically, appropriate, proper and environmentally friendly packaging materials shallbe used for transportation and consignment.Due to the fact that the module itself possesses a degree of protection IP00, atransport package that averts infiltration of water, dirt and dust must be selected.Positioning of conventional dehumidification materials in the package isrecommended. .4.3 StoragePermanent or long-lasting storage: closed rooms, dry, room temperatureoperation4.4 InitialThe following conditions must be ensured and checked before initial operation:•The professional installation and layout of all the necessary electrical connecting cables as well as the correct connection of all the components to the module.•The acknowledgement of the instructions and guidelines of this user manual.4.4.1 Connection DC-Link (ZK)•The diameter of the conductor/wire must be chosen in accordance with the anticipated electric current, 1.5mm² is recommended.•Take note of the polarity4.4.2 Connection variable voltage (VS)•The diameter of the conductor/wire must be chosen in accordance with the anticipated electric current.•Take note of the polarity•Conductors or wires must be provided with thimble or cable lugs and fixed by means of M% screws, appropriate screw nuts and two washers or grommets.4.4.3 Setting module into operation1. Read this documentation!2. Install auxiliary power supply3. Parameterise4. Install DC-Link and/or variable voltage5. Switch on5 Operation5.1 Mode of operationThe DC/DC-Transformer module can bi-directionally transfer power between DC-Linkwith a voltage of 350V…400V and a side with variable voltage. An extensive orcomprehensive parameterisation is necessary due to the fact that several degrees offreedom arise thereby. In order to attain maximum flexibility hereby, the adjustment ofthe DC-Link voltage and the output voltage shall be realised digitally.A PIDT1 control system exists for the DC-Link and the output (each) respectively.They are differently connected according to the operation mode. The output value ofthis connection shall be restricted by the corresponding maximum value andtransmitted to the hardware by means of the DAC (vs_isoll). Furthermore, the I-unitsof the control systems shall also be restricted during the limitation, so that they cannot run up to the maximum value. They will be held at the boundary value so that achange over from one control system to the other can take place without interruption.modes5.1.1 OperationTwo possibilities are provided for the connection of the output values of the outputvoltage control system and the DC-Link voltage control system.In the operation mode 0, a maximum value shall be applied in both control systems.This is suited for operation as an output transformer, i.e. power only flows out of themodule into a load or for utilisation by a buffer, e.g. of a double-layercapacitor/condenser or accumulator/storage battery. The connection of the controlsystem functions as follows: If the DC-Link voltage is higher than its regulated desiredvalue, the output voltage control system will be active, and maintains U VS constant. Ifthe voltage of the DC-Link now drops, the DC-Link voltage control system then winscontrol and tries to keep the DC-Link voltage constant. Hence the followingcharacteristics arise for this operation mode:•The output voltage shall be limited upwards, this, for example avoids overcharge of the buffer.•The DC-Link voltage shall be limited downwards, and this hinders breakdown of the DC-Link in the case of a bigger load.Voltages Tendencies Input (1) Output (0)U ZK<U ZKsoll U VS<U VSsoll IsollZ ↑IsollV ↓Isoll ↓ Isoll↑(discharge buffer)U ZK>U ZKsoll U VS<U VSsoll IsollZ ↓IsollV ↓Isoll ↓ Isoll↓(Output/charge Buffer)U ZK<U ZKsoll U VS>U VSsoll IsollZ ↑IsollV ↑Isoll ↑(Input e.g. BZ)Isoll ↑(Reload)U ZK>U ZKsoll U VS>U VSsollIsollZ ↓IsollV ↑Isoll ↓ Isoll↑(Reload)Table 3: Properties in the operation modesIn the operation mode 1 the minimum value of both control systems shall be used as electricity default value. This is favourable for the connection or coupling of sourcese.g. a fuel cell. In this operation mode, it is being avoided that the output voltageexceeds the desired value and thereby, for instance, causing damages to the fuelcell. In normal cases the DC-Link voltage control system is in operation and maintains the DC-Link voltage constant. The output voltage control system shall be active and shall reduce the current so that the desired value can not be undershot, only whenthe output voltage falls below the desired value.Parameter: mod_opmodeBit DecHexOperationmodeImaxIminUsollVS7 6 5 4 3 2 1 00 0 0 x 0 0 0 0 (16) 0 (0x10) 0x00 Output/buffer komm komm komm0 0 0 x 0 0 0 1 (17) 1 (0x11) 0x01 Input komm komm komm0 0 0 x 0 0 1 0 (18) 2 (0x12) 0x02 Output/buffer komm ainx ainy0 0 0 x 0 0 1 1 (19) 3 (0x13) 0x03 input komm ainx ainy0 0 0 x 0 1 0 0 (20) 4 (0x14) 0x04 Output/buffer ainx komm ainy0 0 0 x 0 1 0 1 (21) 5 (0x15) 0x05 input ainx komm ainy0 0 0 x 0 1 1 0 (22) 6 (0x16) 0x06 Output/buffer ainx ainy komm0 0 0 x 0 1 1 1 (23) 7 (0x17) 0x07 input ainx ainy komm0 0 0 x 1 0 0 0 (24) 8 (0x18) 0x08 Output/buffer komm komm ainx0 0 0 x 1 0 0 1 (25) 9 (0x19) 0x09 input komm komm ainx0 0 0 x 1 0 1 0 (26) 10 (0x1A) 0x0A Output/buffer ainx komm komm0 0 0 x 1 0 1 1 (27) 11 (0x1B) 0x0B input ainx komm komm0 0 0 x 1 1 0 0 (28) 12 (0x1C) 0x0C Output/buffer komm ainx komm0 0 0 x 1 1 0 1 (29) 13 (0x1D) 0x0D input komm ainx kommx x x 1 x x x x Digital inputs/outputs for operationTable 4: Operation modes5.1.2 Operation without a digital interfaceBesides parameter transmission through the serial interface, the input of the desiredvalues can also be carried out via the analogue inputs. The corresponding operationmode (Table 4) shall be selected for this purpose. The valued are thereby scaled asfollows:• Voltages: 0V ≙ min, 10V ≙ max• Electricity/currents: 0V ≙ -max, 5V ≙ 0, 10V ≙ +maxIt is also possible to operate the module via the digital inputs and outputs (Table 5).Hereto Bit 4 shall be set in the parameter mod_opmode (values in brackets in Table4).Interface/connection FunctionDA1 doutj State of operation L: off H: onError H:ErrorDA2 DoutkDA3 DoutlonDE1 dinaOn H:DE2 dinb Reset error H: Reset (Flank)DE3 dincTable 5: I/O-Special configurations5.1.3 Parallel connection of modules on the VS-sideFor the enhancement of the performance, it is possible to interconnect severalDC/DC-transformer modules on the VS side. However, this interconnection has thefollowing disadvantages: Due to the fact that PI-controllers are used, the outputvoltage is regulated at exactly the desired or obliged value. In case of two DC/DC-Transformers connected in parallel, there are constantly minor differences in thevoltage frequencies, such that a DC/DC-transformer always takes over the full loaduntil its current/electricity limit is attained. This is disadvantageous because thedegree of efficiency of the DC/DC-transformer merely lies in the average range ofperformance, i.e. the highest level it can achieve.This problem can be solved by a drop in the voltage/current characteristic. Principally,this is already existing through the resistances of the connecting cables, but just toosmall. The decreasing characteristic curve can be attained, by a simple means,through a P-controller for the output voltage. This is disadvantageous here due to thedigital control system, because high quantization skips/jumps of the obliged currentvalue will occur as a result of the high necessary amplifications. Therefore thefollowing configuration/arrangement is advantageous:A PI-controller shall be employed here as a control system. A multiplex of thecurrent/electricity value that has been smoothed beforehand by means of a PT1element with a relatively long time constant or delay time shall be added to theobliged voltage value. The structure then exhibits a similar characteristic similar tothat of a voltage source afflicted with internal resistance that is over pressed with abig capacitor. This functionality is already provided through the parameter vs_fkkpand vs_fkkt.capacitor5.1.4 VirtualWith the parameter setting for the functionality of the virtual capacitor, the module canthereby be parameterised that the output voltage can be represented or mapped todesired value of the DC-Link voltage. For instance, if one connects a double layercapacitor to the output of a module, the voltage of the capacitor changes with respectto the charging condition of this capacitor. This