人教版-数学-七年级上册-第一章 有理数 导学案
人教版-数学-七年级上册-第一章 有理数乘法(一) 导学案
铜都双语学校高效课堂自主学习型数学日导学稿班级 70 姓名 编号 NO :14 日期:比一比,看谁表现最好!拼一拼,力争人人过关!课题: 有理数乘法(一) 设计者: 七年级数学组自研课(时段: 晚自习 时间: 10 分钟 )1、旧知链接:(1)2+2+2= ,=⨯32 ,(2)(-2)+(-2)+(-2)= 。
2、新知自研:认真自研课本P 28—30例2 以上内容.自研检测: ⑴2×(-3)= ⑵(-2)×3= ⑶(-2)×(-3)= 展示课(时段: 正课 时间: 60 分钟 )一、学习目标: 1.理解并掌握有理数的乘法法则;2.能初步运用有理数的乘法法则进行简单的运算.当堂反馈:当堂反馈即同类演练训练课(时段:晚自习 , 时间:30分钟)“日日清巩固达标训练题” 自评: 师评:基础题: 1、 计算:(1)(+5)×(-4) (2)()()4--85⨯ (3)()315-375.0-⨯ (4)-25.6×0 (5)()()2.1141+⨯+ (6)383-192⨯ (7)12×(-5) (8)-4.8×(-1.25) (9)()43311-⨯ (10) 580.375--+⨯ (11)(-40)×(-5) (12)()71872-⨯(13)32×(-0.25) (14)(-13.62)×0 (15)(-7.64)×1 (16)()()1-11-31⨯发展题:2.如果a <0,b <0,那么ab 0;如果a <0,b >0,那么ab 0; 如果a >0,b <0,那么ab 0;如果a >0,b >0,那么ab 0。
提高题:3.分析判断:(1)如果ab >0,a +b >0,试确定a 、b 的正负;(2)如果ab <0,a +b <0,b a >试确定a 、b 的正负; (3)如果ab >0,abc >0,a 、b 、c 的正负。
[精品]初一七年级数学(上册)导学案[含答案][131页]
初中数学七年级(上册)导学案第一章 有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念 【导学指导】: 一、知识链接:1、小学里学过哪些数请写出来: 、 、 。
2、阅读课本P 1和P 2三幅图(重点是三个例子,边阅读边思考) 回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数? 二、自主学习1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要 2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读P3练习前的内容 3、正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
人教版七年级数学上册第一章有理数1.4.2有理数的除法(1)导学案
人教版七年级数学上册第一章有理数1.4.2有理数的除法(1)导学案【学习目标】:1、理解除法是乘法的逆运算;2、理解倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;【学习重点】:有理数的除法法则【学习难点】:有理数的除法法则【课前预习】1、求8÷(-4)的值∵(-2)⨯(-4)=8,∴8÷(-4) =____;又∵8⨯(-41)= ∴8÷(-4)___8⨯(-41),即一个数除以-4,等于乘以-4的倒数-41. 同样可得:-8÷4____-8⨯41, -8÷(-4)_____-8×(-41)(填“=”或“≠”) 除法法则(一):除以一个不等于0的有理数,等于乘以这个数的________.即a ÷b = (a 、b 是有理数,且b ≠0).2、从(-2)⨯4=____ 根据除法是乘法的逆运算(-8)÷(-2)=_____ (同号两数相除)(-8)÷4=_____ (异号两数相除)除法法则(二):两数相除,同号得_____,异号得_____,并把绝对值相______.零除以任一个不等于0的数,都得____. 0不能作 ,0没有 数.3、计算(1)(-90)÷15 (2)383÷(-2.25) (3)(-2512)÷(-53) 解:原式= -(90÷15) 解:原式= -(827 94) 解:原式= (4)(-45)÷5 (5)(-72)÷(-9) (6)-94÷131 【自主学习】1)、小红从家里到学校,每分钟走50米,共走了20分钟。
问小红家离学校有 米,列出的算式为 。
2)放学时,小红仍然以每分钟50米的速度回家,应该走 分钟。
列出的算式为从上面这个例子你可以发现,有理数除法与乘法之间的关系是3)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数 ;【交流、讨论】1、小组合作完成比较大小:8÷(-4) 8×(一14); (-15)÷3 (-15)×13; (一114)÷(一2) (-114)×(一12); 【小组展示】小组展示,然后,相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 ;2)、两数相除,同号得 ,异号得 ,并把绝对值相 ,0除以任何一个不等于0的数,都得 ;1.自学P34例5、例62. 师生共同完成例7【课堂练习】1、练习:P352、练习: P36第1、2题【要点归纳】:有理数的除法法则:【课后练习】1、若a + b <0,ab >0,那么下列结论成立的是( ) A .a >0,b > 0 B .a <0,b <0 C .a > 0, b <0 D .a < 0 ,b > 02、若ba = 0,那么( ) A .a = 0,b=0 B .a = 0,b ≠0 C .a ≠0 ,b = 0 D .a ≠0,b ≠03、(-0.009)÷0.3 = ÷(-7)=-71 -1÷(-121)= 4、计算(4)531÷(-751) (5)-3.5⨯78⨯(-43) (6)(-7)÷(-231) 5、如果b a ÷()0≠b 的商是负数,那么( )A.b a ,异号B.b a ,同为正数C.b a ,同为负数D.b a ,同号6、下列结论错误的是( )A.若b a ,异号,则b a ⋅<0,b a <0B.若b a ,同号,则b a ⋅>0,ba >0 C.b a b a b a -=-=- D.ba b a -=-- 7、实数b a ,在数轴上的位置如图所示,则下列结论正确的是( )A 、0a b +>B 、0a b ->C 、0a b ⋅>D 、0a b> 8、计算(1)-27÷(-3) (2)32÷(-4) (3)-153÷(-6)9、计算:①123()25125÷- ②551()2184-÷⨯- ③421||(1)932÷-⨯-。
人教版七年级数学上册- 有理数的除法法则精品导学案
第一章 有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时 有理数的除法法则学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数4.认识有理数的除法,经历除法的运算过程.5.理解除法法则,体验除法与乘法的转化关系.6.掌握有理数的除法及乘除混合运算.教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数 教学难点:如何进行有理数除法的运算,求一个负数的倒数一、情境导入1.计算:(1)25×0.2=________;(2)12×(-3)=________;(3)(-1.2)×(-2)=________; (4)(-125)×0=________.2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试. 一、知识链接 1.填一填:2.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘. 一个数同0相乘,仍得________. 3.进行有理数乘法运算的步骤: (1)确定_____________;(2)计算____________. 二、新知预习1.根据除法是乘法的逆运算填空(+2)×(+3)=+6(+6)÷(+2)=_________,(-2)×(-3)=+6(+6)÷(-2)=_________,2.【自主归纳】 3.(1(2(3)0除以任何一个不等于0【自主归纳】 两数相除,同号得任何不等于0的数都得______. 