三台电动机顺序启动同时停止控制程序7
三台电机顺序启动逆向停止控制电路图及工作原理
三台电机顺序启动逆向停止控制电路图及工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)三台电机顺序启动逆向停止控制电路图及工作原理工作过程分析:一、启动过程:1)按下启动按钮SB1,KM1线圈得电吸合,通过其常开触点KM1和KT4延断触点实现自锁,时间继电器KT1得电,开始计时;2) KT1计时时间到,其延闭触点KT1闭合,KM2线圈德电吸合,并通过常开触点KM2、KT3延断触点实现自锁;同时,KM2常闭触点分断,断开时间继电器KT1,其延闭触点KT1立即复位,时间继电器KT2得电,开始计时;3) KT2计时时间到,其延闭触点KT2闭合,KM3线圈得电吸合,并通过常开触点KM3、KA常闭触点实现自锁;同时,KM3常闭触点分断,断开时间继电器KT2,其延闭触点KT2立即复位;4)启动过程完毕。
二、停止过程:1)停止过程:KM1、KM2、KM3启动完成,其常开触点KM1、KM2、KM3闭合,此时按下停止按钮SB2,中间继电器KA得电吸合,常开触点闭合,KA 的常闭触点分断,解除KM3自锁,KM3线圈失电分断;同时KM3常闭触点复位,中间继电器KA通过KM1常开触点闭合、KA常开触点闭合实现自锁; 时间继电器KT3得电开始计时;2) KT3计时时间到,其延断触点KT3分断,解除KM2自锁,KM2线圈失电分断;同时KT3其延闭触点闭合启动KT4,时间继电器KT4得电开始计时;3) KT3计时时间到, 其延断触点KT4分断,解除KM1自锁,KM1线圈失电分断;4) KM1常开触点分断,解除中间继电器KA自锁, 线圈失电分断; 同时断开时间继电器KT3, 其延闭触点KT3、延断触点KT3立即复位;其延闭触点KT3复位断开时间继电器KT4,延断触点KT4立即复位。
5)停止过程完毕。
三、SB3为紧急停止按钮。
三台电动机顺序启动逆序停止控制
原理说明
主控指令MC:串联公共接点的连接指令(串联公共接点后另起新母线),主控电路块的起点,用于利用公共逻辑条件控制多个线圈。
梯形图与目标元件如图N的取值范围:N0-N7
主控复位指令MCR:MC指令的复位指令,主控电路块的终点。
梯形图与目标元件如图7-2所
3.MC、MCR的注意事项:
(1)输入X0接通时,执行MC与MCR之间的指令。
(2)MC指令后,母线(LD、LDI)移至MC触点之后。
MC、MCR指令必须成对使用。
(3)使用不同的Y、M组件号,可多次使用MC指令。
但是若使用同一软件号,将同OUT一样,会出现双线圈输出。
(4)在MC指令内再使用MC指令时,嵌套数N的编号顺次增大。
返回时用MCR指令,嵌套数N的编号顺次减小,从大的嵌套级开始解除。
将图中的梯形图采用MC/MCR编程。
程序说明:左母线在A处,通过主控指令将左母线临时移到B处,形成第一个主控电路块(嵌套层数为N0);再通过主控指令将临时左母线由B处移到C处,形成第二个主控电路块(嵌套层数为N1);如此类推,形成了第三、第四主控电路块(嵌套层数分别为N2、N3)。
将上图中的梯形图采用MC/MCR编程。
主电路
列PLC的I/O分配表:
接线图梯形图
指令表编程
0 LD X0 1 OR Y0 2 LD X5 3 OR Y1
4 ANB
5 AND X
6 6 MC N0 M0
7 LD M8000
8 OUT Y0
9 LD X1 10 OR Y1 11 LD X4 输入程序并调试。
三台电动机顺序启动控制程序设计
3台电动机顺序启动控制程序设计一、任务导入某设备有3台电动机,控制要求如下:按下启动按钮,第一台电动机M1起动,运行5s后,第二台电动机M2起动,M2运行10s后,第三台电动机M3起动;按下停止按钮,3台电动机全部停止。
二、分配I/O地址通过分析控制要求可知,该控制系统有3个输入:启动按钮SB1、停止按钮SB2,3台电动机的过载保护FR1、FR2和FR3串联。
输出有3个:第一台电动机KM1、第二台电动机KM2和第三台电动机KM3。
系统的I/O端口的地址分配如下。
输入信号:启动按钮SB1——X0;停止按钮SB2——X1;过载保护FR1、FR2和FR3——X2;输出信号:接触器线圈KM——Y0。
接线图如图1所示。
图1 3台电动机顺序启动控制接线图三、程序设计图2 3台电动机顺序启动控制程序该系统是典型的顺序启动控制,控制程序如图2所示。
按下启动按钮X0,第一台电动机Y0启动,同时定时器T0的线圈为ON,开始定时。
定时器T0的线圈接通5S后,延时时间到,其常开触点闭合,第二台电动机Y1启动;定时器T1的线圈接通10S后,延时时间到,其常开触点闭合,第三台电动机Y2启动。
停止时,按下停止按钮X1,所有的线圈都失电,3台电动机全部停止。