shall be detected by the module, andcan be furnished/endued with an offset (zk_vcko), will then be amplified (zk_vckp)and eventually filtered (zk_vckt) (Fig. 4).5.1.5 Safety disconnectionThe DC/DC transformer module possesses, beside the already mentioned cross-linked DC-Link voltage monitoring system, additional safety disconnections on theside of the hardware.Altogether the following are available:•Disconnection in case of excess temperature•Disconnection in case of under-voltage on the VS-side•Disconnection in case of over-voltage on the VS-side•Disconnection in case of over-current on the VS-side•Disconnection in case of over-voltage on the DC-LinkIn the case of disconnection due to excess temperature, the temperature of thecooling element and that of the transformer are monitored. Disconnection takes placeif the temperature of the cooling element or that of the transformer is more than 93°C.The output voltage is being monitored with respect to overstepping or undershootingof a limit value. Disconnection as a result of over-voltage serves the purpose ofprotecting the batteries or fuel cells in case of failure or malfunctioning of the controlsystem. Disconnection is activated at an overstepping or an undershooting of the limitvalue by approximately 3%.Over-current disconnection is also activated in case of failure or malfunctioning of the control system.The limit values for over-current or over-voltage disconnection are stores in an electronic potentiometer. However, these values are assumed or taken-over in this device only after the module has been switched off and switched on once more or re-started. The jumper JP1 must be set during this process.All the errors shall be deviated into the variable mod_state and must be acknowledged and therewith reset or re-initialised. This is implemented by setting err_quit to 1.Parameter: mod_stateBit DecHex State 7 6 5 4 3 2 1 0 Reaction of theSystemRestart, when erroris eradicated0 0 0 0 0 0 0 0 0 0x00 No error Disconnection, err_quit=0 err_quit=10 0 0 0 0 0 0 1 1 0x010 0 0 0 0 0 1 0 2 0x02 U_ZK too low Disconnection, err_quit=0 err_quit=10 0 0 0 0 1 0 0 4 0x04 Hardware error Disconnection, err_quit=0 err_quit=10 0 0 0 1 0 0 0 8 0x080 0 0 1 0 0 0 0 16 0x10 Excess temperature Disconnection, err_quit=0 err_quit=10 0 1 0 0 0 0 0 32 0x20 I_VS too big Disconnection, err_quit=0 err_quit=10 1 0 0 0 0 0 0 64 0x40 U_VS too small / big Disconnection, err_quit=0 err_quit=11 0 0 0 1 0 0 0 128 0x80 U_ZK too big Disconnection, err_quit=0 err_quit=1Table 6: Error codes5.1.6 MiscellaneouserrorsThe errors generated by the software in the variable mod_state shall be further onregistered. These are the errors 0x02 and 0x04. The error 0x04 occurs when thepower supply of the module is not secured or assured or if the connected or linkedDC-Link-over-voltage-disconnection has been activated.The error 0x02 shall be generated, if there is a breakdown of the DC-Link voltageduring operation.5.1.7 Reducing current during high variable voltageA linear reduction of the maximum output current takes place at voltages over 5/6 ofthe maximum variable voltage, such that the maximum current /electricity is availableat a maximum output voltage of 83.3%.5.1.8 EmptyDC-LinkIn case the DC-Link is empty, the module sets to an DC-Link charging mode, afterswitch on, and charges the DC-Link. It is only after completion of this process and。
ICEM CFD 使用手册
信息:菜单包括几何信息、面的面积、最大截面积、曲线长度、网格信息、单 元体信息、节点信息、位置、距离、角度、变量、分区文件、网格报告。
设置:菜单包括常规、求解七、显示、选择、内存、远程、速度、重启、网格 划分。
帮助:启动帮助、启动用户指南、启动使用手册、启动安装指南、有关法律。
(a)几何菜单 几何菜单包括编辑、修改几何图形的功能。 功能及作用: 生成点、生成/修改线、生成/修改面、生成体、修改几何图形、转化图形、删除 点、删除线、删除面、删除体积点及删除实体。 (b)网格菜单 网格菜单包括 ANSYS ICEM CFD 网格工具的模块。 以下按钮可以导入不同 ANSYS ICEM CFD 支持和开发的网格划分模块。 设置全局网格尺寸、设置表面网格尺寸、设置曲线网格尺寸、创建加密区、创建 单元、表面网格、四面体、金字塔、六面体(旧界面)、六面体分区网格及拖拽网 格。 点击这些按钮调用网格工具模块。 (c)块操作菜单 创建块、分割块、合并顶点、编辑块、对应、移动顶点、块转换、编辑边、前期 网格参数、前期网格质量、块检查、删除块。 (d)编辑网格菜单 编辑网格菜单包括高级网格编辑必需的工具:粗化、平滑、合并网格。 通过这个菜单可执行的操作包括: 创建单元、创建中间节点、网格检查、计算和显示质量、平滑全局网格、平滑 六面体网格、修改网格、合并节点、分割网格、移动节点、偏移网格、转化网格、 网格类型转化、调整网格密度、重新编号网格、网格重新自适应、删除中间节点、 删除节点及删除单元。 (e)输出菜单 输出菜单通过装配求解器、写求解器输入文件、启动求解器来控制边界条件的 编辑。输出菜单包括以下几个功能键: 选择求解器、边界条件、编辑参数、写输入文件。 图标功能菜单: 打开工程、保存工程、打开几何文件、打开属性文件(定义在几何体中的边界条 件)、打开块文件、适合窗口、放大、测距离、当地坐标系、刷新。 回退:还原到上一步操作 前进:重返到下一步操作 框架显示:使几何图形显示框架状视图 阴影显示:使几何图形固体(不透明)显示
手册大全--candence使用手册仿真分册
Candence使用手册_仿真分册前言PCB仿真Cadence软件是我们公司统一使用的原理图设计、PCB设计、高速仿真的EDA工具。
进行仿真工作需要有很多方面的知识,须对高速设计的理论有较全面的认识,并对具体的单板原理有一定的了解,还需具备仿真库的相关知识等。
在这个分册中仅对仿真软件的使用进行较详细的阐述,还介绍高速设计的一些相关理论,仿真过程是基于Allegro SPB 15.7的PCB SI模块进行的。
其他知识,如仿真库的知识、约束管理器等请参阅专门的使用手册。
在此非常感谢网络南研 EDA和本部 EDA对此手册的支持。
第一章高速设计与PCB仿真流程本章介绍高速PCB仿真设计的基础知识和重要意义,并介绍基于Cadence 的Allegro SPB15.7的PCB仿真流程。
1.1高速信号与高速设计随着通信系统中逻辑及系统时钟频率的迅速提高和信号边沿不断变陡,PCB的走线和板层特性对系统电气性能的影响也越发显著。
对于低频设计,走线和板层的影响要求不高甚至可以完全忽略不计。
当频率超过 50MHz时,PCB走线则必须以传输线考虑,而在评定系统性能时也必须考虑 PCB 板材的电参数影响。
当系统时钟频率达到120MHz及更高时,就只能使用高速电路设计方法,否则基于传统方法设计的PCB将无法工作。
因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段,只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
高速系统的设计必须面对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性问题。
通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路占整个电子系统的一定份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。
因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应,见图1-1所示。
FSC及COC手册
Chain of Custody执行手册版本号:A/0发行日期:2012-03-15Chain of Custody执行手册版本号:A/0发行日期:2012-03-15修改记录Chain of Custody执行手册版本号:A/0发行日期:2012-03-15目录封面 (1)修改记录 (2)目录 (3)组织简介 (4)前言 (5)管理者代表任命书 (6)方针目标 (7)第一章适用范围 (8)第二章管理职责 (9)第三章组织和培训 (12)第四章文件和记录 (13)第五章采购、储存、销售 (14)第六章产品加工过程 (17)第七章产品标识 (20)第八章标记使用 (22)附件1 工艺流程 (23)附件2 产品组明细表 (24)Chain of Custody执行手册版本号:A/0发行日期:2012-03-15公司简介莆田市东南纸业工贸有限公司创办于1992年,公司占地面积30000平方米,公司座落在海峡西岸繁荣经济带中心,现代化的通讯设施,便利的交通环境,给企业的发展打下了良好的基础,近年来,公司本着“质量第一,顾客至上”的宗旨在国内外行业里树立了良好的形象和声誉。
公司引进国外先进凸版柔印机、染纸机,首创省内彩色柔印纸巾纸印刷,高价值的出口新产品,并在莆田市独家成功开发了彩色薄页纸、彩色纸巾纸、彩色皱纹纸、彩色魔术棒、彩色印刷工艺花纸、彩色碎纸条,金银印刷工艺纸等一系列高档新型纸品,品种繁多,规格齐全,该产品销售国内外,以优质的服务质量和产品赢得了广大国内外客户的青睐,是福建省纸品外向型企业的后起之秀。
本公司创建以来,取得了令人瞩目的业绩,在新一轮创业的路上将继续发扬"以人为本,诚信立业,知智创先,超前务实"的企业精神,不断开拓进取攀登纸业工艺技术的制高点,开发新世纪优质纸品。
Chain of Custody执行手册版本号:A/0发行日期:2012-03-15前言1 执行手册本执行手册是按FSC产销监管(连锁监控)体系标准要求编写,阐述了莆田市东南纸业工贸有限公司(以下简称本公司)的承诺、组织结构及主要与COC连锁监控有直接关系的部门和人员的责任、权限及相互关系;并综合描述了本公司产销监管体系所含的要求、过程及其控制原则,是本公司连锁监控的法规性文件,全体员工必须贯彻执行。
迪伦克(Endress+Hauser)流动度量器系列用户操作手册说明书
Products Solutions Services SD00188F/00/EN/13.1371238762Functional safety manualLiquiphant M/S with FEL56and Nivotester FTL325NLevel Limit Measuring SystemApplicationMinimum detection (also dry running protection) of all types of liquids in tanks to satisfy particular safety systems requirements as per IEC 61508/IEC 61511-1.The measuring device fulfils the requirements concerning •Safety functions up to SIL 2•Explosion protection by intrinsic safety or flameproof enclosure•EMC to EN 61326 and NAMUR RecommendationNE 21.Your benefits•For minimum detection up to SIL 2–Independently assessed (Functional Assessment) by as per IEC 61508/IEC 61511-1•Monitoring for corrosion on the tuning fork of the sensor•No calibration•Fault message for circuit break and short-circuit •Functional test of subsequent devices at the pushof a button•Protected against outside vibration•Easy commissioningLiquiphant M/S with FEL56 and Nivotester FTL325N2Endress+HauserTable of contentsSIL declaration of conformity . . . . . . . . . . . . . . . . . . . . .3Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4General depiction of a safety system (protection function) . . . 4Structure of the measuring system . . . . . . . . . . . . . . . .5Level limit measuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Safety function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Permitted device types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Safety function data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Supplementary device documentation . . . . . . . . . . . . . . . . . . . . 7Settings and installation instructions . . . . . . . . . . . . . .9Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Response in operation and failure . . . . . . . . . . . . . . . 10Recurrent function tests of the measuring system . 10Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Specific values and wiring options for themeasuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Exida Management Summary. . . . . . . . . . . . . . . . . . . 