三、自学自测 计算:(1) (-8)÷(-4);(3) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭;四、我的疑惑一、要点探究探究点1问题1:(-4)×6×(-6)=-36 -36÷6= (-3/5)×(4/5)= -12/25 -12/25 ÷(-3/5)= -8÷9=-72 -72÷9= 8÷(-4)= 8×(-1/4)= -36÷ 6= –36 ×(1/6)= -12/25 ÷ (-3/5)= (-12/25)×(-5/3)= -72 ÷9= -72×(1/9)=问题2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗?有理数除法法则(一):除以一个不等于0的数,等于乘这个数的 . 用字母表示为a ÷b =a ×b1(b ≠0)问题3:利用上面的除法法则计算下列各题: (1)-54 ÷(-9);(2)-27 ÷ 3; (3)0 ÷(-7); (4)-24÷(-6).思考:从上面我们能发现商的符号有什么规律?有理数除法法则(二):两数相除,同号得 ,异号得 ,并把绝对值 . 0除以任何一个不等于0的数,都得 . 思考:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?归纳:两个法则都可以用来求两个有理数相除.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1 计算(1)(-36)÷ 9; (2)(-2512)÷(-53).例2 化简下列各式: (1)312-;(2)1245--探究点2:有理数的乘除混合运算 例3 计算 (1)(-12575)÷(-5);(2)-2.5÷85×(-41).方法归纳:(1)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算;(2)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).1.(1)(-24)÷4; (2) (-18)÷(-9); (3) 10÷(-5).2.计算:(1)(-24)÷[(-32)×49];(2)(-81)÷214×49÷(-16).二、课堂小结 一、有理数除法法则: 1.a ÷b =a ×b1(b ≠0)板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0).2.(1)两个数相除,同号为正,异号得负,并把绝对值相除. (2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.。
人教新课标版七年级上数学第一章《有理数》导学案:1.3有理数的加减法(20210713001618)
第一章有理数《1.3有理数的加法》导教案(1) N0:8班级小组姓名小组评论________教师评价 _______一、学习目标1、能正确的进行有理数的加法运算;2、经历研究有理数加法法例的过程,加深对有理数加法法例的理解。
二、自主学习1、自学教材 16—18 页总结有理数的加法法例:(1) 同号两数相加,例 1、计算( -4 )+(-5 )第一步:确立种类(-4 )+(-5 )(同号两数相加)第二步:确立和的符号(-4 )+(-5 )=- ()(取同样的符号)第三步:确立绝对值(-4 )+(-5 )= -9(把绝对值相加)练习: 3+2 =(-3 )+(-2 )=(-1)+(-6)=(2)绝对值不相等的异号两数相加,例 2、计算( -2 )+6第一步:确立种类(-2 )+6(异号两数相加)第二步:确立符号∵6 2,∴( -2 )+6 =+()(取绝对值较大的加数的符号)第三步:确立绝对值∵ 6-2=4,∴( -2 )+6=+4(用较大的绝对值减去较小的绝对值)练习 :(-3)+4=+()=3+(-4 )=-()= 5+(-7)==( -12 )+19==同学们知道有理数的加法的步骤吗?①确立种类;②确立和的(3) 互为相反数的两个数相加得(4) 一个数同 0 相加,仍得;③最后进行绝对值的。
比方: 5+(-5)= 。
比方: 3+0=-3+3=0+。
(-5 )=2、自学检测(1)+ 8 与- 12 的和取___号,+ 4 与- 3 的和取___号。
(2)按①的格式计算以下各题① 14+(-21 )②(-18)+(-9)③(-0.8)+1.7④ -8+ 8解:①原式 = - (21-14 )=-7三、合作研究1.填空( 1)、某天气温由 -3 ℃上涨 4℃后气温是( 2)、已知两数 5 与-9 ,这两个数的和是;比-3 大 5.,这两个数的绝对值的和是,这两个数的相反数的和是.2、设a=-2 ,b= 1 ,计算33( 1) a+(-b)( 2) (-a)+b(3)a+2b3、红星队在 4 场足球赛中的战绩是:第一场 3:1 胜,第二场 2:3 负,第三场 0:0 平,第四场 2:5 负。
人教版(2024年新版) 数学 七年级上册 第一章有理数 第04讲 相反数导学案
第04讲相反数【知识点一:相反数的定义】相反数的定义:的数叫作相反数。
(1)“只有”:是指仅仅是符号不同,其它部分完全相同。
(2)“互为”:相反数是成对出现的,不能单独存在。
(3)0的相反数还是。
(相反数等于本身的数是。
)【例】2024的相反数是()。
A.20241 B.20241- C.2024 D.2024-【例】下列各组数中,互为相反数的是()。
A.5.051--和 B.3333.031和-C.25.1411-和 D.212和-【练习1】下列说法中正确的是()。
A.-2是相反数 B.21-与-2互为相反数C.-3与+2互为相反数 D.21-与0.5互为相反数【练习2】下列说法中正确的有。
1π的相反数是-3.14;2符号相反的数互为相反数;3相反数等于它本身的数只有0;4非负数的相反数是正数;5-6是相反数;6+6是相反数;76是-6的相反数;8-6与+6互为相反数;9正数和负数互为相反数;10任何一个数都有相反数。
【知识点二:相反数的求法】相反数的求法:求一个数的相反数就是在这个数的前面,即数a 的相反数是。
其本质就是改变这个数的符号。
【例】写出下列各数的相反数:49-,6,-8,-3.5,25,10,-100,31。
【练习3】写出下列各数的相反数:-3,2,4.5,0,316-,a 。
【练习4】写出下列各数的相反数:16,-3,0,20161-,m ,n -。
【知识点三:相反数的性质】(1)任何一个数都有相反数,而且只有一个。
(2)正数的相反数是。
(3)负数的相反数是。
(4)0的相反数是0,相反数等于本身的只有0。
【知识点四:相反数的几何意义】相反数的几何意义:设a 是一个正数,把a 和它的相反数a -表示在数轴上。
(1)数轴上表示a 和a -的点分别位于原点的两旁,且到原点的距离都是a 。
(这两个点关于原点对称)(2)互为相反数的两数和为。
(3)反之,数轴上到原点的距离是的点a 有个,它们分别在正、负半轴上,这两点表示的数。
(完整版)新人教版七年级上册数学导学案(全册)
七年级数学(上册)导学案第一章有理数1.1 正数和负数(1)【学习目标】1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【导学指导】一、:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1. P3第1题到第2题(课本上做)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
4.下列结论中正确的是 …………………………………………( ) A .0既是正数,又是负数 B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个B .3个C .4个D .5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做 ,小于0的数叫做 。
人教版-数学-七年级上册-第一章 有理数 单元复习导学案及教学反思(第2课时)
5.计算:
(1) (2)
教
与
学
反
思
你有什么收获?
教学反思:
全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。
(六)、科学记数法、近似数及有效数字
(1)把一个大于10的数记成a×10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.