四、调试运行(1)按照如图1所示将电路连接正确,连接时注意3个热继电器的常闭触点要串联在一起,然后接入PLC的输入端子X2上。
(2)将如图2所示的程序用GX软件编程并下载到PLC中。
(3)根据图1所示,按下启动按钮X0,首先看到第一台电动机启动,接着第二台电动机启动,再接着是第三台电动机启动,按下停止按钮,3台电动机停止。
启动GX软件的监视功能,注意观察两个定时器当前值的变化和电动机线圈的通电情况,对照控制要求,验证该程序能否达到控制要求。
项目13 三台电动机的顺序启停PLC控制
(3)编写PLC梯形图程序,并写出指令表
实训器材
序号 1 2 3 4 5 6 7 8
符号 M QF QF
PLC FU KM SB FR
设备名称 三相异步电动机
空气开关 空气开关 可编程控制器
熔断器 交流接触器
按钮 热继电器
实训设备材料表 型号、规格
Y-112M-4 380V 5.5KW DZ47-25/3P DZ47-10/1P
FX2N-48MR-001 RT18-32/2A
项目实施
【任务四】:编写梯形图程序,写出指令表 活动2:步进梯形图
项目实施
【任务四】:编写梯形图程序,写出指令表 活动2:写出指令表 活动3:程序分析
项目实施
【任务五】:输入程序 活动1:启动编程软件GX Developer 活动2:创建新工程 活动3:梯形图程序输入 活动4:梯形图程序的转换 活动5:工程保存 活动6:程序写入
项目实施
【任务一】:学习相关知识 活动2:学习选择性分支状态转移图编程
项目实施
【任务二】:进行I/O分配
输 设备名称 启动按钮SB1 停止按钮SB2 热继电器FR1 热继电器FR2 热继电器FR3
入 输入端子编号
X000 X001 X002 X003 X004
输 设备名称 交流接触器KM1 交流接触器KM2 交流接触器KM3
CJX2-1210线圈电压AC 220V LA39-11 JRS1
单位 数量 备注 台3 个1 个1 台1 个1 个3 个2 个3
项目分析 根据项目的控制要求可以看出,本实训项目是
典型的电动机顺序启动、逆序停止控制,可以采用 步进顺控法进行编程。当电动机在启动过程中需停 止时,则需要根据条件进行选择按顺序启动还是跳 转到中途停止位置,因此需要采用选择性分支结构 的状态转移图。
三台电机顺序启动,顺序停止的控制原理
三台电机顺序启动,顺序停止的控制原理三台电机顺序启动、顺序停止的控制原理是一种常见的电机控制方式。
这种方法可以有效地控制多台电机的启动和停止顺序,以避免电网负荷突增和电机启动时电压冲击等问题。
该控制方式通常由一个控制器或PLC(可编程逻辑控制器)来实现,同时需要使用适当的传感器和执行器。
顺序启动控制原理:1.控制信号获取:控制器通过接收外部的控制信号或者根据预设参数来决定启动顺序。
这些控制信号可以是手动操作、自动控制或者网络远程控制等方式得到。
2.启动顺序设定:控制器根据接收到的信号或参数设定电机的启动顺序。
一般情况下,电机的启动顺序是依次启动,先启动一台电机后,再启动下一台。
留有适当的时间间隔,以避免过大的冲击电流和电压波动。
3.启动信号发送:控制器根据启动顺序的设定,通过相应的输出口,发送电机启动信号。
这些启动信号一般是通过继电器、接触器或者固态继电器等来实现的。
4.电机启动:接收到启动信号的电机得到电源供电,启动它们的转子。
电机启动后,其负载会逐渐增加,电流也会逐渐增大。
这时需要考虑电源的容量和线路的承载能力,以避免电源过载或线路短路等安全问题。
5.电机启动间隔:在启动下一台电机之前,通常需要等待上一台电机达到满负载或指定转速。
这个间隔时间可以根据电机负载情况、电源供应能力和系统要求来进行灵活调整。
6.启动顺序结束:当所有电机都按照设定的启动顺序逐个启动后,顺序启动控制原理就完成了。
此时可以进行下一步操作或者由控制器进入其他工作状态。
顺序停止控制原理:1.控制信号获取:通过外部信号或者控制参数,控制器判断电机的停止顺序,并开始执行停止控制。
2.停止顺序设定:控制器根据接收到的信号或参数,设定电机的停止顺序。
一般情况下,电机的停止顺序与启动顺序相反,即先停止一台电机后,再停止下一台电机。
3.停止信号发送:控制器根据停止顺序的设定,通过相应的输出口,发送电机停止信号。
这些停止信号一般也是通过继电器、接触器或者固态继电器等来实现的。
三台电机顺序启动逆向停止控制电路图及工作原理