18Supplementary Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 20Liquiphant M/S with FEL56 and Nivotester FTL325NEndress+Hauser 3SIL declaration of conformitySIL-04001B-00-A2Liquiphant M/S with FEL56 and Nivotester FTL325N4Endress+HauserIntroductionGeneral depiction of a safety system(protection function)Parameter tables for determining Safety Integrity Level (SIL)The following tables are used to define the reachable SIL or the requirements pertaining to the“Average Probability of Dangerous Failure on Demand” (PFD av ), the “Hardware Fault Tolerance” (HFT)and the “Safe Failure Fraction” (SFF) of the safety system. The specific values for the Liquiphant M/S +Nivotester FTL325N measuring system can be found in the Appendix.Permitted probabilities of dangerous failures on demand of the complete safety related systemdependent on the SIL (e.g. exceeding a defined MIN level/switch point) (Source: IEC 61508, Part 1):The following table shows the achievable Safety Integrity Level (SIL) as a function of the probability fraction of safety-oriented failures and the "hardware fault tolerance" of the complete safety system for type B systems (complex components, not all faults are known or can be described).For general informationen about SIL please refer to: /silSIL PFD av4≥ 10-5 to < 10-43≥ 10-4 to < 10-32≥ 10-3 to < 10-21≥ 10-2 to < 10-1SFFHFT 01 (0)1)1)In accordance with IEC 61511-1 (FDIS) (chapter 11.4.4), the HFT can be reduced by one (values in brackets) if the devices used fulfil the following conditions:- The device is proven in use,- Only process-relevant parameters can be changed at the device (e.g. measuring range, ...),- Changing the process-relevant parameters is protected (e.g. password, jumper, ...),- The safety function requires less than SIL 4.All conditions apply to Liquiphant M/S + Nivotester FTL325N.2 (1)1< 60%not allowed SIL 1SIL 260% to < 90%SIL 1SIL 2SIL 390% to < 99%SIL 2SIL 3≥ 99%SIL 3Liquiphant M/S with FEL56 and Nivotester FTL325NEndress+Hauser 5Structure of the measuring systemLevel limit measuring systemThe measuring system's devices are displayed in the following diagram (example).1FEL - Electronic insert A Nivotester FTL325N (one-channel)2Liquiphant M/S B Nivotester FTL325N (three-channel)Safety functionThe safety function applies to all settings in MIN safety (monitoring of the covered state) and use of the NO contacts of the level relays.The following settings are permitted for the safety function:The level relay always works in quiescent current safety; i.e. the relay releases when:•The switch point is undershot (level falls below response height)•A detected fault occurs •The mains voltage failsIn addition to the level relay, the alarm relay works in quiescent current safety and releases when:•One of the following faults occurs: –the sensor connection is interrupted –the sensor connection short circuits •The mains voltage failsDevice SettingAs-delivered state Liquiphant•Density switch setting: 0,5•Density switch setting: 0,7Density switch setting: 0,7"MIN" safety"MAX" safetyNivotesterFTL325N-#3#3Error current signal > 2,1 mAError current signal > 2,1 mA All settings except" S function" (see section "Settings and instal-lation instructions")Three-channel operationThe DIL switch for fault messaging(short-circuit-, and circuit break-monitoring)must be set to the ON position.Failure switch "ON"NivotesterFTL325N-#1#1Error current signal > 2,1 mAError current signal > 2,1 mA One-channel operationThe DIL switch for fault messaging(short-circuit-, and circuit break-monitoring)must be set to the ON position.Failure switch "ON"When the alarm relay releases, the level relay also releases.Liquiphant M/S with FEL56 and Nivotester FTL325N6Endress+HauserPermitted device typesThe details pertaining to functional safety in this manual relate to the device versions listed below and are valid as of the specified firmware and hardware version.Unless otherwise specified, all subsequent versions can also be used for safety instrumented systems.A modification process according to IEC 61508 is applied for device changes.Valid device versions for safety-related use:Valid firmware version: as of 01.00.00Valid hardware version (electronics): as of 01.00Valid device versions for safety-related use:Valid firmware version: as of 01.00.00Valid hardware version (electronics): as of 01.00Valid device versions for safety-related use:Liquiphant M FTL50, FTL50H, FTL51, FTL51C, FTL51H+ FEL56Feature Designation Option model 010Approvalall 020Process connection all 030Probe length; Type all 040Electronics; Output 6FEL56; SIL NAMUR (L-H signal)050Housing; Cable Entry all 060Additional optionsallLiquiphant S FTL70, FTL71+ FEL56Feature Designation Option model 010Approvalall 020Process connection all 030Probe length all 040Electronics; Output 6FEL56; SIL NAMUR (L-H signal)050Housing; Cable entry all 060Additional option all 070ApplicationallNivotester FTL325N Feature Designation Option model 010ApprovalG H N P T WATEX II 3(1)G Ex nC/A (ia) IIC T4, SIL, IECEx Zone 2ATEX II (1)GD (Ex ia) IIC, WHG, SIL, IECEx (Ex ia) IIC (Liquiphant M / Liquiphant S)NEPSI (Ex ia) IIC, SIL (Liquiphant M / Liquiphant S)FM IS Cl. I, II, III Div. 1 Gr. A-G, SIL (Liquiphant M / Liquiphant S)CSA IS Cl. I, II, III Div. 1 Gr. A-G, SIL (Liquiphant M / Liquiphant S)TIIS Ex ia IIC, SIL, labeling in Japan020Housing all 030Power Supply all 040Switch outputallLiquiphant M/S with FEL56 and Nivotester FTL325NEndress+Hauser 7Safety function data•The mandatory settings and data for the safety function can be found in chapter "Safety function", →ä5 and chapter "Settings and installation instructions", →ä9.•The measuring system reacts in ≤ 1,4 s.Supplementarydevice documentationMTTR is set at eight hours.Safety systems without a self-locking function must be monitored or set to an otherwise safe state after carrying out the safety function within MTTR.Liquiphant M FTL50, FTL50H, FTL51, FTL51H, FTL51C DocumentationContents CommentTechnical Information•FTL50, FTL50H, FTL51, FTL51H:TI00328F/00/EN •FTL51C:TI00347F/00/EN –Technical data –Accessories–The documentation is available on the Internet:→ .Operating Instructions •FTL50, FTL51:KA00143F/00/A6KA00163F/00/A61)•FTL50H, FTL51H:KA00144F/00/A6KA00164F/00/A61)•FTL51C:KA00162F/00/A6KA00165F/00/A61)1)with aluminium housing / separate terminal compartment.–Installation –Wiring –Operation–Commissioning –Troubleshooting –Repair–Maintenance–The documentation is supplied with the device.–The documentation is also available on the Internet:→ .Safety instructions depending on the selected version"Approval"Safety, installation andoperating instructions for devices, which are suitable for use in potentially explosive atmospheres or as overfillprotection (WHG, German Water Resources Act).Additional safety instructions (XA, ZE) are supplied with certified device versions. Please refer to the nameplate for the rele-vant safety instructions.Liquiphant S FTL70, FTL71Documentation Contents CommentTechnical Information TI00354F/00/EN –Technical data –Accessories –The documentation is available on the Internet:→ .Operating Instructions KA00172F/00/A6KA00173F/00/A61)1)with aluminium housing / separate terminal compartment–Installation –Wiring –Operation–Commissioning –Troubleshooting –Repair–Maintenance–The documentation is supplied with the device.–The documentation is also available on the Internet:→ .Safety instructions depending on the selected version"Approval"Safety, installation andoperating instructions for devices, which are suitable for use in potentially explosive atmospheres or as overfillprotection (WHG, German Water Resources Act).Additional safety instructions (XA, ZE) are supplied with certified device versions. Please refer to the nameplate for the rele-vant safety instructions.Liquiphant M/S with FEL56 and Nivotester FTL325N8Endress+HauserNivotester FTL325N Documentation Contents CommentTechnical Information TI00353F/00/EN –Technical data –Accessories –The documentation is available on the Internet:→ .Operating Instructions •One-channel device:KA00170F/00/A6 •Three-channel device:KA00171F/00/A6–Installation –Wiring –Operation–Commissioning –Troubleshooting –Repair–Maintenance–The documentation is supplied with the device.