(2)对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
达
标
测
评
1.33=;( )2=;-52=;22的平方是;
2.下列各式正确的是()
习
过
程
.知识回顾
(五)、有理数的运算
(1)有理数加法法则:
(2)有理数减法法则:
(3)有理数乘法法则:
(4)有理数除法法则:
(5)有理数的乘方:
求的积的运算,叫做有理数的乘方。
即:an=aa…a(有n个a)
从运算上看式子an,可以读作;从结果上看式子an可以读作.
有理数混合运算顺序:(1)(2)(3)
7.近似数0.4062精确到位,有个有效数字.
8. 5.47×105精确到位,有个有效数字
【拓展训练】:
1. 3.4030×105保留两个有效数字是,精确到千位是。
2.用四舍五入法求30951的近似值(要求保留三个有效数字),结果是。
3.已知 =3, =4,且 ,求 的值。
4.下列说法正确的是()
A.如果 ,那么 B.如果 ,那么
人教版七年级数学上册导学案(全)
七年级数学“先学后教”导学案第一章 有理数§1.1 正数和负数一.学习目标1、通过实际例子,感受引入负数的必要性;2、知道什么是正数,什么是负数;会用正负数表示实际问题的数量。
二、阅读指导1、我们以前学过的数:1、2、3……0 21、32、53…… 这三类数是如何产生的,请同学们在课本上找一下,并在小组读一遍。
2、课本中出现了新数:-3、-2、-2.7%,这些数和以前学习的数有什么区别?课本上结合实际对它们的意义做了说明,你有其他说法吗? 请想一想在组内说一说。
3、把一组旧数和新数放在一起:3、2、1、1.8%、+6、+3.2、-3、-2、-2.7%、0,请同学们根据课本知识把它们分类一下,并读出来。
4、归纳什么是正数:什么是负数:5、正数、0、负数结合实际后都能表示一定的意义,在课本中都举出哪些可用正数、0、负数表示的例子,请找出来并写在课本的空白处。
三、尝试练习课本P3页的练习1、2、3、4;P4页练习。
课本P5页习题1.1第1、2、3题.四、交流展示1、在组内讲解阅读思考,并交流。
2、在组内指定同学报答案,答案不同的先记下,最后交流展示。
3、教师巡视各组学习情况,并适时点拨或启发五、当堂反馈1、课本P5页习题1.1第4-8题.2、(1)若规定向南为正,则向北50米记作(2)若+101元表示收入101元,则-100元表示3、2008年我国花生产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的1.8%,-2.7%分别代表什么意思?六、反思小结为什么要引入负数?举例说明正数、负数在表示相反意义的量时的作用。
§1.2.1 有理数一、学习目标理解有理数的意义,知道什么是有理数,会将有理数进行分类。
二、阅读指导1、至今为此我们学过的数有哪些? 其中对正分数和负分数的理解,你有什么疑问?2、正数包含:负数包含:3、有理数包含:4、正整数、0、负整数统称为正分数和负分数统称为整数和分数统称为三、尝试练习1、课本P8页练习;课本P14页习题1.2第1题。
人教版七年级数学上册导学案-有理数的乘法法则
第一章 有理数1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则学习目标:1.掌握有理数的乘法法则并能进行熟练地运算.2.掌握多个有理数相乘的积的符号法则.重点:有理数的乘法法则,多个数相乘的符号法则. 难点:积的符号的确定.一、知识链接1.计算:(1)777++= ;(2)1212121212++++= .2.将以上两个加法运算用乘法运算表示出来:3.计算:(1)3×2;(2)3×112;(3)3126⨯;(4)320.4⨯二、新知预习 1.计算:(1)222++=(-)(-)(-) ; (2)99999++++=(-)(-)(-)(-)(-) . 2.你能将上面两个算式写成乘法算式吗?3.怎样计算?(1)6×(-5);(2)(-4)×(-5);(3)0×(-5).【自主归纳】 有理数的乘法:正数乘正数,积为 数;负数乘负数,积为 数; 负数乘正数,积为 数;正数乘负数,积为 数;零与任何数相乘或任何数与零相乘结果是 . 三、自学自测1.计算 (1)53⨯-() (2)46⨯(-) (3)79-⨯-()() (4)0.98⨯2.填空(1)-3的倒数是___________;34的倒数是_____________. (2)______的倒数是6;___________的倒数23-.四、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分一、要点探究探究点1:有理数的乘法运算1.如图,一只蜗牛沿直线 l 爬行,它现在的位置在l 上的点O.填一填:(1)如果一只蜗牛向右爬行2cm 记为+2cm ,那么向左爬行 2cm 应记为________; (2)如果3分钟以后记为+3分钟,那么3分钟以前应记为___________.想一想:(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分后它在什么位置?结果:3分钟后蜗牛在l 上点O_________ cm 处.可以表示为: .(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分后它在什么位置?结果:3分钟后蜗牛在l 上点O_________ cm 处.可以表示为: .(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分前它在什么位置? 结果:3分钟前蜗牛在l 上点O_________ cm 处.可以表示为: .(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分前它在什么位置?结果:3分钟前蜗牛在l 上点O___________ cm 处.可以表示为: .(5)原地不动或运动了零次,结果是什么?结果:仍在原处,即结果都是___________,可以表示为: . 根据上面结果可知:1.正数乘正数积为______数;负数乘负数积为______数;(同号得正)2.负数乘正数积为______数;正数乘负数积为______数;(异号得负)3.乘积的绝对值等于各乘数绝对值的______.4.零与任何数相乘或任何数与零相乘结果是______. 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 讨论:(1)若a <0,b >0,则ab 0 ; (2)若a <0,b <0,则ab 0 ;(3)若ab >0,则a 、b 应满足什么条件? (4)若ab <0,则a 、b 应满足什么条件?例1 计算:(1)3×(-4); (2)(-3)×(-4).归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-16)例2 计算: (1)(-3)×65×(-59)×(-41);(2)(-5)×6×(-54)×41归纳:(1)几个不等于零的数相乘,积的符号由_____________决定.(2)当负因数有_____个时,积为负;当负因数有_____个时,积为正. (3)几个数相乘,如果其中有因数为0,_________探究点2:倒数 例3 计算: (1)21×2; (2)(-21)×(-2)要点归纳:有理数中仍然有:乘积是1的两个数互为倒数. 思考:数a(a ≠0)的倒数是什么?探究点3:有理数的乘法的应用 例4 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km ,气温的变化量为-6℃,攀登3km 后,气温有什么变化?例5 一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1.8元.小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?针对训练1.计算:(1)566⨯-(-)(); (2)8×(-1.25). 2.填空:-0.5的倒数是 ,一个数的倒数等于这个数本身,则这个数是 .3.已知a 与b 互为倒数,c 与d 互为相反数,m 的绝对值是4,求m ×(c +d )+a ×b -3×m 的值.4.