初中数学一元二次方程试讲教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1对1个性化教案
学生学科数学年级九年级教师李瑞芳授课日期授课时段
课题一元二次方程
重点难点重点:掌握一元二次方程的概念、解法及应用
难点:一元二次方程的特殊解法、韦达定理及应用
教学内容
【基础知识:】
1、一元二次方程的概念怎样?其一般形式怎样?
2、你能说出下列方程是几元几次方程吗?
(1) 2x + 3 = 0 (2) 3x – 8 = 0 (3) 3x + y = 7
(4)
3、分析:一元二次方程一般形式中各部分概念?(即认识:二次项及二次系数、一次项及一次项系数、常数项)
4、方程的根:x = 3是一元一次方程2x – 6 = 0的根吗?
x = 1及x = -3是一元一次方程的根吗?
例1、你能找出下列方程的根吗:
5、一元二次方程的解题思想-------降次
(1)直接开平方法;
(2)配方法;
(3)公式法;
(4)因式分解法--------十字相乘法;
(5)根与系数的关系-------韦达定理。
【重点知识】
一、一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.它的一般形式是()
200
ax bx c a
++=≠.
典型例题解析:
例1.方程()2
21
170m
m m x x m --++-=是一元二次方程,则m = .
分析:考查一元二次方程的概念及其成立的条件(二次项系数a 不为零).
例2:指出下列一元二次方程中a,b,c 的值
(1)2x 2+3x-4=0; (2)16y 2+9=24y ; (3)3x 2-2x+2=0; (4)3t 2-36t+2=0; (5)5(x 2+1)-7x=0.
二、用适当的方法解方程 1、直接开平方法:形如
或者
的方程;
例1、给下下列等式填上适当的数字。
例2、用直接开平方法求出下列方程的根:
2、配方法:方程都能化成或形式,从而
去求解。 1、思考:求的根
例1:解下列方程:
总结:配方法解一元二次方程的基本步骤:
(1)、要将方程化为二次项系数是1的形式,并把常数项移到方程的右边;
(2)、要在方程两边各加上一次项系数的一半的平方,使左边配成一个完全平方式;
(3)、若当方程右边的常数项为非负数时,用直接开平方法求解。
注意:第2步是关键也是难点。
例2、用配方法解下列方程:
3、公式法:任何方程的根都可以有公式法直接求出,方程的根为
。
1、思考:试用配方法解关于x的方程:
结论:(1),有两个不等的实根;
(2),有两个相等的实根;
(3),有没实根。
例1:用公式法解下列方程
例2:不解方程,判定方程根情况:
巩固练习:不解方程,判定方程根情况:
教研部建议:
教研部签字:日期:年月日