–The documentation is also available on the Internet:→ .Safety instructions depending on the selected version"Approval"Safety, installation andoperating instructions for devices, which are suitable for use in potentially explosive atmospheres or as overfillprotection (WHG, German Water Resources Act).Additional safety instructions (XA, ZE) are supplied with certified device versions. Please refer to the nameplate for the rele-vant safety instructions.Liquiphant M/S with FEL56 and Nivotester FTL325NEndress+Hauser 9Settings and installation instructionsInstallation instructionsPlease refer to the Compact Instructions (KA) for information regarding the correct installation of Liquiphant M/S + Nivotester FTL325N.Since the application conditions have an effect on the safety of the measurement, pay attention to the notes in the Technical Information (TI) and Compact Instructions (KA).The ambient conditions for the Nivotester FTL325N must correspond to IP54 (in accordance with EN 60529).The manuals on setting the devices can be found in the section "Supplementary device documentation", →ä7.Settings for Liquiphant M/S (FEL56):•The density switch setting must be configured according to the density range of the medium.•The settings of the safety mode has an effect on the function. The DIL switch must be set to MIN for minimum detection in a SIL application.Settings for Nivotester FTL325N-#3#3 (three-channel version):Observe the following for the Nivotester FTL325N-####: The operator must use suitablemeasures (e.g. current limiter, fuse) to ensure the relay contact characteristics are not exceeded:•U ≤ 253 V AC 50/60 Hz , I ≤ 2 A, P ≤ 500 VA at cos ϕ ≥ 0,7 or •U ≤ 40 V DC, I ≤ 2 A, P ≤ 80 WChanges to the measuring system and settings after start-up can impair the protection function!Liquiphant M/S with FEL56 and Nivotester FTL325N10Endress+HauserResponse in operation and failureThe response in operation and failure is descriped in the documentation, which can be found in the section "Supplementary device documentation", ä7.RepairIn the event of failure of a SIL-labeled Endress+Hauser device, which has been operated in a protection function, the "Declaration of Contamination and Cleaning" with the corresponding note "Used as SIL device in protection system" must be enclosed when the defective device is returnedRecurrent function tests of the measuring systemThe operativeness of the minimum detection must be checked annually if the PFD av values given in the Appendix are used.The check must be carried out in such a way that it is proven that the minimum detection functions perfectly in interaction with all components. This is guaranteed when the response height is lowered in an emptying process. If it is not practical to empty to the response height, suitable simulation of the level or of the physical measuring effect must be used to make the level sensor respond.If the operativeness of the level sensor/transmitter can be determined otherwise (exclusion of faults that impair function), the check can also be completed by simulating the corresponding output signal.In the case of recurrent tests, each permitted setting must be checked, especially whether all the alarm switches are set to ON.Note the following points for the function test:•Each individual channel must be checked e.g. by lowering the level.•Relay contact switching can be checked by using a hand multimeter at the terminals or by observing the minimum detection components (e.g. horn, adjuster).•In multi-channel devices, all channels which do not carry out a safety function must beincluded in the recurrent function tests if faulty functioning cannot be detected by any other means.•As a positive test result, an uncovered tuning fork must be detected and trigger the alarm for minimum detection.•If fork uncovering is not detected during the recurrent test, the monitored process must be set to a safe state by means of additional or other measures and/or kept in the safe state until the safety system is repaired.AppendixSpecific values and wiring options for the measuring system The tables show the specific values and wiring options for the measuring system.Note the following points on the tables below:•The PFD av values for multichannel systems already contain common cause failures for theassociated wiring scheme.•The PFD av values are only valid for the associated wiring scheme. Wiring schemes other than those shown in the Appendix were not assessed and thus do not bear any information relevant to safety. Using NC contacts instead of NO contacts requires further consideration of theinstallation means.•The wiring scheme shows the number of devices (Liquiphant and Nivotester) and the limitrelay contact circuits (open, when the sensor signals uncovering).•Fault messaging (circuit break/short-circuit) must be switched on for each channel thatperforms a safety function.•With several devices in a wiring scheme, they all indicate the same displayed settings.For safety related use of the Liquiphant M/S for MIN detection, the following application errors must be excluded:•Permanent and/or heavy build-up or "non-Newtonian media"•Solid proportions of the medium with a diameter > 5,0 mm (0.2in)•Corrosion: The Liquiphant may only be used in media to which the process-wetted parts are resistant. If coated sensors are used, measures must therefore be taken to ensure that there is no damage during installation and operation.The errors may cause that the demand mode of the safety function is not detected and theLiquiphant will not switch as intended.Exida Management SummaryExida Management Summary 2Exida Management Summary 1Exida Management Summary 4 Exida Management Summary 3Supplementary Documentation Safety in the Process Industry - reducing risks with SIL CP01008Z/11/EN.Liquiphant M/S with FEL56 and Nivotester FTL325NEndress+Hauser21Liquiphant M/S with FEL56 and Nivotester FTL325N 22Endress+HauserLiquiphant M/S with FEL56 and Nivotester FTL325NEndress+Hauser2371238762。
D3-15模型CIO-PDISO16产品说明书
D3-15Model CIO-PDISO16$549ߜ16 Electromechanical Relay Outputsߜ16 Isolated Digital Inputs (500 V Isolation)ߜDigital Inputs Accept AC or DC SignalsProviding 16 electromechanical relays for output actuation and 16 isolated inputs (500 V), the CIO-PDISO16board is a low cost, low profile way to monitor and control high voltage AC or DC directly from your personal computer.The 16 relays are addressed as two 8-bit ports. Ten relays are form C SPDT and 6 are form A normally open. The contacts are rated at 5 A at 120 Vac or 6 A @ 28 Vdc with resistive load. The 16 isolated inputs are also addressed as two bytes.The inputs are not polarity sensitive and may be mixed between 5-24 Vac (50-1000 Hz) and 5-24 Vac (not TTL compatible). Although the connector is a 50-pin header, it maps directly to a 37-pin through the BP40-37 for customers who want to maintain a strict CIO-PDISO8 configuration.Software SupportThe CIO-PDISO16 is supplied with InstaCal software for configuration and testing. In addition, it is also supported by the optional Universal Library. The Universal Library is aset of I/O libraries and drivers for users creating their own custom programs. The Universal Library is compatible with most DOS and Windows (16-bit and 32-bit) based languages (DLL and VXD) and supports the entire CIO family of boards. An optional driver for LabVIEW is also available. Icon driven control programs such as LabtechNotebook, Labtech Control and Dasylab support the CIO-PDISO16.SpecificationsRELAY OUTPUTSQuantity: 16 total; 10 are Form C and 6 are Form A normally open Contact Rating: 28 Vdc @ 6 A, 120Vac @ 5 AContact Type: Gold overlay silverContact Resistance: 100 ΜΩmax Operating Time: 20 msec Release Time: 10 msecLife: 10 million operations, minimum ISOLATED INPUTSQuantity: 16 Opto-isolated,non-polarized. Not TTL compatible Isolation: 500 V channel-to-channel and channel-to-groundInput Range: 5 to 24 Vdc or 5 to 24 Vac 50 to 1000Hz Input Impedance: 470 Ωmin Response Time: 20 μs without filter, 1 ms with filterCIO-PDISO16Electromechanical Relay Output and Isolated Input Plug-In Board for PC ISA BusOMEGACARE SM extended warranty is available for models shown on this page. Ask your sales representative for full details when placing order.Ordering Example: CIO-PDISO16, CIO-MINI50 screw terminal panel, C50FF-2 cable,OMEGACARE SM 1 year extended warranty for CIO-PDISO16 (adds 1 year to standard 3year warranty)and UNIV-DRVR Universal Library: $549 + 69 + 25 + 29 + 49 =$722.CANADA www.omega.ca Laval(Quebec) 1-800-TC-OMEGA UNITED KINGDOM www. Manchester, England0800-488-488GERMANY www.omega.deDeckenpfronn, Germany************FRANCE www.omega.frGuyancourt, France088-466-342BENELUX www.omega.nl Amstelveen, NL 0800-099-33-44UNITED STATES 1-800-TC-OMEGA Stamford, CT.CZECH REPUBLIC www.omegaeng.cz Karviná, Czech Republic596-311-899TemperatureCalibrators, Connectors, General Test and MeasurementInstruments, Glass Bulb Thermometers, Handheld