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片4-16)3.探究点2新知讲授 (见幻灯片17-18)4.探究点3新知讲授 (见幻灯片19-20)二、课堂小结1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 2.几个不是零的数相乘,负因数的个数为奇数时积为负数,偶数时积为正数. 3.几个数相乘若有因数为零则积为零.4.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.5.乘积是1的两个数互为倒数.1.填表: 被乘数 乘数 积的符号 积的绝对值 结果 -5 7 - 35 -35 15 6 -30 -6 4 -252.计算:(1)221×(-4); (2)(-107)×(-215);(3)(-10.8)×(-275); (4)(-321)×0.3.计算:(1)(-125)×2×(-8)(2)(-32)×(-57)×(-146)×(-23) (3)78×(-32)×(-3.4)×04.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?当堂检测教学备注 配套PPT 讲授5.课堂小结6.当堂检测 (见幻灯片21-24)。
人教版七年级数学上册1.2.1有理数 导学案(有答案)
1.2.1 有理数一、学习目标1.理解有理数的概念,掌握有理数的分类方法;(重点)2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.(重点) 二、预习检测1.判断题(1)整数又叫自然数。
()(2)正数和负数统称为有理数。
()(3)向东走-20米,就是向西走20米。
()(4)温度下降-2℃,是零上2℃。
()(5)非负数就是正数,非正数就是负数。
()2.把下列各数分别填在相应的大括号里1.8,-42,+0.01,,0,-3.1415926,,1整数集合分数集合正数集合负数集合自然数集合非负数集合三、探究新知问题1:观察所给的8个数,然后填空.-3,8%,—2.7, 100,,,0.031,.是整数的.是负数的.是分数的.问题2:整数包括什么数?负数包括什么数?分数包括什么数?什么叫做有理数?问题3:有理数如何分类?1、按形式(整或分)来分类可分为2、按符号(“正”或“负”)来分类可分为:问题4:是不是有理数?四、典例解析例1.下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( ) A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数 例 2.把下列各数填入相应的集合内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1,0.3080080008… 正数集合{…}; 负数集合{…}; 整数集合{…}; 分数集合{…}.五、当堂训练(一)选择题1.下列说法错误的是( )A .大于0的数是正数,小于0的数是负数B .有理数包括整数和分数C .有理数包括正数和负数D .正整数、0、负整数统称为整数2.下列不是有理数的是( )A 、0B 、3.14C 、D 、π3.下列数中,既是分数,又是正数的是( )A .+3B .C .0D .24.下列说法错误的是( )A .0既不是正数也不是负数B .一个有理数不是整数就是分数C.0和正整数是自然数D.有理数又可分为正有理数和负有理数(二)填空题5.在0.25到6.25之间,有个正整数.6.从正有理数集合中去掉正分数集合,得到集合.7.整数和分数统称为.8.在数 -8,+4.3, 0,-50,-,3 中负数有,整数有.9.在数8.3,-4,-0.8,- ,0.9,0,- ,2.4中,有______个数是正数,有______个数是非负数,有_________个数不是整数.六、课堂小结本节课你有什么收获?七、课后习题(作业)1.把下列各数分别填在相应的集合内-11、 5%、-2.3、、、0、、、2014、-9分数集:。
初中七年级数学上册导学案含答案
初中数学七年级上册导学案及答案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
2024秋季新教材人教版七年级上册数学1.2.2 数轴 导学案
第一章有理数1.2 有理数1.2.2 数轴教学目标:1. 识记数轴的三要素并会画数轴.2. 能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,会用数轴比较有理数的大小.3. 会用数形结合的思想理解在特定的条件下数与形是可以相互转化的.重点:数轴的概念,在数轴上表示数.难点:正确的画出数轴,有理数和数轴上的点的对应关系.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西向的马路旁,有一个汽车站牌,汽车站牌东 3 m 和7.5 m 处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3 m 和 4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.一、要点探究知识点1:数轴的画法及概念合作探究探究一怎样用数简明地表示这些树、标志杆、电线杆与汽车站牌的相对位置关系(方向、距离)?合作探究你能联想到生活中的哪些用直线上的点表示数的工具,请举例说明.它们有什么共同特点?像这样,规定了原点、正方向和单位长度的直线叫作数轴.数轴的画法:1.在直线上任取一点表示数0,这个点叫做原点.2.通常规定直线上从原点向右(或上) 为正方向,从原点向左(或下) 为负方向.3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,···;从原点向左,用类似方法依次表示-1,-2,-3,···.4.原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.1.(松北区校级月考改编)关于数轴的图示,画法正确的是()总结:原点、正方向、单位长度一个也不能少.归纳总结:画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线是水平的;(3)正方向用箭头表示,一般取从左到右;取单位长度应结合实际需要,但要做到刻度均匀.合作探究探究二为了进一步研究马路情境图(数轴),仿照A 点信息填写表格.数轴上的点表示数:一般地,设 a 是一个正数,则数轴上表示数 a 的点在数轴的___半轴上,与原点的距离是___个单位长度;表示数 -a 的点在数轴的___半轴上,与原点的距离是___个单位长度.数轴上与原点的距离是 a 个单位长度的点,简称为数轴上与原点的距离是 a 的点.例1 画出数轴,并在数轴上表示下列各数: 3,-4,4,0.5,0, −52 ,-1.例2 根据下面给出的数轴,解答下列问题:(1) 请你根据图中 A 、B 两点的位置,分别写出它们所表示的有理数,以及 A 、B 两点距离几个单位长度?(2) 从点 A 出发,沿着数轴正方向移动 2 个单位长度达点 C ,在数轴上请画出点 C ,并写出它所表示的数.1. 画出数轴,并用数轴上的点表示下列各数 ( )1.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非正数D. 非负数2.在数轴上表示-3 的点与表示4 的点之间的距离是( )A. 7B. -7C. 1D. -13. 画出数轴并表示下列有理数:能力提升:4.在数轴上,一只蚂蚁从原点出发,它先向右爬了4 个单位长度到达点A,再向右爬了2 个单位长度到达点B,然后又向左爬了10 个单位长度到达点C.(1) 将A,B,C 三点所表示的数在下图中的数轴上表示出来;(2) 根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度所到达的点?(3) 如果移动点A,B,C 中的两个点,使得三个点重合,你有几种移动方法?请分别求出移动的长度之和.拓展:数轴上有两个固定点A、B,有一动点C,请问点C在什么位置时,动点C到两定点距离之和最小?参考答案自主学习一、新课导入合作探究一、要点探究知识点1:数轴的画法及概念合作探究知识要点:数轴上的点表示数:正a负a【典例精析】解:如下图所示.总结:原点左边的数是负数←→原点右边的数是正数解:(1) 点A 表示3;点B 表示-1.5;点A、点B 距离 4.5 个单位长度.(2)如上图所示,C 点表示5.1. 解:如下图所示:2.C二、课堂小结当堂检测1.D2.A3.解:如下图所示:4.(1)解:如图所示.(2)可以看作蚂蚁从原点向左平移4 个单位长度达到.(3)。
