初中数学一元二次方程试讲教案

合集下载

一元二次方程的相关教案精选4篇

一元二次方程的相关教案精选4篇

一元二次方程的相关教案精选4篇元二次方程篇一[教材分析]中学阶段我们研究的多项式函数中有二次函数,研究的几何图形中有二次曲线。

因此一元二次方程便成为了方程中研究的重要内容。

一元二次方程有根与系数关系,求根公式向我们揭示了两根与系数间的密切关系,而根与系数还有更进一步的发现,这一发现在数学学科中具有极强的实用价值,本节内容既是代数式、一元一次方程和一元二次方程求根公式等知识的进一步深化,又蕴含有丰富的数学思想方法,也为学生们将来的学习打下了必要的基础。

[学生分析]进入了初二下半学期,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。

因此在学过了一元二次方程的解法后,自主探究其根与系数的关系是完全可能的。

再加上我所执教的学生,他们有着较强的认知力与求知欲,基于以上思考,我在设计中扩大了学生的智力参与度,也相对放大了知识探索的空间。

[教学目标]在学生探求一元二次方程根与系数关系的活动中,经历观察、分析、概括的过程以及“实践——认识——再实践——再认识”的过程,得出一元二次方程根与系数的关系。

能利用一元二次方程根与系数的关系检验两数是否为原方程的根;已知一根求另一根及系数。

理解数学思想,体会代数论证的方法,感受辩证唯物主义认识论的基本观点。

[教学重难点]发现并掌握一元二次方程根与系数的关系,包括知识从特殊到一般的发生发展过程[教学过程](一)复习导入请学生求解表格内的方程,完成解法的交流以及求根公式的复习,求根公式向我们揭示了两根与系数间的关系,那么一元二次方程根与系数间是否还有更深一层的联系呢?由此疑问,导入新课。

(二)探求新知数学学科中由数到式的结构编排,让我们想到了从两根运算上的最简组合:和差积商展开进一步研究。

初探新知中,我将学生们分成两组,分别对二次项系数为 1 的一元二次方程两根进行和差积商的运算,之后将结果汇总展示,共同观察与系数的联系。

我在这些方程中安排了两个无理根方程。

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)

《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

《一元二次方程》教案合集6篇

《一元二次方程》教案合集6篇

《一元二次方程》教案合集6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、讲话致辞、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, job reports, speeches, contract agreements, policy documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《一元二次方程》教案合集6篇《一元二次方程》教案篇1一、教学目标知识与技能(1)理解一元二次方程的意义。

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】

《解一元二次方程》教学设计【优秀9篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《解一元二次方程》教学设计【优秀9篇】在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。

2023最新-一元二次方程教案(优秀7篇)

2023最新-一元二次方程教案(优秀7篇)

一元二次方程教案(优秀7篇)作为一名默默奉献的教育工作者,时常会需要准备好教案,教案是备课向课堂教学转化的关节点。

优秀的教案都具备一些什么特点呢?牛牛范文为您带来了7篇一元二次方程教案,如果对您有一些参考与帮助,请分享给最好的朋友。

九年级数学《一元二次方程》教案篇一一、教材分析:1、本章的主要内容:(1)一元二次方程的有关概念;(2)一元二次方程的解法,根的判别式及根与系数的关系;(3)实际问题与一元二次方程。

2、本章知识结构图:3、教学目标:(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4、本章的重点与难点本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:(1)分析方程的特点并根据方程的特点选择合适的解法;(2)实际背景问题的等量分析,设元列一元二次方程解应用题。

即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。

同时,还要根据实际问题的意义检验求得的结果是否合理。

二、教学中应注意的问题:1、重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。

教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。

当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。

在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

初中数学《一元二次方程》试讲教案

初中数学《一元二次方程》试讲教案

初中数学《一元二次方程》试讲教案一、教学目标
(一)使学生学会用列一元二次方程的方法解有关数与数字之间关系的应用题。

(二)通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

(三)通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、教学重难点
(一)教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

(二)教学难点:根据数与数字关系找等量关系。

三、教学准备
多媒体课件PPT、资料
四、教学方法
谈话法:师生间进行交流对话。

讲授法:教师启发学生,讲授基本的教学内容。

自主探究法:让学生自己通过各种渠道搜集资料,通过主动探究获取新知识。

五、教学过程
(一)复习提问
1、列方程解应用问题的步骤?
(1)审题(2)设未知数(3)列方程(4)解方程(5)答
2、两个连续奇数的表示方法是()。

(n表示整数)
(二)例题讲解
例1 两个连续奇数的积是323,求这两个数。

分析:1、两个连续奇数中较大的奇数与较小奇数之差为2。

2、设元(几种设法)a.设较小的奇数为x,则另一奇数为;b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