Instruments for Temperature Measurement, Ice Point References,Indicating Labels, Crayons, Cements and Lacquers, Infrared Temperature Measurement Instruments, Recorders Relative Humidity Measurement Instruments, RTD Probes, Elements and Assemblies, Temperature & Process Meters, Timers and Counters, Temperature and Process Controllers and Power Switching Devices, Thermistor Elements, Probes andAssemblies,Thermocouples Thermowells and Head and Well Assemblies, Transmitters, WirePressure, Strain and ForceDisplacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and Strain Measurements, Load Cells, Pressure Gauges, PressureReference Section, Pressure Switches, Pressure Transducers, Proximity Transducers, Regulators,Strain Gages, Torque Transducers, ValvespH and ConductivityConductivity Instrumentation, Dissolved OxygenInstrumentation, Environmental Instrumentation, pH Electrodes and Instruments, Water and Soil Analysis InstrumentationHeatersBand Heaters, Cartridge Heaters, Circulation Heaters, Comfort Heaters, Controllers, Meters and SwitchingDevices, Flexible Heaters, General Test and Measurement Instruments, Heater Hook-up Wire, Heating Cable Systems, Immersion Heaters, Process Air and Duct, Heaters, Radiant Heaters, Strip Heaters, Tubular HeatersFlow and LevelAir Velocity Indicators, Doppler Flowmeters, LevelMeasurement, Magnetic Flowmeters, Mass Flowmeters,Pitot Tubes, Pumps, Rotameters, Turbine and Paddle Wheel Flowmeters, Ultrasonic Flowmeters, Valves, Variable Area Flowmeters, Vortex Shedding FlowmetersData AcquisitionAuto-Dialers and Alarm Monitoring Systems, Communication Products and Converters, Data Acquisition and Analysis Software, Data LoggersPlug-in Cards, Signal Conditioners, USB, RS232, RS485 and Parallel Port Data Acquisition Systems, Wireless Transmitters and Receivers。
称重 IND780使用操作手册R02
熟悉导航界面..................................................................................................... 20 导航键 .....................................................................................................20 软键 .........................................................................................................21 应用键 .....................................................................................................22 秤功能键 .................................................................................................22 字母键 .....................................................................................................23 数字键 .....................................................................................................24
™ IDNet 秤台..........................................................12
DEFORM_3D手册2
第四章几何图形及单元网格划分本章纲要:4.1引言4.2创建新问题4.3设置模拟控制4.4创建新对象4.5网格化工作4.6对象对齐4.7定义对称条件4.8保存问题及退出4. Spike几何图形及网格划分4.1引言本部分及随后的一些内容,我们介绍利用物体几何和物理对称性,仅用四分之一模型进行锻造模拟。
由于工件具有轴对称性,所以该问题也可以在2D中完成。
但为方便大家了解3D的一些基本概念,我们放在3D中介绍。
在利用工件几何对称性时应注意对称面上没有物质流过,同时变形为0。
这样在该面上切开工件并规定该面上的初始节点位移为0,而且始终保持不变。
本例中,可设定对称面上节点的法向速度为0,在接下来的例子中我们采用另一种方法。
本单元的目标为:1) 输入模具和工件的几何形状STL格式文件2) 工件网格划分3) 确定直角平面上的对称边界条件这儿创建的几何图形在 Lab 6例中热传导模拟时还要用到。
要点是:1) 正确定义和工作搭接部分的几何形状和对称平面。
2) 正确定义对称边界条件4.2创建新问题首先查看当前目录,如还是BLOCK目录,请返回上一级目录。
现在创建一新目录SPK_SIM,从该目录运行DEFORM 3D,设置Problem ID 为SPK_SIM后单击Pre-Processor 按钮开始前处理过程。
4.3设置模拟控制参数选取1/4对称位移边界条件和热交换条件。
单击前处理中的Simulation Controls按钮,选取Unit 为English英制单位,模拟模式Simulation Mode为非等温Non Isothermal,完成后单击OK键,名称改为Spike。
4.4创建新对象选择Preprocessor 窗口中的Objects 按钮创建一个新对象,窗口如图4.1 所示。
对象1已被创建且已加亮显示处于激活态,更名对象1的Object Name 为BILLET,按回车键。
设定Object Type 为plastic (塑性),现在单击Geometry 图标输入选择对象的几何数据。
3D操作手册(1)
生物梅里埃操作手册版本:B.00生物梅里埃公司Box 15969, Durham, NC 27704-0969生物梅里埃公司2001 手册件号. 43001-19 版本. A 2002年2月BacT/ALERT® 3D™版权所有。
未经生物梅里埃公司书面许可,本文件的任何部分都不允许复制。
ASTM是美国材料实验协会的商标。
BacT/ALERT, BacT/LINK, BacT/VIEW和MB/BacT是生物梅里埃公司在美国和其他国家的注册商标。
BacT/ALERT 3D是生物梅里埃公司的商标。
Lexan是通用电器公司的注册商标。
MicroNET是生物梅里埃公司的注册商标。
MS DOS是微软公司的注册商标。
PSC是PSC公司的注册商标。
Zip是Iomega公司的注册商标。
i第 1 章系统概览目录部分页码1.1 BacT/ALERT 3D 硬件1.1.1 BacT/ALERT 3D………………………………………………………………………….1.21.1.2 BacT/ALERT 3D 规格…………………………………………………………………...1.41.1.3 BacT/ALERT 3D 环境要求……………………………………………………………...1.41.1.4 孵育模块………………………………………………………………………………….1.51.1.5 孵育模块规格…………………………………………………………………………….1.61.1.6 孵育模块环境要求……………………………………………………………………….1.71.1.7 仪器安装和设置………………………………………………………………………….1.71.2 BACT/ALERT 3D 软件1.2.1 操作面板………………………………………………………………………………….1.81.2.2 普通屏幕元素…………………………………………………………………………….1.81.11.1.1 BacT/ALERT 3D图1-1 BacT/ALERT 3D 前视图操作面板提供一种显示信息的方法。
HYDRUSDD学习手册
H Y D R U S(2D/3D)天津城建大学模拟在变饱和介质中水、热、复合溶质的二和三维运动软件包用户手册版本目录摘要HYDRUS图形用户界面介绍1.项目管理和数据管理2.项目几何信息3.水流参数主要过程反向求解时间信息输出信息迭代准则土壤水力模型水流参数神经网络预测在导水率中各向异性溶质迁移溶质迁移参数溶质反应参数溶质迁移参数温度依赖热扩散参数根系吸水模型根系吸水参数根系分布参数时间变量边界条件人工湿地4.迁移域几何边界对象点线和折线弧线和圆曲线和样条曲线移动、复制、旋转和镜像操作附件操作表面定义一个二维域的步骤几何正确定义几个注意规则内部对象打开立体图形立方体分为土柱立方体分为次层在不同厚度矢量上次层不同厚度的各自特征定义一个三维层域的步骤厚度辅助对象尺寸标记位图(结构)横断面网格线对象其它注意事项对象编号对象间关系对象间参考和写一列Index规矩从一文本文件输入几何5. 有限元网格有限元网格创建结构的有限元创建非结构的有限元创建有限元网格改良非结构的有限元创建MeshGen2D有限元网格统计有限元网格部分6.域特性、初始与边界条件默认与特性初始条件边界条件域特性7.图形输出结果-图形显示显示选项编辑Isoband值和彩色光谱结果-其它信息转化到ASCII8.图形用户界面部分视图窗口屏幕和视图命令坐标方格与工作面伸缩因子渲染模型选项和编辑命令弹出菜单拖拉与放弃部分导航栏编辑栏工具栏HYDRUS菜单9.杂项信息程序选项HYDRUS许可证与激活请求准则安装、移到其它电脑打印选项坐标体系在计算时期DOS窗口可视文件参考文献Introduction to the HYDRUSGraphical User Interface(HYDRUS图形用户界面介绍)过去几十年,模拟在地下水流和污染物迁移的复杂数值模型暴增,包括处理在土壤表面与地下水位之间非饱和或渗流区一和多维水流和迁移过程模型。
尽管现在有丰富的精确模型可以利用,但它们主要问题是庞大的数据准备、数值网格设计与输出图解表示法限制了最优使用,因此,多维模型广泛使用使得创建、操作和显示大数据文件变得简单并且促进了数据管理间的互动。
第9章DDR存贮器控制器mpc83xx中文手册.doc
第九章DDR存贮器控制器9.1绪论完全可编程的DDR SDRAM控制器支持大多数第一代JEDEC标准的、可用的x8或x16 DDR 和DDR2存贮器,包括非缓存式和寄存式DIMM,但不支持在同一个系统中混合使用不同的存贮器类型或非缓存式和寄存式DIMM。
内置的错误检测和校正(ECC)保证可靠的高频操作具有极低的位差错率。
动态电源管理和自动预充电模式简化了存贮器系统的设计。
丰富的特有特性,包括ECC 差错注入,支持快速系统调试。
注意本章中,“存贮体(bank)”指由一个片选指定的实际存贮体;“逻辑存贮体(logical bank)”指每个SDRAM芯片中四个或八个子存贮体中的一个。
一个子存贮体由存贮器访问期间存贮体地址(MBA)上的两位或三位指定。
图9-1是DDR存贮器控制器及其相关接口的概要结构图。
9.5节“功能描述”包括该控制器的详图。
图9-1 DDR存贮器控制器简化结构图9.2特性DDR存贮器控制器包括这些与众不同的特性:●支持DDR和DDR2 SDRAM●64/72位SDRAM数据总线。
支持DDR和DDR2的32/40位SDRAM数据总线●满足所有SDRAM定时参数的可编程设置●支持下列SDRAM配置:⏹四个物理存贮体(片选),每个存贮体独立寻址⏹带有x8/x16/x32数据端口的64M位到4G位设备(无直接x4支持)⏹非缓存式和寄存式DIMM●芯片选择交叉支持●支持数据屏蔽信号和子双字(sub-double-word)写的读-修改-写。
注意,仅在ECC启用时,读-修改-写才是必要的。
●支持两位差错检测和一位差错恢复ECC(8位校验字校验64位数据)●四表项输入请求队列●打开页面管理(每个逻辑存贮体都有专门的表项)●自动DRAM初始化序列或软件控制的初始化序列●自动DRAM数据初始化●支持最多八个(posted)更新●两倍SDRAM时钟的存贮器控制器时钟频率,支持睡眠电源管理●支持差错注入9.2.1操作模式DDR存贮器控制器支持下列模式:●动态电源管理模式。
OpenCNC_PLC发展工具操作手册.pdf
2.9.2 程式跳躍(Jump)........................................................................16
2.9.3 副程式呼叫 (Jump Subroutine) ................................................16
2012/04/11
李欣緯
V2.11
明到 2.11.7
11 1. 全中文化編寫
2012/06/14 李朝修 V2.12
II
Contents
1 編輯軟體介紹 ................................................................................................... 1
2.4
比較元件(Compare Operation) .........................................................10
2.5
資料搬移元件(Move Operation).......................................................11
1. 修正 M 碼同時執行功能範例說明
08 2.
修正 MST 碼簡易範例說明
2011/09/20 葉治樟 V2.9
1. 修正 6.3 中 R13 的表格
09 2.
修正 6.4 中 R16 的表格
2012/01/04 李朝修 V2.10
1. 新增 MODR 傳送 Modbus 讀取指令說
10
明到 2.11.6 2. 新增 MODW 傳送 Modbus 寫入指令說
dndscv方法
dndscv方法【实用版3篇】目录(篇1)1.DNNDSCV 方法的概念和背景2.DNNDSCV 方法的步骤和原理3.DNNDSCV 方法在各个领域的应用4.DNNDSCV 方法的优势和局限性5.DNNDSCV 方法的未来发展前景正文(篇1)1.DNNDSCV 方法的概念和背景DNNDSCV 方法是一种数据降维和分类方法,全称为“Dimensionality Reduction by Non- Negative Decomposition and Subspace Classification with Vector”。
该方法结合了非负分解(NND)和子空间分类(SCV)两种技术,旨在降低数据维度,同时提高分类准确性。
DNNDSCV 方法在处理高维数据和大规模数据集时具有较强的实用性,因此在数据挖掘、机器学习等领域得到了广泛关注。
2.DNNDSCV 方法的步骤和原理DNNDSCV 方法主要包括以下四个步骤:(1) 非负分解:将原始数据矩阵进行非负分解,得到低维表示。
非负分解的目的是找到一个新的基,使得数据在新的基下具有更简单的结构。
(2) 子空间选择:在低维表示的基础上,选择一个子空间,使得该子空间中的数据分类性能最佳。
子空间选择的目的是找到一个能够区分不同类别的线性子空间。
(3) 子空间分类:将选取的子空间中的数据进行分类,可以使用传统的分类算法,如支持向量机(SVM)、k-近邻(KNN)等。
(4) 融合分类结果:将不同子空间中的分类结果进行融合,得到最终的分类结果。
融合方法可以是简单的投票法,也可以是更为复杂的策略。
3.DNNDSCV 方法在各个领域的应用DNNDSCV 方法在多个领域都取得了显著的成果,例如文本分类、图像分类、音频分类等。
尤其是在处理高维数据和大规模数据集时,该方法具有较强的优势。
(1) 文本分类:在文本分类任务中,DNNDSCV 方法可以将高维的文本表示转化为低维表示,同时保留尽可能多的信息。
迪士华器快速参考指南说明书
The filters in the water connection of the supply or AquaStop hose are blocked. 1. Switch off the appliance. 2. Pull out the mains plug. 3. Turn off the water tap. 4. Unscrew the water connection. 5. Remove the filter from the sup-
2
max mark.
max
1
3. Close the lid of the dispenser for rinse aid. a The lid clicks into position.
Adding detergent
1. Add the detergent to the dry detergent dispenser.
2. Pull up the lower spray arm to remove.
3. Check the outlet nozzles on the spray arms for blockages under running water and remove any foreign bodies.
of the impeller.
7. Insert the pump cover and press
down .
2
a The pump cover clicks into position.