人教版2019年中学数学七年级上册第一章有理数1.2有理数(第1课时)导学案
1.2 有理数(第1课时)学习目标1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力.(重点)2.了解分类标准与分类结果的相关性,初步了解“集合”的意义.(重点)3.体会分类是数学上常用的处理问题的方法.(难点)自主学习学习任务一 体会有理数的分类1.像1,2,3,…这样的数叫做 .2.数0叫做 .3.像-1,-2,-3,…这样的数叫做 .4.像12,23,157,0.1,5.32,…这样的数叫做 . 5.像-0.5,-52,-23,-17,-150.25,…这样的数叫做 .6. 、 、 统称为整数.7. 、 统称为分数.8. 、 统称为有理数.学习任务二 有理数的分类合作探究把下列各数填在相应的括号里:-7,35,2 015,0,-13,+8.4,-5%,-0.010 3,.(1)整数集合:{ …};(2)负数集合:{ …};(3)非负数集合:{ …};(4)负分数集合:{ …};(5)有理数集合:{ …}.当堂达标1.下列说法正确的有( )①0是最小的整数;②一个有理数,不是正数,就是负数;③有理数包括整数、零、分数;④若a 是正数,则-a 是负数;⑤自然数一定是正数;⑥整数包括正整数和负整数;⑦非正数就是负数和0.A.0个B.1个C.2个D.3个2.给出一个数-107.987及下列判断:①这个数不是分数,也不是整数;②这个数是负数也是分数;③这个数不是有理数;④这个数是一个负小数,也是负分数,其中判断正确的有( )A.1个B.2个C.3个D.4个3.下列各数:-3,6,-0.5,0.2,-35,0,19,-72,12%,其中正数有 个,负数有 个,整数有 个,分数有 个.4.请按要求填出相应的2个有理数:(1)既是正数也是分数: ;(2)既不是负数也不是分数: ;(3)既不是分数也不是非负数: .5.把下列各数分别填入相应的大括号内:-7,3.5,-3.141 592 6,π,0,1713,0.03,-312,,10,-42. 自然数集合:{ …};整数集合:{ …};正分数集合:{ …};非正数集合:{ …};有理数集合:{ …}. 反思感悟我的收获:我的易错点:。
人教版初中七年级数学上册《有理数》导学案
1.2 有理数1.2.1 有理数学习目标:1.掌握有理数的概念.2.会对有理数按一定的标准进行分类,培养分类能力.重点:掌握有理数的概念.难点:会对有理数按一定的标准进行分类.一、知识链接1.把下列相等的数用线连起来:2.有限小数(如0.1,1.5)和无限循环小数(如0.3)都可以化为_______.在以后的学习 中,我们把小学学过的小数(有限小数和无限循环小数)都看成是______.3.思考:π=3.1415926...,能化为分数吗? 答:________. 二、新知预习引入负数之后,我们学过的数可以怎么分类?整数 分数正整数 正分数 负分数 【自主归纳】 整数和分数统称为 数. 三、自学自测1.在-3,15,-0.4,0,23,9.5,+156,-20%中,正数有________________________,负数有自主学习0.1 0.21.52.60.323 31 532 101 51 ?_______________;正整数有________________,负整数有________________.四、我的疑惑_____________________________________________________________________________________ _________________________________________________________________一、要点探究我们以前学过的数,像1,2,3……称为数;241,,354……称为数.那么在以上这些数的前面添上“-”号后,-1,-2,-3……称为数;241,,354---……称为数.特别提示:既不是正数,也不是负数!要点归纳:正整数、零和负整数统称数.正分数和负分数统称数.整数和分数统称数.注意:目前我们所学的小数都可以化成数,所以把小数划分到数一类.问题1:你能根据有理数的定义对有理数分类吗?正整数整数自然数有理数负整数分数问题2:如果按符号(正、负)来分类,又该怎样来分呢?正整数有理数零正分数负整数负分数说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,但零既不是正数,也不是负数.填一填:判断表中各数分别是什么数,在相应的空格内打“√”。
七年级数学上册 第一章 有理数 1.2 有理数 1.2.2 数轴导学案新人教版
第一章 有理数1.2 有理数1.2.2 数轴学习目标:1.掌握数轴的概念,理解数轴上的点和有理数的对应关系.2.会正确的画出数轴,利用数轴上的点表示有理数.重点:掌握数轴的概念,理解数轴上的点和有理数的对应关系. 难点:会正确的画出数轴,利用数轴上的点表示有理数.一、知识链接1.回忆正负数的意义并回答以下问题:在一条东西方向的马路上,有一个学校,学校东50m 和西150m 处分别有一个书店和一个超市,学校西100m 和东200m 处分别有一个邮局和医院,以学校为“基准”,并把向东记作“+”,向西记作“-”,用正负数表示书店、超市、邮局、医院的位置.二、新知预习1.观察图中的温度计:(1) 温度计上有哪三类数:______________.(2) 如图,把温度计平放,零上温度居右,它像我们小学学过的一条_______. (3) 按照温度计设计的方法,请你把“知识链接”中的问题,设计一条直线来表示这几个有理数.【提示】以学校作为“0”点,用1cm 表示50m 作为单位长度,负数放在“0”点左边,正数在原点右边.类似温度计,按照如下方式处理的一条直线:(1)在直线上任取一个点表示数0,这个点叫做 ;(2)通常规定直线上从原点向右(或向上)为 ,从原点向 为负方向; (3)选取适当的长度作为 ,从直线上原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法表示-1,-2,-3,…. 这样的直线叫做数轴. 【自主归纳】规定了 、 和 的直线叫做数轴.三、自学自测下列图形中,不是数轴的是 ( )四、我的疑惑___________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分___________________________________________________________一、要点探究探究点1:数轴的概念及画法 问题1:什么是数轴?注意事项:(1)数轴是一条特殊的直线;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; (3)选取适当的长度为单位长度.做一做: 判断下面哪些是数轴,哪些不是?为什么?问题2:怎样画一条数轴?探究点2:在数轴上表示有理数思考:1.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2.每个数到原点的距离是多少?由此你又有什么发现?3.如何用数轴上的点来表示分数或小数? 如:1.5 怎样表示.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片2)2.探究点1新知讲授(见幻灯片7-10)3.探究点2新知讲授(见幻灯片11-16)-2 -1 0 1 2 1 2 3 4 -1 -2 0 1 2要点归纳:任何一个有理数都可以用数轴上的一个点来表示.一般地,设a 是一个正数,则数轴上表示数a 在原点的____边,与原点的距离是____个单位长度;表示数-a 的点在原点的____边,与原点的距离是____个单位长度.