以上分析是在教师的引导下,学生回答。

有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法1:设较小奇数为x,另一个为,
据题意,得。

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)

一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。

(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

难点:准确理解一元二次方程的意义。

三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

《一元二次方程》教案1(5篇模版)

《一元二次方程》教案1(5篇模版)

《一元二次方程》教案1(5篇模版)第一篇:《一元二次方程》教案122.1一元二次方程教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。

数学思考在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系。

解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。

情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情境引入【问题情境】问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?/ 5问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?【活动方略】教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、探索新知【活动方略】学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击/ 5例1 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并指出各项系数.解:去括号得3x2-3x=5x+10,移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2 猜测方程x2-x-56=0的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x =1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).【设计意图】探究一元二次方程根的概念以及作用.四、反馈练习课本P32 练习1,2 课本P33 练习1、2题补充习题:1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中/ 5 的二次项、二次项系数;一次项、一次项系数;常数项.2.你能根据所学过的知识解出下列方程的解吗?(1)x2-36=0;【活动方略】学生独立思考、独立解题.教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】检查学生对基础知识的掌握情况.五、应用拓展例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1 ∵(m-4)≥0 ∴(m-4)2+1>0,即(m-4)2+1≠0 ∴不论m取何值,该方程都是一元二次方程.例4:有人解这样一个方程(x+5)(x-1)=7.解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?由(x+5)(x-1)=7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.【活动方略】教师活动:操作投影,将例3、例4显示,组织学生讨论.学生活动:合作交流,讨论解答。