三台电机顺序启动逆向停止控制电路图及工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)三台电机顺序启动逆向停止控制电路图及工作原理工作过程分析:一、启动过程:1)按下启动按钮SB1,KM1线圈得电吸合,通过其常开触点KM1和KT4延断触点实现自锁,时间继电器KT1得电,开始计时;2) KT1计时时间到,其延闭触点KT1闭合,KM2线圈德电吸合,并通过常开触点KM2、KT3延断触点实现自锁;同时,KM2常闭触点分断,断开时间继电器KT1,其延闭触点KT1立即复位,时间继电器KT2得电,开始计时;3) KT2计时时间到,其延闭触点KT2闭合,KM3线圈得电吸合,并通过常开触点KM3、KA常闭触点实现自锁;同时,KM3常闭触点分断,断开时间继电器KT2,其延闭触点KT2立即复位;4)启动过程完毕。
二、停止过程:1)停止过程:KM1、KM2、KM3启动完成,其常开触点KM1、KM2、KM3闭合,此时按下停止按钮SB2,中间继电器KA得电吸合,常开触点闭合,KA 的常闭触点分断,解除KM3自锁,KM3线圈失电分断;同时KM3常闭触点复位,中间继电器KA通过KM1常开触点闭合、KA常开触点闭合实现自锁; 时间继电器KT3得电开始计时;2) KT3计时时间到,其延断触点KT3分断,解除KM2自锁,KM2线圈失电分断;同时KT3其延闭触点闭合启动KT4,时间继电器KT4得电开始计时;3) KT3计时时间到, 其延断触点KT4分断,解除KM1自锁,KM1线圈失电分断;4) KM1常开触点分断,解除中间继电器KA自锁, 线圈失电分断; 同时断开时间继电器KT3, 其延闭触点KT3、延断触点KT3立即复位;其延闭触点KT3复位断开时间继电器KT4,延断触点KT4立即复位。
5)停止过程完毕。
三、SB3为紧急停止按钮。
三台电动机顺序启动逆序停止控制
三台电动机顺序启动逆序停止控制GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-原理说明主控指令MC:串联公共接点的连接指令(串联公共接点后另起新母线),主控电路块的起点,用于利用公共逻辑条件控制多个线圈。
梯形图与目标元件如图N的取值范围:N0-N7主控复位指令MCR:MC指令的复位指令,主控电路块的终点。
梯形图与目标元件如图7-2所3.MC、MCR的注意事项:(1)输入X0接通时,执行MC与MCR之间的指令。
(2)MC指令后,母线(LD、LDI)移至MC触点之后。
MC、MCR指令必须成对使用。
(3)使用不同的Y、M组件号,可多次使用MC指令。
但是若使用同一软件号,将同OUT一样,会出现双线圈输出。
(4)在MC指令内再使用MC指令时,嵌套数N的编号顺次增大。
返回时用MCR指令,嵌套数N的编号顺次减小,从大的嵌套级开始解除。
将图中的梯形图采用MC/MCR编程。
程序说明:左母线在A处,通过主控指令将左母线临时移到B处,形成第一个主控电路块(嵌套层数为N0);再通过主控指令将临时左母线由B处移到C处,形成第二个主控电路块(嵌套层数为N1);如此类推,形成了第三、第四主控电路块(嵌套层数分别为N2、N3)。
将上图中的梯形图采用MC/MCR编程。
主电路列PLC的I/O分配表:接线图梯形图指令表编程0 LD X0 1 OR Y0 2 LD X5 3 OR Y14 ANB5 AND X6 6 MC N0 M07 LD M80008 OUT Y09 LD X1 10 OR Y1 11 LD X4输入程序并调试。
三台电机顺序启动逆向停止控制电路图及理论教程(杂项)
建工
1 / 1 三台电机顺序启动逆向停止控制电路图及工作原理 工作过程分析:
一、启动过程:
) 按下启动按钮,线圈得电吸合,通过其常开触点
和延断触点实现自锁,时间继电器得电,开始计时。
) 计时时间到,其延闭触点闭合,线圈德电吸合,
并通过常开触点、延断触点实现自锁。
同时,常闭触点分断,断开时间继电器,其延闭触点立即复位,时间继电器得电,开始计时。
) 计时时间到,其延闭触点闭合,线圈得电吸合,
并通过常开触点、常闭触点实现自锁。
同时,
常闭触点分断,断开时间继电器,其延闭触点立即复位。
) 启动过程完毕。
二、 停止过程:
) 停止过程:、、启动完成,其常开触点、
、闭合,此时按下停止按钮,中间继电器得电吸合,常开触点闭合,的常闭触点分断,解除自锁,线圈失电分断;同时常闭触点复位,中间继电器通过常开触点闭合、常开触点闭合实现自锁; 时间继电器得电开始计时。
) 计时时间到,其延断触点分断,解除自锁,
线圈失电分断。
同时其延闭触点闭合启动, 时间继电器得电开始计时;
) 计时时间到, 其延断触点分断,解除自锁,
线圈失电分断;
) 常开触点分断,解除中间继电器自锁, 线圈失电
分断; 同时断开时间继电器, 其延闭触点、延断触点立即复位。
其延闭触点复位断开时间继电器,延断触点立即复位。
) 停止过程完毕。
三、为紧急停止按钮。
三台电动机顺序启停PLC控制编程
三台电动机顺序启停PLC控制编程摘要:电工技能鉴定分为五级考核,职业院校高职学生的应届生考核三级(高级工),电工鉴定分为理论考试和技能考试。