典例精析例1:在所给数轴上画出表示下列各数的点.1,-5,-2.5,4 ,0注意:1.把点标在线上;2.把数标在点的上方,以便观看.例2 在下面数轴上,A ,B ,C ,D 各点分别表示什么数?例3 从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动5个单位长度到达点C ,则点C 表示的数是 .针对训练1.在数轴上,0和-1之间表示的点的个数是( )A.0个B.1个C.2个D.无数个2. 点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为 ( )A.2B.-6C.2或-6D.不同于以上二、课堂小结1.数轴的定义:规定了原点、正方向和单位长度的直线叫数轴.2.数轴的画法.3.所有的有理数都可以用数轴上的点来表示,原点右边的数是正数,原点左边的数是负数,0是正负数的分界限.21-5教学备注 配套PPT 讲授3.探究点2新知讲授 (见幻灯片11-16)1.下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点 2.下图中所画的数轴,正确的是( )-1210-2A 21543B-1210C -1210D3.与原点距离是2.5个单位长度的点所表示的有理数是( ) A .2.5 B .-2.5 C .±2.5 D .这个数无法确定4.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点 到表示数-8的点的距离是_______个单位长度.5.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________. 6.如图所示,根据数轴上各点的位置,写出它们所表示的数.5430-1-2-3-421FED CB A7.画出数轴并标出表示下列各数的点.-312,4,2.5,0,1,7,-5.8.如图所示,在数轴上有A 、B 、C 三个点,请回答:(1)将A 点向右移动3个单位长度,C 点向左移动5个单位长度,它们各自表示新的 什么数?(2)移动A 、B 、C 中的两个点,使得三个点表示的数相同,有几种移动方法?当堂检测教学备注 配套PPT 讲授4.课堂小结5.当堂检测 (见幻灯片17-20)。
人教版七年级上册数学第一章《有理数》全章导学案
第一章有理数全章导学案【知识点】一、有理数的分类整数:正整数、0、负整数统称为整数;分数:正分数和负分数统称为分数;有理数:整数和分数统称为有理数;注意:0既不是正数,也不是负数.【典型例题】若[x)表示大于x的最小整数,如[5)=6,[﹣1.8)=﹣1,则下列结论中正确的有.(填写所有正确结论的序号)①[0)=1;②[)﹣=0;③[x)﹣x<0;④x<[x)≤x+1;⑤存在有理数x使[x)﹣x=0.2成立.【巩固练习】1、如果水位升高4米记作+4米,那么水位下降5米记作()A.﹣5米B.+4C.﹣4米D.+5米2、某快餐店外卖促销,佳佳和点点想点外卖,每单需支付送餐费5元,每种餐食外卖价格如表:餐食种类价格(单位:元)汉堡套餐40鸡翅16鸡块15冰激凌14蔬菜沙拉9促销活动:(1)汉堡套餐5折优惠,每单仅限一套;(2)全部商品(包括打折套餐)满20元减4元,满40元减10元,满60元减15元,满80元减30元.佳佳想要汉堡套餐、鸡翅、冰激凌、蔬菜沙拉各一份;点点想要汉堡套餐、鸡块、冰激凌各一份,若他们把想要的都买全,最少要花元(含送餐费).3、某商场对顾客实行这样的优惠规定:若一次购物不超过200元,则不予折扣;若一次购物超过200元,不超过500元,则按标价给予九折优惠;若一次购物超过500元,其中500元按上述九折优惠外,超过500元的部分给予八折优惠.某人两次购物分别付款198元和423元,如果他合起来一次购买同样的商品,那么他可节约元.4、某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.5、某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差kg.6、如图,半径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点处,若点A表示的数为﹣1,则点B对应的数是.【知识点】二、数轴三要素:原点、正方向、单位长度.1、包含三个内容:第一是数轴是一条直线,可以向两方无限延伸;第二是数轴的三要素——原点、正方向、单位长度,缺一不可;第三是原点的选定、正方向的取向、单位长度的确定都是规定的,通常取向右为正方向.所有的有理数都可以用数轴上的点表示,但数轴上的点所表示的不都是有理数.2、数轴的画法(1)画直线(一般画水平的);(2)在直线上取一点定为原点“0”(在原点下方标上“0”);(3)取原点向右的方向为正方向,并用箭头表示出来;(4)选取适当的长度作为单位长度,从原点向右每隔一个单位长度取一点,依次表示1,2,3,4,…,从原点向左,每隔一个单位长度取一点依次表示为-1,-2,-3,…零用原点表示.如图:【典型例题】如图,数轴上点A,M,B分别表示数a,a+b,b,那么原点的位置可能是()A.线段AM上,且靠近点A B.线段AM上,且靠近点MC.线段BM上,且靠近点B D.线段BM上,且靠近点M【巩固练习】1、把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0B.a﹣b<0C.a>﹣b D.﹣b>a2、在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是()A.﹣6B.﹣4C.2D.43、在下列图中,正确画出的数轴是()A.B.C.D.4、如图所示,数轴上的六个点满足AB=BC=CD=DE=EF,则在点B、C、D、E对应的数中,最接近﹣8的点是.【知识点】三、相反数:只有符号不同的两个数叫做互为相反数.(1)代数意义:只有符号不同的两个数叫互为相反数,其中一个数叫另一个数的相反数,也称这两个数互为相反数.零的相反数是零.(2)几何意义:在数轴上的原点两旁,离原点的距离相等的两个点所表示的数互为相反数.(3)性质:互为相反数的和为0,即a+b=0a、b两数互为相反数.(4)符号:在一个数前面加“-”号表示这个数的相反数,如数a的相反数是-a.强调:“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同.不能理解为只要符号不同的两个数就是互为相反数.除零外的两个相反数在数轴上,位于原点的两侧,且到原点的距离相等,即一个正数的相反数是一个负数;一个负数的相反数是一个正数;0的相反数仍是0.【典型例题】若﹣{﹣[﹣(﹣x)]}=﹣3,则x的相反数是.【巩固练习】1、9的相反数是()A.B.﹣C.9D.﹣92、点A在数轴上的位置如图所示,则点A表示的数的相反数为()A.﹣4B.4C.﹣D.3、点A、B、D在数轴上的位置如图所示,点A、B表示的数是互为相反数,若点B所表示的数为1,且AB=BD,则点D所表示的数为()A.2B.3C.4D.5【知识点】四、绝对值的意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作|a|.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:取绝对值也是一种运算,运算符号是“||”,求一个数的绝对值,就是根据性质去掉绝对值符号. 【典型例题】a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a0,b0,c0.(2)用“>、<、=”填空:﹣a0,a﹣b0,c﹣a0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.【巩固练习】1、下列说法,正确的是()A.一个数的绝对值越大,表示它的点在数轴上越靠右B.一个数的绝对值越大,表示它的点在数轴上离原点越近C.一个数的绝对值越大,表示它的点在数轴上离原点越远D.一个数的绝对值总是大于02、如图,数轴上的点A所表示的数为a,化简|a|﹣|a﹣4|的结果为()A.﹣2a﹣4B.