1
8. Install the filter system.
DNDC 模型使用手册_全部
DNDC模型使用手册( 9.3版本)新罕布什尔大学地球海洋与空间研究所2010年1月15日致谢我们感谢美国国家科学基金会(NSF)、美国航天与空间总署(NASA)、美国农业部(USDA)、环境保护署(EPA)、国家海洋与大气总署(NOAA)及国家大气研究中心(NCAR/UCAR)自1989年以来为发展DNDC模型所提供的持续支持。
世界许多国家的科研人员为该模型的发展做出了贡献,他们或为模型验证提供数据,还为模型添加新的功能。
这些研究者包括李长生(Changsheng Li美国)、斯苐夫·富罗京(Steve Frolking美国)、罗伯特·哈里斯(Robert Harriss美国)、里查德·泰瑞(Richard Terry美国)、麦克·凯雷(Michael Keller美国)、帕提克·葛瑞尔(Patrick Crill美国)、安姬·卫紫(Antje Weitz德国)、泰德·派克(Ted Peck美国)、卫理·温岚德(Wayne Wendland美国)、大卫·金克森(David Jenkinson英国)、王英平(Yingping Wang澳大利亚)、庄亚辉(Yahui Zhuang 中国)、戴昭华(Zhaohua Dai中国)、罗尔·布兰特(Roel Plant 荷兰)、周叶(Ye Zhou中国)、张宇(Yu Zhang中国)、林清华(Qinghua Lin中国)、王晓科(Xiaoke Wang中国)、富罗里安·史坦格(Florian Stange德国)、克劳斯·布特巴赫-巴尔(Klaus Butterbach-Bahl德国)、汉斯·帕潘(Hans Papen德国)、索菲亚·泽克美斯特-波坦斯顿(Sophie Zechmeister-Boltenstern奥地利)、郑循华(Xunhua Zheng中国)、孙建中(Jianzhong Sun中国)、秦晓光(Xiaoguang Qin中国)、斯蒂夫·佳伟斯(Steve Jarvis英国)、布朗尼·斯依德(Bronwyn Syed英国)、劳娜·布朗(Lorna Brown英国)、雷·德斯佳丁(Ray Desjardins加拿大)、沃特·斯密思(Ward Smith加拿大)、布莱安·格兰特(Brian Grant 加拿大)、罗·萨斯(Ron Sass美国)、黄燿(Yao Huang中国)、蔡祖聪(Zucong Cai中国)、康国鼎(Guoding Kang中国)、佳瑞亚·波佳瓦特(Jariya Boonjawat泰国)、鹤田治雄(Haruo Tsuruta 日本)、泽本卓治(Ta kuji Sawamoto 日本)、小林和彦(Kazuhiko Kobayashi日本)、邱建军(Jianjun Qiu中国)、拉福·柯斯(Ralf Kiese德国)、卡尔·特伦蒂(Carl Trettin美国)葛荪(Sun Ge美国)、徐成一(Cheng-I Hsieh台湾)、雷纳德·莱姆克(Reynald. Lemke加拿大)、瑟雷德·萨喀(Surinder Saggar新西兰)、罗波·安德欧(Robbie Androw新西兰)、阿温·缪斯(Arvin Mosier美国)、卡罗斯·爱得阿多(Carlos Eduardo巴西)、程根伟(Genwei Cheng中国)、卡里·明科恩(Cari Minkkinen芬兰)、雷诺·华兹曼(Reiner Wassmann德国)、雷·斯玛喀甘( Nui Smakgahn 泰国)、旭日(Xu Ri中国)、罗达·兰亭(Rhoda Lantin菲律宾)、罗伯特·雷(Robert Rees英国)、中川阳子(Yoko Nakagawa 日本)、丽达·法拉芭莎赞德(Neda Farahbakhshazad美国)、威廉·萨拉斯(William Salas美国)、斯蒂夫·波斯(Steve Boles美国)、麓多门(Tamon Fumoto 日本)、玛格达·克斯喀(Magda Kesik德国)、唐娜·基尔特拉普(Donna Giltrap新西兰)、纳拉辛哈·萨帕里(Narasinha Shurpali芬兰)、赫曼舒·帕德克(Himanshu Pathak印度)、加格蒂斯·巴布依日帕蒂(Jagadeesh Babu Yeluripati印度)、达安·巴赫德特(Daan Baheydt比利时)、斯蒂文·斯罗特尔(Steven Sleutel比利时)、八木一行(Kazuyuki Yagi 日本)、丹·杰伊斯(Dan Jaynes美国)、坦娜·泰娜斯(Dana Dinners美国)、丹尼斯·麦克劳林(Dennis Mclaughlin美国)、克里斯蒂娜·托里特(Christina Tonitto 美国)、卡尔斯蒂·托普(Kairsty Topp英国)、劳拉·克蒂娜斯(Laura Cardenas英国)、泰德·迈克尔(Todd Mitchell美国)、张凡(Fan Zhang中国)、周再兴(Zaixing Zhou中国)、邓佳(Jia Deng 中国)、朱波(Bo Zhu中国)、王立刚(Ligang Wang中国)、富兰克·密莱尔(Frank Mitloehner美国)、乔基·木拉毛特 (Joji Muramoto美国)、朱丽叶·库芭托瓦(Juliya kurbatova俄国)、安德烈·瓦尔金(Andrej Varlegin俄国)、娜塔丽娅·芭克娜(Natalya Buchkina俄国)、陈德立(Deli Chen澳大利亚)、李勇(Yong Li澳大利亚)、鲁伊斯·巴登(Louise Barton澳大利亚)、坦妮拉·克拉奇(Daniela Kracher德国)、托德·富罗京(Tod Frolking美国)、友瑞娜·可瓦克(Yurina Kwack日本)。
BushingGard软件用户手册说明书
ELECTRICALPREDICTIVE DIAGNOSTICS DIVISION5421 Feltl Road, Ste 190, Minnetonka, MN 55343BushingGardSOFTWARE MANUAL© 2005, 2008 by EEPDVersion 1.9, September 2008INTRODUCTION (3)I NSTALLATION (3)GETTING STARTED (4)D ATABASE E QUIPMENT I DENTIFICATION T REE (4)C OMMUNICATIONS T AB (7)D EVICE C ONTROL AND D ATA L OADING B UTTONS (8)D ATA P RESENTATION T AB (9)Polar Graphics (10)D ATA E XPORT (10)D EVICE C ONFIGURATION T AB (11)This document describes software operation and software installation process only. User should study InsulGard TM G3 USER’S MANUAL to understand general system design and operating before using the software.IntroductionThe software for BushingGard uses database engine to store the information. It supports:•Measurement data storage;•Communication to device;•Data presentation.Device configuration is not a part of the described software product. Configuration is provided by separate utility.Each BushingGard and software installer comes already configured for a particular customer and object to the best knowledge we have at the time of shipping. Therefore, the more accurate is information on a particular application in a purchase order the lesser configuration may be required on site.InstallationSystem requirements:Windows 2000 and higher operating system;At least 60MB of hard drive space;Minimum 256 MB for Windows 2000 and higher;•Insert the supplying CD into CD drive. Usually setup procedure will start automatically. •If “Autorun” option is turned off, browse CD with any browser and locate the file setup.exe.•Launch the executable file.•Confirm “OK” at the startup screen.•As default, the software will be installed into the directory: C:\Program Files\IGG3. Do not change it unless is really necessary.•Follow prompts of installation utility.•Once the installation completed, the software is ready to use.Getting StartedLunch the program in any appropriate Windows system way. For example, go to Start ⇒Programs ⇒ BushingGard ⇒ BushingGard.Database Equipment Identification TreeOnce the program is lunched, the following screen appears:The tree control has four level structure: Company ⇒ Location ⇒ SubLocation (Plant) ⇒Equipment .User is can change/add/edit at any level except of Customer. Customer ID is unique for particular customer and should originate only from CHPD. This limitation is required to maintain database consistency. Highlighting any of allowed level will open additional options for editing at the upper part of the screen. Adding new plant location is shown below, as an example.While adding new equipment, MVA rating of the unit is mandatory.When the equipment has been added, find a time to fill the equipment information. Highlight the equipment in the tree and hit Update This Equipment button. The following screen will appear:Fill in all available information on the equipment. Note that Primary winding for the device is the winding that bushings are monitored.You have completed equipment identification procedure. The same screen also offers you two more tabs located at the top part of the screen: Communications and Data Presentation. These options are described below.Note: To jump back to database tree and choose different equipment at any time, you should hit Close button located at the right-bottom corner of any of the equipment-related screens. For example, see the screen above.Communications TabIt is assumed below that proper connection circuit is assembled.There are two options communicating to a device: directly from serial port (comport) or using a modem. Use proper option from drop-down lisbox called “Transport”.If you are using serial communication directly or through the modem, you should enter or select from drop-down list a proper serial port number in ”Serial Port” control.In most common case serial port of you computer will be Com1 while modem serial port could connect using ports 2,3,4 or 5. (Check Device Manager in your computer system for the exact information).For direct communication to the device from PC use serial cable and RS-232/485 converter. Appropriate cables and converters can be ordered from CHPD.BushingGard utilizes MODBUS protocol for communications. This is addressable protocol, so each device on RS-485 line should have an address assigned though the device keypad. The correct address should be entered in the software “Modbus address” control so you will be working with the proper Insulgard unit.If you are using a modem to communicate to remote device, type the phone number in the “Modem Phone” edit box, as it should be dialed with comas for pauses if you need them for entering your long distance access code. As an example: 1,,,8,9529121358,,,,,,2233. Then press “Dial to modem”button. Established connection will be indicated by small red box appearance on the button.Press “Disconnect”button when you need to terminate your modem communication session.Device Control and Data Loading Buttons.•Get Info– the command requests device status, event log and some other information.•Measure Now – the command to trigger a single measurement immediately•Pause –the command postpones any scheduled measurements for three hours.This command could be used if maintenance is required.•Resume - the command cancels Pause command. The device will measure according to schedule.•Read Latest Record– the command will download the most recent data from the device.•ReRead All Records – the command should be used if there are concerns that by whatever reasons some measurement data were not uploaded. The software will then upload all the data from the device memory. The software will store the data records that are not in database already.Data Presentation TabData Presentation Tab offers data presentation. It starts with all available Gamma trend data.Clicking the buttons on the toolbar of the graphs will cause graph to display various parameters on the trend graph. Also, there are copy command and vertical scale margin controls. Check boxes on the left side allow selecting each of the possible parameters and sets individually.“Y” scale button selects 0 to Max vertical scale range or Min to Max vertical scale range. Zooming Graphs. To zoom in the graph operator should pres and hold <Shift> key on a keyboard, than drag the mouse over the desired graph area. The mouse button should be released before releasing Shift key. To reset zoom press <R> key on a keyboard or click one of the parameter selection buttons on the left.OFF leaves only checked parameters on the graph.The current trend picture can be copied to Clipboard by pressing Copy button.Polar GraphicsClicking a toolbar button with a circle icon will display polar graph. User can zoom in by holding <Ctrl> key and dragging the mouse over the desired area of the graph. Hitting <R> key will restore the original scale. The colors of the dots help to distinguish older and newer data. The oldest points are yellow, then goes green, blue and the most recent are red colored. It both set check box are checked, the graph will represent Set 1 data. To display Set 2 data user need to uncheck Set 1 check box while keeping Set 2 checked.Data ExportBushingGard stores the measurement data in MS Access database. If user needs to export measurement data, using <Export to CSV> command may do it. Output files will be created separately for each bushing set. This file can be later imported by many applications like MS Excel.Device Configuration TabDevice configuration Tab allows user to see the device settings. As for now, it can only read device settings. To send settings to the device use Configurator_G3 software.EATON ELECTRICAL 11Predictive Diagnostics。