初三数学一元二次方程教案优秀5篇

初三数学一元二次方程教案优秀5篇

初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。

方程,只有当时,才叫做一元二次方程。

如果且,它就是一元二次方程了。

解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。

二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。

2.教学难点:有关增长率之间的数量关系。

下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。

三、教学步骤(一)明确目标。

九年级数学一元二次方程教案5篇最新

九年级数学一元二次方程教案5篇最新

九年级数学一元二次方程教案5篇最新一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。

今天小编在这里整理了一些,我们一起来看看吧!九年级数学一元二次方程教案1教学目标1。

知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。

2。

过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。

•根据数学模型恰如其分地给出一元二次方程的概念。

(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。

(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。

九年级数学一元二次方程教案2【主体知识归纳】1.整式方程方程的两边都是关于未知数的整式,这样的方程叫做整式方程.2.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.3.一元二次方程的一般形式为ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.4.直接开平方法形如x2=a(a≥0)的方程,因为x是a的平方根,所以x=± ,即x1= ,x2=- .这种解一元二次方程的方法叫做直接开平方法.5.配方法将一元二次方程ax2+bx+c=0(a≠0)化成(x+ )2= 的形式后,当b2-4ac≥0时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.6.公式法用一元二次方程ax2+bx+c=0(a≠0)的求根公式x= (b2-4ac≥0),这种解一元二次方程的方法叫做公式法.【基础知识讲解】1.一元二次方程的概念包涵三个条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2”.一元二次方程的概念中“只含有一个未知数,并且未知数的最高次数是2”是对化成一般形式之后而言的.例如,判断方程2x2+2x-1=2x2是否是一元二次方程?应先整理方程,得2x-1=0,所以此方程不是一元二次方程.2.在求二次项、一次项和常数项时,要先整理方程,把方程化成一般形式,即ax2+bx+c=0,再确定所求.方程ax2+bx+c=0只有当a≠0时,才是一元二次方程,例如a=0,b≠0时,它就是一元一次方程,因此,如果明确指出ax2+bx+c=0是一元二次方程,那么就一定包括a≠0这个条件.3.直接开平方法适用于解化为x2=a形式的方程,当a≥0时,方程有实数解;当a0时,方程没有实数解.4.配方法是先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解;如果右边是负数时,方程无实数解.5.求根公式是针对一元二次方程的一般形式来说的,使用求根公式时,必须先把方程化成一般形式,才能正确地确定各项系数,在应用公式之前,先计算出b2-4ac的值,当b2-4ac≥0时,代入公式求出方程的根;当b2-4ac0时,方程没有实数根,这时就不必再代入公式了.【例题精讲】例1:指出下列方程中哪些是一元二次方程:(1)5x2+6=3x(2x+1);(2)8x2=x;(3)y3-y-1=0;(4)4x2-3y=0;(5)-x2=0;(6)x(5x-1)=x(x+3)+4x2.剖析:判断一个方程是不是一元二次方程,首先要对方程进行整理,化成一般形式,然后再根据条件:①整式方程;②只含有一个未知数;③未知数的最高次数为2.只有当这三个条件缺一不可时,才能判断为一元二次方程.解:(1)去括号,得5x2+6=6x2+3x,移项、合并同类项,得x2+3x-6=0,∴此方程是一元二次方程.(2)移项,得8x2-x=0,∴此方程是一元二次方程.(3)因为未知数的最高次数是3,∴此方程不是一元二次方程.(4)∵方程中含有两个未知数,∴它不是一元二次方程.(5)∵a=-1≠0,∴它是一元二次方程.(6)整理,得4x=0∴它不是一元二次方程.例2:写出下列一元二次方程的二次项系数、一次项系数及常数项:(1)2x2=3x+5;(2)(x+1)(x-1)=1;(3)(x+2)2-4=0.剖析:虽然该题没有要求把方程化成一般形式,但在做题时,也要先把方程化成一般形式.因为方程的.二次项系数、一次项系数及常数项是在方程为一般形式下的,所以必须先整理方程.解:(1)整理,得2x2-3x-5=0.二次项系数是2,一次项系数是-3,常数项是-5.(2)整理,得x2-2=0.二次项系数是1,一次项系数是0,常数项是-2.(3)整理,得x2+4x=0.二次项系数是1,一次项系数是4,常数项是0.例3:关于x的整式方程(m-1)x2+(2m-1)x+4=0是一元二次方程吗?剖析:要判别原方程是否是一元二次方程,易想到用定义,满足条件:(1)整式方程;(2)方程中只含有一个未知数;(3)未知数的最高次数是2.原方程显然满足(1)、(2).由于不知m是怎样的实数,所以不一定满足(3).因此,需分类探讨.解:当m-1≠0,即m≠1时,原方程是一元二次方程.当m-1=0,即m=1时,原方程是x+4=0是一元一次方程.说明:在移项、合并同类项时,易出现符号错误,需格外小心,要认真区别题目要求是指出方程的各项还是各项系数.特别要小心当某项的系数为负数时,指出各项时千万不要丢负号.例4:用直接开平方法解下列方程:(1)3x2-27=0;(2)(3x-5)2-7=0.解:(1)3x2-27=0,3x2=27,x2=9,∴x=± ,即x=3或x=-3.∴x1=3,x2=-3.(2)(3x-5)2-7=0,(3x-5)2=7,∴3x-5=± ,即3x-5= 或3x-5=- .∴x1= ,x2= .例5:用配方法解方程2x2+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)2=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x2+ x-2=0.移项,得x2+ x=2.配方,得x2+ x+( )2=2+( )2= ,即(x+ )2= .解这个方程,得x+ =± ,x+ =± .即x1= ,x2=-4.说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x2-4x+3的值恒大于零,可以做如下的变形:2x2-4x+3=2x2-4x+2+1=2(x-1)2+1.例6:用公式法解下列方程:(1)2x2+7x=4;(2)x2-1=2 x.解:(1)方程可变形为2x2+7x-4=0.∵a=2,b=7,c=-4,b2-4ac=72-4×2×(-4)=810,∴x= .∴x1= ,x2=-4.(2)方程可变形为x2-2 x-1=0.∵a=1,b=-2 ,c=-1,b2-4ac=(-2 )2-4×1×(-1)=160.∴x= .∴x1= +2,x2= -2.说明:在用公式法解方程时,一定要先把方程化成一般形式.例7:一元二次方程(m-1)x2+3m2x+(m2+3m-4)=0有一根为零,求m的值及另一根.解:因为方程有一根为零,所以它的常数项m2+3m-4=0,解得m1=1,m2=-4,又因为此方程是一元二次方程,所以m-1≠0,即m≠1,所以m=-4.把m=-4代入方程,得-5x2+48x=0,解得:x1=0,x2=9.6,所以方程的另一根为9.6.说明:方程有一根为零时,常数项必须为零;求解字母系数的一元二次方程的问题中,二次项系数的字母必须保证二次项系数不等于零,这是解此类问题的先决条件.【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是( )A. =0B. =0C.x2+2xy+1=0D.5x=3x-1(2)下列方程不是一元二次方程的是( )A. x2=1B.0.01x2+0.2x-0.1=0C. x2-3x=0D. x2-x= (x2+1)(3)方程3x2-4=-2x的二次项系数、一次项系数、常数项分别为( )A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x2-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为( )A.-1B.1C.-2D.2(5)若方程(m2-1)x2+x+m=0是关于x的一元二次方程,则m的取值范围是( )A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1(6)方程x(x+1)=0的根为( )A.0B.-1C.0,-1D.0,1(7)方程3x2-75=0的解是( )A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)2=6的两个根是( )A.x1=x2=5+B.x1=x2=-5+C.x1=-5+ ,x2=-5-D.x1=5+ ,x2=5-(9)若代数式x2-6x+5的值等于12,那么x的值为( )A.1或5B.7或-1C.-1或-5D.-7或1(10)关于x的方程3x2-2(3m-1)x+2m=15有一个根为-2,则m 的值等于( )A.2B.-C.-2D.2.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x2; (2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3)2; (4) y2- y= y2- y+ .3.当m满足什么条件时,方程(m+1)x2-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x2= ;(2)x2=1.96;(3)3x2-48=0;(4)4x2-1=0;(5)(x-1)2=144;(6)(6x-7)2-9=0.5.用配方法解下列方程:(1)x2+12x=0; (2)x2+12x+15=0 (3)x2-7x+2=0;(4)9x2+6x-1=0; (5)5x2-2=-x; (6)3x2-4x=2.6.用公式法解下列方程:(1)x2-2x+1=0; (2)x(x+8)=16; (3)x2- x=2; (4)0.8x2+x=0.3;(5)4x2-1=0; (6)x2=7x; (7)3x2+1=2 x; (8)12x2+7x+1=0.7.(1)当x为何值时,代数式2x2+7x-1与4x+1的值相等?(2)当x为何值时,代数式2x2+7x-1与x2-19的值互为相反数?8.已知a,b,c均为实数,且+|b+1|+(c+3)2=0,解方程ax2+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax2+bx+c=0的根.10.用配方法证明:(1)3y2-6y+11的值恒大于零;(2)-10x2-7x-4的值恒小于零.11.证明:关于x的方程(a2-8a+20)x2+2ax+1=0,不论a为何实数,该方程都是一元二次方程.九年级数学一元二次方程教案3教学目标1. 了解整式方程和一元二次方程的概念;2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