﹣4C.2a+4D.43、如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如果|a|>|c|>|b|,那么下列结论正确的是()A.0<a<b<c B.a<0<b<c C.a<b<0<c D.a<b<c<0【知识点】五、绝对值的性质:①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值具有非负性,取绝对值的结果总是正数或0. 如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若|a|+|b|+|c|=0,则a=0,b=0,c=0.③任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5符号是负号,绝对值是5.非负数的绝对值等于它本身;非正数的绝对值等于它的相反数.正数>0>负数(1)一个数的绝对值越大,表示这个数在数轴上表示的点离原点越远.(2)两个正数,绝对值大的正数大;两个负数,绝对值大的反而小.有理数大小比较小结:能化简的先化简,然后按照有理数大小比较法则进行比较:异号两数比较大小,负数总是小于正数;两正数比较大小:绝对值大的数大于绝对值小的数;两负数比较大小:绝对值大的反而小;负数小于零;零小于正数.【典型例题】如果对于某一特定范围内的任意允许值,P=|1﹣4x|+|1﹣5x|+|1﹣6x|+|1﹣7x|+|1﹣8x|的值恒为一常数,则此值为.【巩固练习】1、在数轴上和有理数a,b,c对应的点的位置如图示,有下列四个结论:(1)a2﹣2a﹣3>0;(2)|a﹣b|+|b﹣c|=|a﹣c|;(3)(a+b)(b+c)(c+a)>0;(4)a2>|bc﹣1|.其中正确的结论有()个.A.4B.3C.2D.12、若有理数x、y、z均不为0,设代数式的最大值为a,最小值为b,则a+b=.3、计算的值为.【知识点】六、有理数的加法法则1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3、互为相反数的两个数的和为0;4、任何数同零相加都等于它本身.【典型例题】对于正数x,规定f(x)=,例如:f(2)==,f(3)==,f()==,f()==,……利用以上规律计算:f()+f()+f()+……+f()+f()+f(1)+f(2)+……+f(2019)的值为:.【巩固练习】1、某一电子昆虫落在数轴上的原点,从原点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4…依此规律跳下去,当它跳第2009次落下时,电子昆虫在数轴上的落点K2023表示的数是.2、一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:﹣4,+7,﹣9,+8,+6,﹣5,﹣2.(1)请问收工时检修小组离A地多远?在A地的什么方向?(2)若每千米耗油0.1升,请问这天共耗油多少升?3、计算(1)(﹣)+(﹣)﹣(﹣6);(2)﹣81÷×÷(﹣16);(3)[+(﹣7)﹣(﹣)]÷(﹣);(4)﹣(﹣1)2020+6÷(﹣2)3×(﹣).【知识点】七、有理数加法运算律1、交换律:a+b=b+a;2、结合律:(a+b)+c=a+(b+c).1.有理数的加减法可统一成加法.加减法统一成加法算式,按减法法则减去一个数可写成加上它们的相反数,这样便把加减法统一成加法算式.几个正数或负数的和称为代数和.2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.3、有理数加减混合运算的方法和步骤(1)将有理数加减法统一成加法,然后省略括号和加号.(2)运用加法法则、加法运算律进行简便运算.4、有理数加减混合运算的技巧方法(1)把正数、负数分别相加.(2)把和为零或整数的分别相加.(3)把整数、分数分别相加.(4)把同分母的、易通分的分数分别相加.【典型例题】1﹣2+3﹣4+5﹣6+7﹣8+9﹣10+11=.【巩固练习】1、已知在纸面上有一数轴,折叠纸面,数轴上﹣1表示的点与7表示的点重合.若数轴上A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是.2、计算:(1)(﹣15)+(+3)﹣(﹣5)﹣(+7);(2)﹣++﹣;(3)(﹣)×÷(﹣0.25);(4)﹣12+3×(﹣2)2×(﹣1)÷.【知识点】八、有理数的乘法法则(1)同号得正;(2)异号得负;(3)n个数相乘,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正;(4)任何数同0相乘,都得0;(5)互为倒数的两个数乘积为1.【典型例题】如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a﹣1)(b﹣1)>0;②(a﹣1)(b+1)>0;③(a+1)(b+1)>0.其中,正确式子的序号是.【巩固练习】1、按照如图所示的操作步骤,若输入值为﹣3,则输出的值为.2、计算:(1);(2)18+32÷(﹣2)3+|﹣3|×5.【知识点】九、有理数乘法的运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘或先把后两个数相乘,积不变. 即:(ab)c=a(bc).(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac. 有理数的除法法则除法是已知两个因数的积及其中一个因数,求另一个因数的运算.1、除以一个不等于0的数,等于乘这个数的倒数,可以表示成:a÷b=a·,其中b≠0.2、两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数都得0.3、0不能作除数.乘积为1的两个有理数互为倒数.正数的倒数是正数,负数的倒数是负数,0没有倒数.注意:(1)0没有倒数.(2)互为倒数的两数为同号.【典型例题】用简便方法计算:(1)11×(﹣30);(2)999×118+999×(﹣)﹣999×18.【巩固练习】1、计算42×2021+48×2021+62×2021的结果为()A.2021B.20210C.202100D.20210002、计算:(1)6×()﹣;(2)×(2÷﹣3);(3)[1﹣()]÷;(4)×÷(﹣);(5)÷+×.3、计算:(1)(﹣24)×(1+﹣);.(2)﹣0.25÷(﹣)×(﹣1).【知识点】十、有理数的加减乘除混合运算1、在带有括号的运算中,先算小括号,再算中括号,最后算大括号.2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减,注意运算律.3、合理运用运算律合理运用运算律是提高有理数运算能力的基本保证,在运用时,首先要搞清楚各种运算律的名称和使用的方法.(1)加法交换律和结合律通常在加、减运算中同时使用,交换的目的在于结合,结合时一般是按正负结合,按相反数结合,总之,将容易计算的数进行结合.(2)乘法交换律和结合律通常在乘、除运算中使用,交换的目的同样是为了结合,结合时一般将能约分的数结合.(3)分配律是乘法对加法的分配,它既可以正用(即a(b+c)=ab+ac),也可以逆用(即ab+ac=a(b+c)),要特别注意除法对加法没有分配律,不要出现12÷(4+3)=12÷4+12÷3=3+4=7的错误.4、含多重括号时,要注意灵活去括号,没必要墨守成规,总是先去小括号,再去中括号,最后去大括号,也可以先去大括号,再去小括号.有理数的加减乘除混合运算,应按照“先乘除,后加减”的顺序进行.若有括号,则应先计算括号内的数.【典型例题】定义一种对正整数n的“F”运算:①当n为奇数时,结果为n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行,例如,取n=40,则:若当n=2020,则对n进行到第2021次“F”运算的结果是.【巩固练习】1、定义两种新运算,观察下列式子:(1)xΘy=4x+y,例如,1Θ3=4×1+3=7;3Θ(﹣1)=4×3+(﹣1)=11;(2)[x]表示不超过x的最大整数,例如,[2.2]=2;[﹣3.24]=﹣4;根据以上规则,计算=.2、对于一个运算a※b=,已知|a|=3,b=2,那么a※b=.3、已知a、b互为相反数,c、d互为倒数,|m|是最小的正整数,则m+﹣cd的值为.