其中技能考试主要考核对继电接触器控制系统、PLC控制系统、电子电路、变频器控制等的安装、调试、故障排除为主,其中PLC控制系统安装与调试题目中三台电动机的顺序启停PLC控制为高频题目。
关键词:电工鉴定;技能考核;电机顺序启停;PLC控制;编程本文将以西门子S7-200PLC机为例讲解三台电动机的顺序启停PLC控制的编程方法。
控制要求如下:某一生产线的末端有一台三级皮带传送机,分别由M1、M2、M3三台电动机拖动,启动时要求10s的时间间隔,并按M1、M2、M3的顺序启动;停止时按15s的时间间隔,并按M3、M2、M1的顺序停止,皮带传送机的启动和停止分别由启动按钮和停止按钮来控制,三级皮带传送机如下图所示。
要求:1.工作方式设置:手动时要求按下手动启动按钮,做一次上述过程,自动时按下自动启动按钮,能够重复循环上述过程。
2.有必要的电气保护和互锁。
PLC设计步骤如下:一、输入/输出分析:该控制要求中有3个被控设备MM1、KM2、KM3,分别用于控制电动机M1、M2和M3,也就是输出设备;而输入设备有三个,分别是手动启动按钮SB1、手动停止按钮SB2、自动启动按钮SB3三个。
二、I/O地址分配三、PLC外部接线图1.主电路:主电路组成:三相电分别通过熔断器FU1之后分三路又分别经过主控交流接触器KM1、KM2和KM3的主触点并分别经过热继电器FR1、FR2、FR3的热元件来分别控制传送机使用的三台电动机M1、M2和M3,其中KM1、KM2、KM3的主触点分别用于控制三台电动机的通电与断电;三支熔断器FU1用作主电路的短路保护,热继电器FR1、FR2、FR3分别用作三台电动机M1、M2、M3的过载保护。
同时其中的一相和零线给S7-200PLC主机供电,FU2用作控制电路的短路保护。
电工培训教案——三台电机顺序起动逆序停止控制线路
电工培训教案——三台电机顺序起动逆序停止控制线路教学目标:1.理解三台电机顺序起动逆序停止的基本原理和控制线路;2.能够设计和搭建三台电机顺序起动逆序停止的控制线路;3.能够根据不同的实际情况进行控制线路的调整和优化。
教学重点:1.三台电机顺序起动的控制原理;2.三台电机逆序停止的控制原理;3.控制线路的设计和搭建。
教学难点:1.控制线路的设计和搭建;2.根据不同的实际情况进行控制线路的调整和优化。
教学内容:一、三台电机顺序起动的控制原理1.顺序起动是指将多台电动机按照一定的顺序依次启动。
2.控制线路主要由电动机主接触器、辅助接触器、时间继电器、启动按钮和停止按钮等组成。
通过合理的接线和控制逻辑,实现电机的顺序起动。
二、三台电机逆序停止的控制原理1.逆序停止是指将多台电动机按照一定的逆序依次停止。
2.控制线路主要由电动机主接触器、辅助接触器、时间继电器、启动按钮和停止按钮等组成。
通过合理的接线和控制逻辑,实现电机的逆序停止。
三、控制线路的设计和搭建1.根据实际需要确定所需的电动机数量和顺序起动、逆序停止的顺序。
2.根据电动机的额定电压、额定功率和控制线路的电压和容量要求,选择合适的接触器、继电器和按钮。
3.根据三台电机的顺序起动和逆序停止的控制逻辑,设计和搭建控制线路。
4.在搭建过程中,要注意电路的接线正确、可靠,排除可能的故障因素。
四、控制线路的调整和优化1.根据实际使用过程中的反馈和需求,对控制线路进行调整和优化。
如根据启动电流、停止时间等参数进行合理的设置。
2.结合电机的实际工作状态和负载条件,对控制线路进行优化。
如增加过载保护、故障诊断等功能。
教学过程:一、引入问题1.请同学们思考一下,如果我们有三台电机,需要按照一定顺序依次启动和停止,应该如何设计控制线路呢?二、讲解顺序起动的控制原理和控制线路1.讲解顺序起动的基本原理和控制线路的组成;2.示范如何根据实际情况设计和搭建顺序起动的控制线路;3.学生跟随老师一起进行实操,搭建顺序起动的控制线路。
4 三台电机顺启逆停(自动)PLC控制程序
4 三台电机顺启逆停(自动)PLC控制程序
本实训旨在综合应用PLC技术,掌握基本指令的同时研
究高级指令,完成各子任务的控制要求,达到高级工考核要求。
控制要求分为手动和自动两种模式。
手动模式下,按下电机启动按钮,电机开始正转。
电机M1运转时,按下M2的启
动按钮,M2电机才会运转,按下M3的启动按钮,M3电机
开始正转。
停止时,按下对应电机的停止按钮,顺序与启动相反。
自动模式下,电机M1正转5秒后,M2自动启动,M2运行5秒后,M3自动启动。
停止时,按下M3的停止按钮,M3
停止3秒后,M2自动停止,再过3秒,M1自动停止。
考核要求包括电路设计、安装接线、PLC键盘操作、通
电试验等,要求按照任务要求设计主电路电路图,列出PLC
控制I/O口元件地址分配表,设计PLC控制I/O口接线图,编
写PLC控制梯形图程序。
安装接线时要布置合理、准确、紧固,导线要紧固、美观。
在PLC键盘操作中,要熟练操作键盘,正确输入程序,并进行模拟调试,达到设计要求。