数学面试试讲真题《一元二次方程》教案、教学设计

数学面试试讲真题《一元二次方程》教案、教学设计

数学面试试讲真题《一元二次方程》教案、教学设计
一、教学目标
【知识与技能】
理解一元二次方程的概念及其一般式,了解一元二次方程根的概念。

【过程与方法】
通过实际问题的探究,回顾一元一次方程的概念,逐渐形成数学建模的数学思想以及提高类比迁移的能力。

【情感、态度与价值观】
通过数学建模,激发学习数学的兴趣,体会做数学的快乐,提高对数学的学习兴趣。

二、教学重难点
【教学重点】
理解一元二次方程的概念及其一般式。

【教学难点】
建立数学模型列方程。

三、教学过程
(一)引入新课
复习旧知:回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。

总结:明确本节课学习初中阶段的最后一种方程,《一元二次方程》。

(二)探索新知
提问:请同学们类比一元一次方程,给一元二次方程下定义。

学生类比一元一次方程定义得到一元二次方程文字描述。

学生解决问题。

追问:这个方程是不是一元二次方程呢?
提问:你们能写出几个一元二次方程吗?
出示题目用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?
追问:这个方程是不是一元二次方程呢?
提问:请同学们利用前面的多个方程,以小组讨论的形式探究什么样形式的方程是一元二次方程?并派代表进行回答汇总。

四、板书设计。

初中数学试讲教案《一元二次方程复习》

初中数学试讲教案《一元二次方程复习》

初中数学试讲教案《一元二次方程复习》只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

下面,小编为大家分享初中数学试讲教案《一元二次方程复习》,希望对大家有所帮助!试讲人:XXX知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!1、自我介绍:30s大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!2、一元二次方程概念、系数、根的判别式:8min30s我们今天的课堂内容是复习一元二次方程。