Bifold Circuit Designer 用户指南说明书
Bifold Circuit DesignerVersions Covered:•Rotork•Bifold Agent•Bifold CustomerContentsProject Centre (2)Projects (2)Project Lines (3)Circuit Design (4)System Sizing (5)Schematic (5)Schematic Options (6)Non-Manifold Components (6)Exhaust Options (7)System Properties (7)Valve Configuration and Pricing (8)System Code and Description (8)Document Creation (9)Schematic Datasheet (9)Solid Edge 3D model (Solid Edge ST4 or above required) (10)Solid Edge Dimensional/Assembly Drawing (Solid Edge ST4 or above required) (10)3D stp file (Solid Edge ST4 or above required) (11)Separate valves (11)Creating a BOM in AX (Rotork Version only) (13)Getting Started GuideDesign bespoke solutions for a project, comprising a series of valves in any order and orientation (where applicable) using a schematic drag and drop system. The Bifold Circuit Designer (BCD) provides all the required information to complete a project quote, including full part code, price*, system description, performance, and lead time, along with associated documentation.* Prices available in Rotork and Agent versions only. For Bifold Customer version, please contact Bifold for pricing.Project CentreProjectsAfter launching the BCD, the Project Centre will appear. All the projects associated with the user’s office location will be displayed here.The following controls are available:Create New Project – The new project dialog will appear asking for project information. Specifying a project folder will allow the BCD to save any documentation in the project s pecific folder.Delete Project – The selected project will be deleted.Edit Project – Edit the project details, including description, project folder and notes.Copy Project – Creates a new project but copies all the existing project lines from the selected project.View Project Folder – Opens the project folder to view any documentation.Project LinesThe project lines grid will display all the created circuits that are associated with the selected project. The following controls are available:Add Project Line – The circuit design form will open (see section 2 for details on how to design a circuit). Once finished, clicking the Save button will open the Add Project Line dialog toattach a bespoke reference or notes to the circuit, before returning to the Project Centre.Delete Project Line – The selected project line will be deleted from the project.Edit Project – The design form will re-open the previously designed selected circuit. From here, modifications to the schematic or configuration can be made before saving or saving a copy of the project line. The Edit Project feature can also be launched by doubling clicking the project line. The Reference, Price and Notes can be edited within the Project Centre by editing the cells directly.Circuit DesignSystem SizingIt is assumed that the correct control panel sizing calculations have been completed in AX prior to entering the BCD. The BCD offers ¼”, ½” and 1” base systems with associated port sizes. Select the size and connections for your system.SchematicStart to design your system by dragging your chosen schematic from the ‘Manifold Schematics’ palette, into the ‘System Design Pane’ and drop it within the green square.The ½” and 1” base systems include pilot valves and volume boosters which enables ¼” components to be added to the vertical pilot line. Only schematics from the ‘Stacker Valves’ section of the palette can be used in the pilot line.Schematic OptionsRight click on schematics to flip (where applicable), insert and delete items.Non-Manifold ComponentsThere is a second palette of schematics containing non-manifold items. These items do not contribute to the modular system and therefore are not shown in the Schematic Code. They are for the purpose of completing the full system schematic in order to display the complete offering on the schematic datasheet (detailed in Schematic Datasheet Section section), and these items will contribute to the flow properties. This is useful if a QEV is required on the exhaust line for example. Please note therefore that any non-manifold items would have to be added to the AX control panel quote as separate line items.Simply drag and drop the non-manifold items into the green square as before. The dashed line shows the bounds of the modular solution.Exhaust OptionsComplete your system by selecting any exhaust options.System PropertiesThe system properties will automatically update as you build up your system. Displayed are the weight and the flow performance of the system. This can be useful to check if your designed system will match the required flow performance in your customer specification. As previously mentioned, non-manifold schematics are included in the flow characteristics.The Fill and Exhaust performance calculations are broken down into C V, k V and Q (flow in nominal litres/min). Hovering over the ‘i’ symbol shows a tool tip explaining the assumed system parameters used in the flow calculations.Valve Configuration and PricingMove through the comboboxes, selecting options applicable to your designed system. Once complete, click the ‘Calculate Price’ button to show the system price. The price of the non-manifold items are also listed to give a total system price.System Code and DescriptionThe configurator will display the Schematic Code defining the function of the system, and the Configuration Code detailing valve specific attributes. Together they form the Complete Solution Code which is used to order the system from Bifold.A system description detailing the components within the designed system is also automatically produced. This can be copied back into the Technical Clause document in AX.Document CreationOnce the system has been fully designed, it is possible to create a range of documents: Schematic DatasheetClick the ‘Schematic’ button:As shown below, this document displays the complete schematic and a breakdown of the bill of materials (BOM) for that complete solution.Solid Edge 3D model (Solid Edge ST4 or above required)Click the ‘Create Assy’ button:As shown below, this document shows the complete Modular Solution in 3D.Solid Edge Dimensional/Assembly Drawing (Solid Edge ST4 or above required) Click the ‘Create Draft’ button:As shown below, this document shows a series of 2D dimensional views of the complete Modular Solution in and a bill of materials.3D stp file (Solid Edge ST4 or above required)Click the ‘Create Step’ button:This document is a CAD file format that can be used to share 3D models between users with different CAD systems.Separate valvesIf a customer is specified in to a separates solution rather than a modular solution, you have the ability to determine the associated separates BOM through the BCD. By clicking the separates button:a new form will appear detailing the stand alone items required to form the schematicfunction designed.The Bifold part number, quantity and price (Rotork and Agent versions) are displayed on eachline of the BOM. Estimates of connections, adapters and tubing required are also presented.Where available, each line will also display a folder icon meaning that the document pack for that item can be downloaded. Either click the individual line’s icon to get a single document pack, or clicking the ‘Download Selected Datasheets’ button will download document pack for those items where there is a tick in the ‘Download’ column. The document pack contains a 3D model, bespoke datasheet and installation drawing.Again a schematic datasheet can be generated for the designed system by clicking the ‘Create Schematic’ button. The BOM table will reflect the separates BOM.All documents are downloaded or saved to the project specified folder. If no folder is specified then they are saved to the default location C:\Users\Public\Documents\Bifold Manifold Configurator\Manifold FilesCreating a BOM in AX (Rotork Version only)Also present in the BOM table are the item’s associated ‘AX Generic Item No.’ which can be used to recreate this BOM within AX (example below).。