在通电
试验中,要注意人身和设备安全,仔细检查通电顺序,实现仿真运行。
三台电动机顺序启动逆序停止控制
三台电动机顺序启动逆序停止控制GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-原理说明主控指令MC:串联公共接点的连接指令(串联公共接点后另起新母线),主控电路块的起点,用于利用公共逻辑条件控制多个线圈。
梯形图与目标元件如图N的取值范围:N0-N7主控复位指令MCR:MC指令的复位指令,主控电路块的终点。
梯形图与目标元件如图7-2所3.MC、MCR的注意事项:(1)输入X0接通时,执行MC与MCR之间的指令。
(2)MC指令后,母线(LD、LDI)移至MC触点之后。
MC、MCR指令必须成对使用。
(3)使用不同的Y、M组件号,可多次使用MC指令。
但是若使用同一软件号,将同OUT一样,会出现双线圈输出。
(4)在MC指令内再使用MC指令时,嵌套数N的编号顺次增大。
返回时用MCR指令,嵌套数N的编号顺次减小,从大的嵌套级开始解除。
将图中的梯形图采用MC/MCR编程。
程序说明:左母线在A处,通过主控指令将左母线临时移到B处,形成第一个主控电路块(嵌套层数为N0);再通过主控指令将临时左母线由B处移到C处,形成第二个主控电路块(嵌套层数为N1);如此类推,形成了第三、第四主控电路块(嵌套层数分别为N2、N3)。
将上图中的梯形图采用MC/MCR编程。
主电路列PLC的I/O分配表:接线图梯形图指令表编程0 LD X0 1 OR Y0 2 LD X5 3 OR Y14 ANB5 AND X6 6 MC N0 M07 LD M80008 OUT Y09 LD X1 10 OR Y1 11 LD X4输入程序并调试。
3台电动机自动顺序启停PLC控制
1、引言可编程序控制器,就是集计算机技术、自动化技术、通信技术于一体的通用工业控制装置,简称PLC。
它就是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数与算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。
PLC就是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性与灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别就是PLC的程序编制,不需要专门的计算机编程语言知识,而就是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。
用户在购到所需的PLC后,只需按说明书的提示,做少量的接线与简易的用户程序编制工作,就可灵活方便地将PLC应用于生产实践。
以PLC为主构成的控制系统具有可靠性高、控制功能强大、性价比高等优点,就是目前工业自动化的首选控制装置。
故本设计中采用PLC集中控制的办法,利用PLC 简单可视化的程序,对3台电动机实现顺序起停控制,可以通过手动实现,也可以通过延时实现自动起停控制,延时时间可以在线设置,并通过指示灯显示各电动机的运行状态。
本设计广泛应用在港口、电厂、煤矿、钢铁企业、水泥、粮食以及轻工业的生产线。
既可以运送散状物料,也可以运送成件物品。
还可应用于装船机、卸船机、堆取料机等连续运输移动机械。
通过本设计对所学的PLC知识综合巩固应用,巩固练习运用组态软件及组态设计,提高对PLC控制系统的设计、安装与调试能力。
2、 PLC选型世界上PLC产品可按地域分成三大流派:美国、欧洲与日本。
日本的PLC技术就是由美国引进的,但日本的主推定位在小型PLC上,在小型机领域中颇具盛名。
某些用欧美的中型机或大型机才能实现的控制,日本的小型机就可以解决。
三台电动机顺序启动逆序停止控制
三台电动机顺序启动逆序停止控制集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#原理说明主控指令MC:串联公共接点的连接指令(串联公共接点后另起新母线),主控电路块的起点,用于利用公共逻辑条件控制多个线圈。
梯形图与目标元件如图N的取值范围:N0-N7主控复位指令MCR:MC指令的复位指令,主控电路块的终点。
梯形图与目标元件如图7-2所、MCR的注意事项:(1)输入X0接通时,执行MC与MCR之间的指令。
(2)MC指令后,母线(LD、LDI)移至MC触点之后。
MC、MCR指令必须成对使用。
(3)使用不同的Y、M组件号,可多次使用MC指令。
但是若使用同一软件号,将同OUT一样,会出现双线圈输出。
(4)在MC指令内再使用MC指令时,嵌套数N的编号顺次增大。
返回时用MCR指令,嵌套数N的编号顺次减小,从大的嵌套级开始解除。
将图中的梯形图采用MC/MCR编程。