首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:(1)x -10x+9=0 是 1 -10 9(2)x +2=0 是 1 0 2(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)(4)3x -5x=3x 不是整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的`一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!一元:只含一个未知数二次:含未知数项的最高次数为2方程:一个等式一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。

记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。

九年级数学上一元二次方程的解法教案【优秀3篇】

九年级数学上一元二次方程的解法教案【优秀3篇】

数学,是一门有趣而又很有学问的学科。

生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。

2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!以下是人见人爱的小编分享的九年级数学上一元二次方程的解法教案【优秀3篇】,在大家参照的同时,也可以分享一下白话文给您最好的朋友。

数学《一元二次方程》教案设计篇一教材分析1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。

一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

学情分析1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的`难度,解决这问题要以多练为主。

3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

教学目标1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

教学重点和难点1、重点:概念的形成及一般形式。

2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

元二次方程的应用篇二第一课时教学目标一、教学1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

初三数学一元二次方程教案(最新5篇)

初三数学一元二次方程教案(最新5篇)

初三数学一元二次方程教案(最新5篇)元二次方程篇一教学目标1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。

3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:重点:的概念和它的一般形式。

难点:对的一般形式的正确理解及其各项系数的确定。

教学建议:1. 教材分析:1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。

2)重点、难点分析理解的定义:是的重要组成部分。

方程,只有当时,才叫做。

如果且,它就是了。

解题时遇到字母系数的方程可能出现以下情况:(1)的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合的定义。

(2)条件是用“关于的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。

如“关于的”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。

如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是,解题时就会有不同的结果。

教学目的1.了解整式方程和的概念;2.知道的一般形式,会把化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:重点:1.的有关概念2.会把化成一般形式难点:的含义。

教学过程设计一、引入新课引例:剪一块面积是壹五0cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程( x(x十5)=壹五0 )深入引导:方程x(x十5)=壹五0有人会解吗?你能叫出这个方程的名字吗?二、新课1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。

初三一元二次方程试听课教案(共5则范文)

初三一元二次方程试听课教案(共5则范文)

初三一元二次方程试听课教案(共5则范文)第一篇:初三一元二次方程试听课教案(共)一元二次方程与韦达定理知识点:例1、已知关于x的方程x²-13+k=0的两根为a、b,且满足a-3b=1,求k。

例2、如果实数a、b分别满足a²+2a=2,b²+2b=2,求例3、例3、已知:p²-p-1=0,1-q-q²=0,且pq≠1,求☞练习1、已知2m-5m-1=0,2、已知实数s、t分别满足19s+99s+1=0,t+99t+19=0,并且st≠1,求22211+的值。

abpq+1的值。

q1511+-2=0+的值。

,且,求m≠nn2nmnst+4s+1的值。

t第二篇:《一元二次方程》参考教案21.1 一元二次方程教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识技能探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.数学思考在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.解决问题培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情境引入【问题情境】问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?【活动方略】教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.二、探索新知【活动方略】学生活动:请口答下面问题.(1)上面几个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【设计意图】主体活动,探索一元二次方程的定义及其相关概念.三、范例点击例1 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并指出各项系数.解:去括号得3x2-3x=5x+1,移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.教师活动:在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题).【设计意图】进一步巩固一元二次方程的基本概念.例2 猜测方程x2-x-56=0的解是什么?【活动方略】学生活动:学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师活动:教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).【设计意图】探究一元二次方程根的概念以及作用.四、反馈练习课本P4 练习1、2题补充习题:1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.2.你能根据所学过的知识解出下列方程的解吗?(1)x2-36=0;【活动方略】学生独立思考、独立解题.教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】检查学生对基础知识的掌握情况.五、应用拓展例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.例4:有人解这样一个方程(x+5)(x-1)=7.解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?由(x+5)(x-1)=7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.【活动方略】教师活动:操作投影,将例3、例4显示,组织学生讨论.学生活动:合作交流,讨论解答。