推荐-OpendTectF3数据体练习操作手册彩色版本 精品
dGB Earth Sciences. 专注于地球物理和地学软件解决方案OpendTect简介F3 –荷兰海上工区演示数据P.F.M. de Groot博士dGB Earth Sciences B.V.Nijverheidstraat 11-27511 JM EnschedeThe NetherlandsTel.; +31 53 4315155Fax,;+31 53 4315104e-mail; info@dgb-groupwebsite; dgb-group吴新天中国北京市海淀区花园东路32号花园公寓A1111目录1 关于OpendTectOpendTect是一个开源环境下的地震解释系统。
用户可以利用OpendTect的属性及现代可视化技术,如视频显示和体透视等三维可视化技术进行多个地震数据体的处理、浏览和解释。
还可通过一些免费和商业化的插件拓展OpendTect的功能。
1.1 OpendTect Base系统1.1.1 可视化地震解释员要求能够快速地浏览多个数据体,将所获得的信息综合起来以最优地理解研究对象的地质特征。
因此,OpendTect综合了先进的数据处理和可视化功能。
可视化对象可以灵活地在各数据空间中移动,以交互分析存储的数据或实时计算的数据。
体透视和视频浏览的功能是为了更好地理解数据和成果。
1.1.2 地震属性在OpendTect中,地震属性用于对地震数据进行筛选以及目标检测。
OpendTect在设计之初就旨在为解释人员提供最大的数据透视性,而且属性结果能够通过OpendTect的交互工作流程得到优化。
1.1.3 层位解释OpendTect提供多种层位追踪和解释选项。
同时还提供层位编辑以及层位计算等多种功能。
1.2 插件更多具体工作可借助商业插件dGB 以及第三方软件商为OpendTect 提供的插件来完成。
1.2.1 倾角控制倾角控制插件允许用户创建并使用控制数据体,这种控制数据体在每一个样点位置上都提取地震同相轴的倾角和方位角信息。
FLEXCUBE Universal Banking 数据模型入门指南说明书
Data Model – Getting Started Oracle FLEXCUBE Universal BankingRelease 14.5.4.0.0Part No. F52800-01[February] [2022]Contents1.PREFACE (3)1.1A UDIENCE (3)2.INTRODUCTION (4)2.1W HAT IS IN THIS GUIDE (4)2.2W HY REVERSE ENGINEERING (4)3.FLEXCUBE UBS DATA MODEL – GETTING STARTED (5)3.1FLEXCUBE UBS D ATA MODEL SCHEMA (5)3.2O RACLE SQL D EVELOPER D ATA M ODELER (5)4.CREATING DATA MODEL AND ER DIAGRAM (6)1. PrefaceOracle FLEXCUBE Universal Banking Software – Data model – Getting started documentdescribes the method to create data model for application business extensibility purpose.1.1 AudienceThis guide is intended for FLEXCUBE Application developers who need to understand theFLEXCUBE UBS data model2. Introduction 2.1 What is in this guideThis document describes the reverse engineering methodology to get the FLEXCUBE UBS data model for a given business purpose. A given business purpose could vary from report generation to data extraction to extending FLEXCUBE application functionality.2.2 Why reverse engineeringAs the complete ER diagram of FLEXCUBE UBS application would be huge, the businessapplication developers need to re-engineer with required filtered portion of FLEXCUBE UBS toget specific portion of data model.Example:There is a business requirement to add additional fields to customer personal information. The businessdeveloper could filter the Customer specific entities from FLEXCUBE UBS Database schema and generate the ER diagram. This ER diagram further can be used to understand the FLEXCUBE UBS and can befoundation for further business development requirement.3. FLEXCUBE UBS Data Model – Getting Started 3.1 FLEXCUBE UBS Data model schema1. Follow the below steps to get the Oracle FLEXCUBE UBS Data model schema.•Identify the new Oracle Database schema for data model purpose.•Create the FLEXCUBE UBS database tables by running all the DDL scripts in below folder at the schema identified.FCUBS_12.2.0.0.0\MAIN\DATABASE\HOST\CONSOL\DDL\TABLEFCUBS_12.2.0.0.0\MAIN\DATABASE\BRANCH\CONSOL\DDL\TABLEFCUBS_12.2.0.0.0\MAIN\DATABASE\EL\CONSOL\DDL\TABLE•Create Foreign Keys in schema using following scripts at the schema identified.FCUBS_12.2.0.0.0\MAIN\DATABASE\DATAMODEL\FKR•Create column comments using below scripts at the schema identified.FCUBS_12.2.0.0.0\MAIN\DATABASE\DATAMODEL\CMTNote: The Database environment used for this data model cannot be used for othertesting/production purpose.3.2 Oracle SQL Developer Data ModelerEnsure you have installed the Oracle SQL Developer Data model in your local system. Referfurther Oracle documentation for download and install instructions./technetwork/developer-tools/datamodeler/downloads/index.html4. Creating Data Model and ER Diagram 1. Open the Oracle SQL Developer Data modeler2. Click File → Import → Data dictionary3. Click Add4. Provide the database connectivity parameters46. Click database connection row7. Select the database Schema name8. Select the entities( tables ) that are to be used in ER diagram9. Click Next10. Click Finish11. Save data model generatedData Model Getting Started[February] [2022]Version 14.5.4.0.0Oracle Financial Services Software LimitedOracle ParkOff Western Express HighwayGoregaon (East)Mumbai, Maharashtra 400 063IndiaWorldwide Inquiries:Phone: +91 22 6718 3000Fax:+91 22 6718 3001https:///industries/financial-services/index.htmlCopyright © [2007], [2022], Oracle and/or its affiliates. All rights reserved.Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.This software or hardware and documentation may provide access to or information on content, products and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNDC模型使用手册( 9.3版本)新罕布什尔大学地球海洋与空间研究所2010年1月15日致谢我们感谢美国国家科学基金会(NSF)、美国航天与空间总署(NASA)、美国农业部(USDA)、环境保护署(EPA)、国家海洋与大气总署(NOAA)及国家大气研究中心(NCAR/UCAR)自1989年以来为发展DNDC模型所提供的持续支持。
世界许多国家的科研人员为该模型的发展做出了贡献,他们或为模型验证提供数据,还为模型添加新的功能。
这些研究者包括李长生(Changsheng Li美国)、斯苐夫·富罗京(Steve Frolking美国)、罗伯特·哈里斯(Robert Harriss美国)、里查德·泰瑞(Richard Terry美国)、麦克·凯雷(Michael Keller美国)、帕提克·葛瑞尔(Patrick Crill美国)、安姬·卫紫(Antje Weitz德国)、泰德·派克(Ted Peck美国)、卫理·温岚德(Wayne Wendland美国)、大卫·金克森(David Jenkinson英国)、王英平(Yingping Wang澳大利亚)、庄亚辉(Yahui Zhuang 中国)、戴昭华(Zhaohua Dai中国)、罗尔·布兰特(Roel Plant 荷兰)、周叶(Ye Zhou中国)、张宇(Yu Zhang中国)、林清华(Qinghua Lin中国)、王晓科(Xiaoke Wang中国)、富罗里安·史坦格(Florian Stange德国)、克劳斯·布特巴赫-巴尔(Klaus Butterbach-Bahl德国)、汉斯·帕潘(Hans Papen德国)、索菲亚·泽克美斯特-波坦斯顿(Sophie Zechmeister-Boltenstern奥地利)、郑循华(Xunhua Zheng中国)、孙建中(Jianzhong Sun中国)、秦晓光(Xiaoguang Qin中国)、斯蒂夫·佳伟斯(Steve Jarvis英国)、布朗尼·斯依德(Bronwyn Syed英国)、劳娜·布朗(Lorna Brown英国)、雷·德斯佳丁(Ray Desjardins加拿大)、沃特·斯密思(Ward Smith加拿大)、布莱安·格兰特(Brian Grant 加拿大)、罗·萨斯(Ron Sass美国)、黄燿(Yao Huang中国)、蔡祖聪(Zucong Cai中国)、康国鼎(Guoding Kang中国)、佳瑞亚·波佳瓦特(Jariya Boonjawat泰国)、鹤田治雄(Haruo Tsuruta 日本)、泽本卓治(Ta kuji Sawamoto 日本)、小林和彦(Kazuhiko Kobayashi日本)、邱建军(Jianjun Qiu中国)、拉福·柯斯(Ralf Kiese德国)、卡尔·特伦蒂(Carl Trettin美国)葛荪(Sun Ge美国)、徐成一(Cheng-I Hsieh台湾)、雷纳德·莱姆克(Reynald. Lemke加拿大)、瑟雷德·萨喀(Surinder Saggar新西兰)、罗波·安德欧(Robbie Androw新西兰)、阿温·缪斯(Arvin Mosier美国)、卡罗斯·爱得阿多(Carlos Eduardo巴西)、程根伟(Genwei Cheng中国)、卡里·明科恩(Cari Minkkinen芬兰)、雷诺·华兹曼(Reiner Wassmann德国)、雷·斯玛喀甘( Nui Smakgahn 泰国)、旭日(Xu Ri中国)、罗达·兰亭(Rhoda Lantin菲律宾)、罗伯特·雷(Robert Rees英国)、中川阳子(Yoko Nakagawa 日本)、丽达·法拉芭莎赞德(Neda Farahbakhshazad美国)、威廉·萨拉斯(William Salas美国)、斯蒂夫·波斯(Steve Boles美国)、麓多门(Tamon Fumoto 日本)、玛格达·克斯喀(Magda Kesik德国)、唐娜·基尔特拉普(Donna Giltrap新西兰)、纳拉辛哈·萨帕里(Narasinha Shurpali芬兰)、赫曼舒·帕德克(Himanshu Pathak印度)、加格蒂斯·巴布依日帕蒂(Jagadeesh Babu Yeluripati印度)、达安·巴赫德特(Daan Baheydt比利时)、斯蒂文·斯罗特尔(Steven Sleutel比利时)、八木一行(Kazuyuki Yagi 日本)、丹·杰伊斯(Dan Jaynes美国)、坦娜·泰娜斯(Dana Dinners美国)、丹尼斯·麦克劳林(Dennis Mclaughlin美国)、克里斯蒂娜·托里特(Christina Tonitto 美国)、卡尔斯蒂·托普(Kairsty Topp英国)、劳拉·克蒂娜斯(Laura Cardenas英国)、泰德·迈克尔(Todd Mitchell美国)、张凡(Fan Zhang中国)、周再兴(Zaixing Zhou中国)、邓佳(Jia Deng 中国)、朱波(Bo Zhu中国)、王立刚(Ligang Wang中国)、富兰克·密莱尔(Frank Mitloehner美国)、乔基·木拉毛特 (Joji Muramoto美国)、朱丽叶·库芭托瓦(Juliya kurbatova俄国)、安德烈·瓦尔金(Andrej Varlegin俄国)、娜塔丽娅·芭克娜(Natalya Buchkina俄国)、陈德立(Deli Chen澳大利亚)、李勇(Yong Li澳大利亚)、鲁伊斯·巴登(Louise Barton澳大利亚)、坦妮拉·克拉奇(Daniela Kracher德国)、托德·富罗京(Tod Frolking美国)、友瑞娜·可瓦克(Yurina Kwack日本)。
我们感谢美国环保协会(Environmental Defense Fund)为DNDC模型使用手册(9.3版本)的更新与中文本的翻译提供了财政方面的支持;“新英格兰中国文化中心”的吕瑞兰女士精心翻译了此手册,我们在此谨表谢意。
目录一.DNDC简述1. 导引2. DNDC模型概述二.DNDC的PC微软窗口版本1. 模型综述2. 硬件要求3. 模型安装4. 点位和区域的模拟三.模型操作1. 点位模式1.1 输入参数第1页:气候第2页:土壤第3页:农田管理第4页:农作物第5页:耕作第6页:化肥施用第7页:有机肥料施用第8页:旱田灌溉第9页:水田淹灌第10页:塑膜技术第11页:放牧和割草1.2.保存输入参数1.3.点位尺度模拟1.4.快速查看模拟结果1.5.批量模拟2. 区域模式2.1.地理信息系统数据库2.2.气象数据库2.3. 作物和土壤数据库2.4.区域模拟的初始化2.4.实施区域模拟四.模拟结果数据1. 点位模拟结果2. 区域模拟结果五.不确定性分析六.实例分析1. 美国爱荷华州的玉米生长2. 美国夏威夷的甘蔗生长3. 英国洛桑实验站冬小麦土壤有机碳150年动态4. 法国阿罗农田氧化亚氮排放5. 美国德克萨斯州水稻田甲烷排放:七.相关文章目录一.D NDC简述1. 导引DNDC模型是一个描述农业生态系统中碳和氮生物地球化学过程的计算机模拟模型。
本手册告诉使用者怎样用DNDC模型来模拟农业生态系统的农作物产量、土壤固碳作用、硝酸盐淋失以及碳和氮多种气体的排放。
本手册第一部分简要介绍与DNDC有关的科学背景知识;第二部分介绍如何安装模型;第三介绍如何分别在点位和区域尺度上输入参数及进行模拟;第四部分介绍模拟结果的内容;第五部分介绍如何对DNDC模拟的结果进行不确定性分析;第六部分提供了五个点位尺度的实例研究,具体展示如何一步步地输入模型模拟所需的输入参数;第七部分提供了迄今已发表的与DNDC相关的部分文章的目录,这些文章提供了更多的有关DNDC的科学背景及应用情况。
2. DNDC模型概述DNDC是Denitrification-Decomposition(即“反硝化-分解作用”)的缩写。
反硝化和有机质分解是导致氮和碳从土壤丢失而转移入大气的主要生物地球化学过程。
DNDC模型是农业生态系统中一系列控制碳和氮迁移转化的生物化学及地球化学反应机制的计算机模拟表达。
DNDC由两大部分组成。
第一部分包括土壤气候、农作物生长和土壤有机质分解三个子模型,利用生态驱动因子(即气候、土壤、植被以及人类活动)来模拟土壤环境条件(即土壤温度、水分、酸碱度、氧化还原电位以及相关化学底物浓度梯度)。
第二部分包括硝化作用、反硝化作用以及发酵作用三个子模型,模拟土壤环境条件对微生物活动的影响,计算植物-土壤系统中二氧化碳(CO2),甲烷(CH4),氨(NH3),氧化亚氮(N2O),一氧化氮(NO)以及氮气(N2)的排放。
DNDC 中所采用的函数来自物理学、化学和生物学的经典法则或实验室研究所产生的经验方程。
DNDC是一座架在基本生态驱动因子和碳氮生物地球化学循环之间的桥梁(图1)。
图1. DNDC模型的结构在DNDC模型中,土壤碳存在于四个主要碳库中:即植物凋落物、微生物、活性腐殖质和惰性腐殖质。
上述每一碳库又包含两到三个亚库。
每一亚库有一特定分解速率;每个亚库中有机碳(SOC)的分解速度是由该库的库容、土壤温度和湿度、土壤粘土含量及土壤可给态氮量所决定。
当在一个库中的土壤SOC发生分解时, 被分解的SOC的一部分以二氧化碳的形式从土壤丢失而进入大气, 另一部分转移入该土壤其他碳库。
在此过程中,溶解态的有机碳(DOC)会产生出来,这部分碳或被土壤微生物再利用,或随水淋失。
SOC总是与有机氮(SON)共存;当SOC分解时, SON或转化到另一有机物库, 或被矿化为铵离子(NH4+)。
游离态铵与吸附在粘土表面的可交换铵之间保持动态化学平衡。
土壤水相中铵和氨保持化学平衡。
溶解态氨可转换为氨气而从土壤挥发出去;此氨挥发过程受土壤氨量及土壤环境要素(即温度、水分及酸碱度)控制。
当下雨或灌溉时,土壤中的硝酸根离子(NO3-)会溶解入淋溶水而渗透到深层土壤或地层中。