程序说明:左母线在A处,通过主控指令将左母线临时移到B处,形成第一个主控电路块(嵌套层数为N0);再通过主控指令将临时左母线由B处移到C处,形成第二个主控电路块(嵌套层数为N1);如此类推,形成了第三、第四主控电路块(嵌套层数分别为N2、N3)。
将上图中的梯形图采用MC/MCR编程。
主电路列PLC的I/O分配表:接线图梯形图指令表编程0 LD X0 1 OR Y0 2 LD X5 3 OR Y14 ANB5 AND X6 6 MC N0 M07 LD M80008 OUT Y0 9 LD X1 10 OR Y1 11 LD X4输入程序并调试。
三台电机顺序启动逆向停止控制电路图及工作原理精选文档
三台电机顺序启动逆向停止控制电路图及工作原理精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-三台电机顺序启动逆向停止控制电路图及工作原理工作过程分析:一、启动过程:1)按下启动按钮SB1,KM1线圈得电吸合,通过其常开触点KM1和KT4延断触点实现自锁,时间继电器KT1得电,开始计时;2) KT1计时时间到,其延闭触点KT1闭合,KM2线圈德电吸合,并通过常开触点KM2、KT3延断触点实现自锁;同时,KM2常闭触点分断,断开时间继电器KT1,其延闭触点KT1立即复位,时间继电器KT2得电,开始计时;3) KT2计时时间到,其延闭触点KT2闭合,KM3线圈得电吸合,并通过常开触点KM3、KA常闭触点实现自锁;同时,KM3常闭触点分断,断开时间继电器KT2,其延闭触点KT2立即复位;4)启动过程完毕。
二、停止过程:1)停止过程:KM1、KM2、KM3启动完成,其常开触点KM1、KM2、KM3闭合,此时按下停止按钮SB2,中间继电器KA得电吸合,常开触点闭合,KA的常闭触点分断,解除KM3自锁,KM3线圈失电分断;同时KM3常闭触点复位,中间继电器KA通过KM1常开触点闭合、KA常开触点闭合实现自锁; 时间继电器KT3得电开始计时;2) KT3计时时间到,其延断触点KT3分断,解除KM2自锁,KM2线圈失电分断;同时KT3其延闭触点闭合启动KT4,时间继电器KT4得电开始计时;3) KT3计时时间到, 其延断触点KT4分断,解除KM1自锁,KM1线圈失电分断;4) KM1常开触点分断,解除中间继电器KA自锁, 线圈失电分断; 同时断开时间继电器KT3, 其延闭触点KT3、延断触点KT3立即复位;其延闭触点KT3复位断开时间继电器KT4,延断触点KT4立即复位。
5)停止过程完毕。
三、SB3为紧急停止按钮。
三台电机按顺序启动、停止PLC程序
三台电机按顺序启动、停止PLC程序在工业生产过程中,常常需要对多台电机进行协调控制。
这种情况下,常常采用PLC程序作为控制方式,实现多台电机的按顺序启动、停止等功能。
下面,我将详细介绍如何编写相应的PLC程序。
首先,需要明确本案例中的系统要求:有三台电机,每台电机按照指定的顺序启动,等待一段时间后按照相反的顺序停止。
同时,需要实现手动、自动两种控制模式,手动模式下可单独启动、停止每台电机,自动模式下需按照设定顺序自动启停。
接下来,我们需要对这些要求进行细分,并逐一完成PLC程序的编写。
第一步,起始部分。
在程序的开头,需要进行程序的初始化,包括对每台电机的启停信号进行清零,取得手动/自动模式选择状态等。
第二步,手动模式实现。
手动模式下,用户可以单独启动、停止每台电机,这项功能可以通过编写操作界面来实现,具体方式可以根据不同用户需求而定。
在程序中,手动模式的实现需要监听操作界面的用户操作,然后相应地进行每台电机的启停控制。
如果用户选择启动某个电机,则向该电机发送启动信号;如果用户选择停止某个电机,则向该电机发送停止信号。
第三步,自动模式实现。
自动模式下,每台电机需要按照预设的顺序进行启动和停止。
这里我们可以采用定时器和计数器的方式进行控制。
首先,设定一个定时器,该定时器用于计算每台电机的运行时间,以便到达预定时间后进行自动停止。
其次,设定一个计数器,用于记录当前电机是处于启动状态还是停止状态,以便在下一步进行判断。
第四步,顺序启动。
在自动模式下,需要实现每台电机的顺序启动。
我们可以采用计数器的方式,在启动下一台电机之前,等待前一台电机运行一段预定的时间后再进行启动。
比如,第一台电机先进行启动,并设定定时器计时运行时间T1,在T1时间到达之前不进行下一台电机的启动。
等待T1时间后,判断计数器是否达到最大值3,如果没有,则给下一台要启动的电机发送启动信号,并设定计时器和计数器,以便按相应的时间间隔和顺序启动下一台电机。
三台电动机顺序启动同时停止控制程序7
输
按钮、
接受 入
继电器触点
接
行程开关等
口
现场信号 部
件
中央处理 单元
CPU(板)
电源部件
输 出 驱动 接 口 部 受控元件 件