初中数学一元二次方程试讲教案

初中数学一元二次方程试讲教案

1对1个性化教案学生学科数学年级九年级教师李瑞芳授课日期授课时段课题一元二次方程重点难点重点:掌握一元二次方程的概念、解法及应用难点:一元二次方程的特殊解法、韦达定理及应用教学内容【基础知识:】1、一元二次方程的概念怎样?其一般形式怎样?2、你能说出下列方程是几元几次方程吗?(1) 2x + 3 = 0 (2) 3x – 8 = 0 (3) 3x + y = 7(4)3、分析:一元二次方程一般形式中各部分概念?(即认识:二次项及二次系数、一次项及一次项系数、常数项)4、方程的根:x = 3是一元一次方程2x – 6 = 0的根吗?x = 1及x = -3是一元一次方程的根吗?例1、你能找出下列方程的根吗:5、一元二次方程的解题思想-------降次(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法--------十字相乘法;(5)根与系数的关系-------韦达定理。

【重点知识】一、一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.它的一般形式是()200ax bx c a++=≠.典型例题解析:例1.方程()221170mm m x x m --++-=是一元二次方程,则m = .分析:考查一元二次方程的概念及其成立的条件(二次项系数a 不为零).例2:指出下列一元二次方程中a,b,c 的值(1)2x 2+3x-4=0; (2)16y 2+9=24y ; (3)3x 2-2x+2=0; (4)3t 2-36t+2=0; (5)5(x 2+1)-7x=0.二、用适当的方法解方程 1、直接开平方法:形如或者的方程;例1、给下下列等式填上适当的数字。

例2、用直接开平方法求出下列方程的根:2、配方法:方程都能化成或形式,从而去求解。

1、思考:求的根例1:解下列方程:总结:配方法解一元二次方程的基本步骤:(1)、要将方程化为二次项系数是1的形式,并把常数项移到方程的右边;(2)、要在方程两边各加上一次项系数的一半的平方,使左边配成一个完全平方式;(3)、若当方程右边的常数项为非负数时,用直接开平方法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1对1个性化教案
学生学科数学年级九年级教师李瑞芳授课日期授课时段
课题一元二次方程
重点难点重点:掌握一元二次方程的概念、解法及应用
难点:一元二次方程的特殊解法、韦达定理及应用
教学内容
【基础知识:】
1、一元二次方程的概念怎样?其一般形式怎样?
2、你能说出下列方程是几元几次方程吗?
(1) 2x + 3 = 0 (2) 3x – 8 = 0 (3) 3x + y = 7
(4)
3、分析:一元二次方程一般形式中各部分概念?(即认识:二次项及二次系数、一次项及一次项系数、常数项)
4、方程的根:x = 3是一元一次方程2x – 6 = 0的根吗?
x = 1及x = -3是一元一次方程的根吗?
例1、你能找出下列方程的根吗:
5、一元二次方程的解题思想-------降次
(1)直接开平方法;
(2)配方法;
(3)公式法;
(4)因式分解法--------十字相乘法;
(5)根与系数的关系-------韦达定理。

【重点知识】
一、一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.它的一般形式是()
200
ax bx c a
++=≠.
典型例题解析:
例1.方程()2
21
170m
m m x x m --++-=是一元二次方程,则m = .
分析:考查一元二次方程的概念及其成立的条件(二次项系数a 不为零).
例2:指出下列一元二次方程中a,b,c 的值
(1)2x 2+3x-4=0; (2)16y 2+9=24y ; (3)3x 2-2x+2=0; (4)3t 2-36t+2=0; (5)5(x 2+1)-7x=0.
二、用适当的方法解方程 1、直接开平方法:形如
或者
的方程;
例1、给下下列等式填上适当的数字。

例2、用直接开平方法求出下列方程的根:
2、配方法:方程都能化成或形式,从而
去求解。

1、思考:求的根
例1:解下列方程:
总结:配方法解一元二次方程的基本步骤:
(1)、要将方程化为二次项系数是1的形式,并把常数项移到方程的右边;
(2)、要在方程两边各加上一次项系数的一半的平方,使左边配成一个完全平方式;
(3)、若当方程右边的常数项为非负数时,用直接开平方法求解。

注意:第2步是关键也是难点。

例2、用配方法解下列方程:
3、公式法:任何方程的根都可以有公式法直接求出,方程的根为。

1、思考:试用配方法解关于x的方程:
结论:(1),有两个不等的实根;
(2),有两个相等的实根;
(3),有没实根。

例1:用公式法解下列方程
例2:不解方程,判定方程根情况:
巩固练习:不解方程,判定方程根情况:
教研部建议:
教研部签字:日期:年月日。

相关文档
最新文档