【知识点】十一、有理数的乘方一般地,n个相同的因数a相乘,即,记作a n,读作a的n次方.求n个相同的因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n次幂.幂的读法,关键是分清底数和指数.如-24读作“2的四次方的相反数”或“2的四次幂的相反数”,不能读作“-2的四次方”或“-2的四次幂”.注意:一个数可以看作这个数本身的一次方,指数1通常省略不写.【典型例题】计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)66×.【巩固练习】1、对于任意的底数a,b,当n是正整数时,其中,第二步变形的依据是()A.乘法交换律与结合律B.乘法交换律C.乘法结合律D.乘方的定义2、计算﹣23的正确结果是()A.﹣8B.8C.﹣6D.63、22+22+22+22=2m,则m=.【知识点】十二、乘方的性质正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.0 的任何正整数次幂都是0.注意:负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来,分数的乘方,在书写时,也应加小括号.如不加括号则表达的是另外一个意义.【典型例题】计算:.【巩固练习】1、下列计算正确的是()A.(﹣1)2=﹣1B.(﹣1)3=﹣1C.﹣12=1D.﹣13=12、观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…猜想:13+23+…+n3(n是正整数)=.【知识点】十三、有理数的混合运算的运算顺序1、先乘方,再乘除,最后加减;2、同级运算,从左到右进行;3、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行.注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
七年级数学导学案上册人教版
七年级数学导学案上册人教版一、有理数。
1. 正数和负数。
- 同学们!咱们先来说说正数和负数。
你看啊,生活里有好多东西得用正数和负数来表示呢。
比如说温度,零上的温度就是正数,像+5℃,这表示比0℃高5度呢;零下的温度就是负数,比如 -3℃,就是比0℃低3度。
还有海拔高度,高于海平面的是正数,低于海平面的就是负数。
就像吐鲁番盆地的海拔是 -155米,这就表示它比海平面低155米。
- 在数学里,我们规定了0既不是正数也不是负数。
这就像一个分界点,正数在0的右边,负数在0的左边。
正数前面的“+”号有时候可以省略不写,但是负数前面的“ - ”号可不能省哦。
2. 有理数的分类。
- 有理数就像一个大家庭,它可以分成整数和分数这两大帮派。
整数又包括正整数、0和负整数。
像1、2、3这些是正整数, -1、 -2、 -3就是负整数啦。
而分数呢,也有正分数和负分数。
比如1/2、3/4就是正分数, -1/3、 -2/5就是负分数。
还有一种特殊的分数叫有限小数和无限循环小数,它们也属于分数哦。
比如说0.25(它其实就是1/4),0.333…(它就是1/3)。
二、整式的加减。
1. 单项式。
- 单项式啊,就像是数学里的小单元。
它是由数字和字母的积组成的式子,单独的一个数或者一个字母也叫单项式呢。
比如说3x,这就是一个单项式,其中3是系数,x是字母部分。
再比如说 -5,它也是单项式,它的系数就是 -5。
这里要注意哦,如果字母前面没有数字,那这个字母的系数就是1,像x的系数就是1, -y的系数就是 -1。
2. 多项式。
- 多项式就像是单项式组成的小团队。
几个单项式的和就叫做多项式。
比如说2x+3y,这就是一个多项式,它由单项式2x和3y组成。
在多项式里,每个单项式叫做多项式的项。
像2x+3y这个多项式里,2x和3y就是它的项。
其中不含字母的项叫做常数项,要是多项式是x² - 2x+3,这里的3就是常数项。
- 多项式还有次数呢。
七年级数学上册 第一章 有理数导学案(新版)新人教版
有理数 课题: 第一章小结 序号:18学习目标:1、知识和技能:检查学生对本章的掌握情况,复习整理本章的基本概念和有理数的运算法则、运算规律以及相关的知识点。
2、过程和方法:培养学生综合应用知识解决问题的能力。
3、情感、态度、价值观:渗透数形结合的思想学习重点:有理数的概念和有理数的运算;负数和有理数法则的理解。
学习难点:有理数的概念和有理数的运算;负数和有理数法则的理解。
导学方法:课 时:导学过程一、课前预习:完成《导学案》第44页和第47页自主测评二、课堂导学:1、导入这节课我们来复习第一章所学:1)、什么是负数?什么是有理数?什么是数轴?什么是相反数?什么是绝对值?2)、有理数加法法则及运算律有什么?有理数减法法则是什么?有理数乘法法则及运算律是什么?有理数除法法则是什么?有理数乘方法则是什么?2、出示任务 自主学习根据所学知识,完成些列各题1) 把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …};负有理数集{ …}负整数集{ …};自然数集{ …};正分数集{ …}负分数集{ …}2)在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来: 4,-|-2|, -4.5, 1, 03)在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-24)若a 和b 是互为相反数,则a+b =( )A. –2a B .2b C. 0 D. 任意有理数5),则; ,则______ x6)下列各式正确的是( )A. B.C. D.7)有理数的运算①②(-1)10×2+(-2)3÷4 ③(-5)3-3×④⑤(-10)4+[(-4)2-(3+32)×2]3、合作探究1)如果,则的取值范围是()2)已知=3,=4,且,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铜都双语学校高效课堂自主学习型数学日导学稿
班级 70 姓名 编号 NO :03 日期:
比一比,看谁表现最好!拼一拼,力争人人过关!
课题: 有理数 设计者: 七年级数学组
自研课(时段: 晚自习 时间: 10 分钟 )
1、旧知链接:把下列各数按要求分类:6, -3,2.4,4, 0, 4
3 ,-3.14…
(1)是正整数的有 ;(2)是负整数的有 ;(3)是正分数的有 ;(4)是负分数的有 。
2、新知自研:认真自研课本第7页。
展示课(时段: 正课 时间: 60 分钟 )
一、学习目标(1min ): 1.了解有理数的概念
2.能正确地对有理数进行分类
训练课(时段:晚自习 , 时间: 30分钟)
“日日清巩固达标训练题” 自评: 师评:
基础题:
1、下列说法正确的是…………………………………………………………( ) A 、正整数和正分数统称为正有理数 B 、正整数和负整数统称为整数 C 、正整数、负整数、正分数、负分数统称为有理数 D 、0不是有理数
2、把下列各数填在相应的大括号内:
-27 , 3.3 ,13 ,-1.2,32,-131, 0 ,-39.2 ,221
(1)正整数集合:{ …}; (2)正分数集合:{ …}; (3)非负数集合:{ …}; (4)负整数集合:{ …}; (5)负分数集合:{ …}; (6)负数集合:{ …}。
发展题:
有一位同学对老师说,因为像2,+2.37,…等正数是有理数,像-1,-3.1,-6,…等负数也是有理数,同样0也是有理数,因此得出结论:有理数包括正数、0和负数。
请问这位同学得出的结论是否正确?若不正确,请说明理由。
提高题:
观察下面一列有理数,探究其规律:-1,21
,31
-,41
,51
-,61
…
⑴第100个数是多少?它是正数还是负数? ⑵分数20091
,20101
是不是这列有理数中的数? ⑶如果这列数无限排列下去,与哪一个数越来越接近?
培辅课(时段:大自习 附培辅单)
1、今晚你需要培辅吗?(需要,不需要)
2、效果描述: 反思课
1、病题诊所:
2、精题入库:
【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。