接触器 电磁阀 指示灯等
编程器及其他设备
PLC的图3-基3 PL本C的组基本成组成框图
2020/2/3
14
2020/2/3
15
各组成部分的作用
CPU (1) 将各种输入信号取入存储器。 (2) 编译、执行指令。 (3) 把结果送到输出端。 (4) 响应各种外部设备的请求。
常闭触点保
22
2020/2/3
(2)梯形图注意事项
能流只能从左母线流向右母线。 继电器触点和线圈只能作为水平元件使用。 网络中,最右一列只能放置线圈。 线圈如放在其他列,其右边不能放置任何指令 。右边的
只能是输出元件。 线圈在梯形图程序中只能使用一次,但作为该线圈的触点,
模块增加I\O。 FX1N最大的I\O点数是128点 FX2N最大的I\O点数是256点 FX3U最大的I\O点数是384点(包括CC-Llink连接的远程I\O) FX1NC \ FX2NC \ FX3UC是变形系列,主要区别是端子的连接方式和PLC
的电源输入,变形系列的端子采用的插入式,输入电源只能24VDC,较普通 系列要便宜。普通系列的端子是接线端子连接,电压允许使用AC电源。 FX1S系列PLC只能通过RS-232、RS-422、RS-485等标准接口与外部设备 、计算机以及PLC之间通讯. FX1N \ FX2N \ FX3U增加了AS-I \ CC-Link网 络通讯功能。
三、PLC的工作原理
0205 三台电动机单按钮顺启逆停控制程序设计[8页]
电机 M3
任务分析
任务分析
说明 PLC软元件 元件文字符号 元件名称
输入
ቤተ መጻሕፍቲ ባይዱX0
SB1
按钮
控制功能 启动/停止控制
Y0
KM1
接触器 第一台电动机运行
输出
Y1
KM2
接触器 第二台电动机运行
Y3
KM3
接触器 第三台电动机运行
知识储备
› PLC控制设计的过程应遵循以下几个基本步骤:
了解控 制要求
绘制 梯形图
完善 设计内
容
控制方 案设计
I/O表电 路图
模拟 仿真调
试
设备安 装调试
任务实施
› (1)三台电动机顺序启动、顺序停止控制程序设计
①顺序启动 第一次按压按钮SB1,M0线圈瞬时得电。 在M0的常开触点变常闭时,Y0线圈得电 并自锁,第一台电动机启动。 第二次按压按钮SB1,Y0线圈继续得电, 第一台电动机继续运行。但在M0的常开触 点变常闭时,由于Y0的常开触点已经变为 常闭,所以Y1线圈得电并自锁,第二台电 动机启动。 第三次按压按钮SB1, Y0和Y1线圈继续 得电,第一台和第二台电动机继续运行。 但在M0的常开触点变常闭时,由于Y1的 常开触点已经变为常闭,所以Y2线圈得电 并自锁,第三台电动机启动。
《PLC应用技术》
电动机控制程序设计
单按钮控制三台电动机顺启顺停程序设计
布置任务
单按钮控制三台电动机 顺启顺停程序设计
用一个按钮控制三台电动机,起初每按一次按钮, 对应启动一台电动机;待全部电动机启动完成后, 再每按一次按钮,对应停止一台电动机,停止的 顺序要求是先启动的电动机先停止。
电机 M1
电机 M2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算 机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭 环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型 PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在 冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。
它实质上是一台用于工业控制的专用计算机,它与一般计算 机的结构及组成相似。
2020/2/3
2
1、三菱PLC系列和类型
1、1980-1990 三菱PLC主要有F\F1\F2系列小型PLC,K/A系列中、大型PLC 2、1990-2000 三菱PLC主要分为FX系列小型PLC,A系列(A2S\A2US\Q2A)中 大型PLC 3、2000以后 三菱PLC主要分分为FX系列小型PLC,Q系列(Qn\QnPH)中大型 PLC
模块增加I\O。 FX1N最大的I\O点数是128点 FX2N最大的I\O点数是256点 FX3U最大的I\O点数是384点(包括CC-Llink连接的远程I\O) FX1NC \ FX2NC \ FX3UC是变形系列,主要区别是端子的连接方式和PLC
的电源输入,变形系列的端子采用的插入式,输入电源只能24VDC,较普通 系列要便宜。普通系列的端子是接线端子连接,电压允许使用AC电源。 FX1S系列PLC只能通过RS-232、RS-422、RS-485等标准接口与外部设备 、计算机以及PLC之间通讯. FX1N \ FX2N \ FX3U增加了AS-I \ CC-Link网 络通讯功能。
第一天(6课时理论) 第1章 PLC的初步认识 第2章 PLC编程元件 第3章 PLC逻辑指令 第4章 PLC基本电路
第二天(6课时实训) 第5章 PLC编程软件 第6章 上机练习
2020/2/3
逻辑和顺序方式控制机器动作的控 制器,简称PLC(Programmable Logic Controller)或PC (Programmable Controller)。
2020/2/3
5
③ 品种丰富,特殊用途
可选用16/32/48/64/80/128/点的主机,可以采用最小8点的扩展模块进行扩展。 也可根据电源及输出形式,自由选择。
④ 高性能, 高速度 内置程序容量8000步,最大可扩充至16K步, 可输入注释,还有丰富的软组件。 1个指令运行时间,基本指令只需0.08μs,应用指令在1.52μs~几百μs之间。 ⑤ 通信简单化
2020/2/3
6
4、FX系列PLC命名方法
三菱公司的FX系列的PLC基本单元和扩展单元的型号由字母和数字组成,其 格式如图所示:
其中①~⑤各框的含义说明如下:
① 系列的名称:如0N、1S、1N、2N、3U
② I/O总点数:4~256
③ 单元类型:M为基本单元,EX为输入扩展模块,EY为输出扩展模块,E为输入/ 输出混合扩展单元或扩展模块。
2020/2/3
8
三菱FX系列PLC型号命名举例
2020/2/3
9
5、PLC的应用领域
主要用于设备和生产过程 的自动控制系统
2020/2/3
10
PLC具体应用:
1. 用于开关逻辑控制
这是PLC最基本、最广泛的应用领域,它取代传统的继 电器电路,实现逻辑控制、顺序控制,既可用于单台设 备的控制,也可用于多机群控及自动化流水线。如注塑 机、印刷机、订书机械、组合机床、磨床、包装生产线、
PLC具体应用:
3. 用于运动控制
PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接 用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控 制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上 各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、 机器人、电梯等场合。
2020/2/3
7
④ 输出形式: R为继电器输出----可以带交、直流负载; S为双向晶闸管输出----只能带交流负载; T为晶体管输出----只能带直流负载; ⑤ 适用类型或特殊品种,举出常用的几种,如:
D、DS为DC24V电源 DSS为DC24V电源,源型晶体管输出 ES为AC电源 ESS为AC电源,源型晶体管输出 A1为AC电源,AC输入(AC100~120V)或AC输入模块 无标记为AC电源,DC输入,横式端子排 /UL为符合UL认证
一台FX2N主机可安装一个机能扩充板,使用FX2N-485-BD及FX0N-485 ADP 的FX2N系列PLC间,可作简易PLC通信连接。还加了M-NET网络链接的通信 模块,以适应网络链接的需要。 ⑥ 共享外部设备
可以共享FX系列的外部设备,如便携式简易编程器FX-10P-E、FX-20P-E( 需使用FX-20P-CAB0作连接线)。用SC-09电缆线与微机连接,可使用FXPCS/WIN 编程软件。
2020/2/3
3
2、三菱FX系列PLC介绍
FX系列PLC包括FX1S \ FX1N \ FX2N \ FX3U四种基本类型的PLC,早期还 包括FX0系列产品。
FX1S系列为整体固定I\O结构,最大I\O点数为40,I\O点数不可扩展。 FX1N \ FX2N \ FX3U系列为基本单元加扩展的结构形式,可以通过I\O扩展
3、三菱FX2N系列PLC介绍
FX2N系列是小型化,高速度,高性能和所有方面都是相当于FX 系列中最高档次的超小型程序装置。除输入输出16~256点的独 立用途外,还可以适用于多个基本组件间的连接,模拟控制, 定位控制等特殊用途,是一套可以满足多样化广泛需要的PLC。 FX2N系列PLC的特点: ① 系统配置,固定灵活 可进行16~256点的灵活输入输出组合。可连接扩展模块,包括 FX0N系列扩展模块。 ② 编程简单,指令丰富 功能指令种类多,有高速处理指令、便利指令、数据处理、特 殊用途指令等等。
电镀流水线等。
2. 用于模拟量控制
在工业生产过程当中,有许多连续变化的量,如温度、 压力、流量、液位和速度等都是模拟量。为了使可编程 控制器处理模拟量,必须实现模拟量(Analog)和数字 量(Digital)之间的A/D转换及D/A转换。PLC厂家都生 产配套的A/D和D/A转换模块,使可编程控制器用于模拟 量控制。