串联校正和反馈校正

合集下载

山东大学 自动控制原理 6-1串联校正

山东大学 自动控制原理 6-1串联校正

5
加入校正装置后使未校正系统的缺陷得到补偿,这 就是校正的作用。 6.1.2 校正方式 常用的校正方式有串联校正、反馈校正、前馈校 正和复合校正四种。 串联校正装置一般接在系统误差测量点之后和放大 器之前,串接于系统前向通道之中;反馈校正装置接 在系统局部反馈通道之中。
串联 校正 控制 器 对 象
1 aTs Gc ( s ) 1 Ts

(1)零极点分布图:
∵a 1
1/T
1/aT
0
∴零点总是位于极点之右,二者的距离由常
14
数a决定。零点的作用大于极点,故为超前网络。
(2)对数频率特性曲线: L()/dB 20dB/dec
1 aTs Gc ( s ) 1 Ts
20lga
特性曲线G(s )/k1所示,但稳态误差也要随之增加,所 以开环放大系数是不能减小的。而改变未校正系统的 其它参数都是比较困难的。这样就得在原系统的基础 上采取另外一些措施,即对系统加以“校正”。 所谓的“校正”,就是在原系统中加入一些参数 可以根据需要而改变的机构或装置,使系统整个特性 发生变化,从而满足给定的各项性能指标。这一附加 的装置称为校正装置。
可见,m出现在1 =1/aT 和2 =1/T 的几何中点。
1 sin m a 1 sin m
上式表明,m仅与a有关。a值选得越大,则超前网络的 微分作用越强。但为了保持较高的系统信噪比,实际选用 的a值一般不大于20。此外,m处的对数幅频值为
Lc ( m ) 10 lg a
17
L()/dB 20dB/dec 10lga 0 20lga
1 aT
1 T

()
0
m m

m

自动控制原理--常用校正方式及基本控制规律

自动控制原理--常用校正方式及基本控制规律

PID -- Proportional-Integral-Derivative 比例-积分-微分
P – 反映误差信号的瞬时值大小,改变快速性;
I – 反映误差信号的累计值,改变准确性;
D – 反映误差信号的变化趋势,改变平稳性。
(1) 比例(P)控制规律
R(s) E(s)
M(s)
Gc (s) K p m(t) K pe(t)
复合控制的基本原理:实质上,复合控制是一种按不 变性原理进行控制的方式。不变性原理是指在任何输入下, 均保证系统输出与作用在系统上的扰动完全无关,使系统 输出完全复现输入。
复合校正的基本思想:对提高稳态精度与改善动态性 能这两部分分别进行综合。根据动态性能要求综合反馈控 制部分,根据稳态精度要求综合顺控补偿部分,然后进行 校验和修改,直到获得满意的结果。这就是复合控制系统 综合校正的分离原则。
能。
13
(4) 比例-积分-微分(PID)控制规律
R(s)
E(s) B(s)
K
p
(1
Td
s
1 Ti s
)
M(s)
图 6-6 PID控制器
m(t)
K
pe(t)
Kp Ti
t
e( )d
0
K pTd
de(t) dt
Gc (s)
K p (1 Td s
1 Ti s
)
Kp Ti
(T1s
1)(T2s 1) s
图 6-34 按输入补偿的复合控制系统
实现输出完全复现输入(即Cr(s)=R(s))的全补偿条件
Gr
(s)
1 G0 (s)
➢按不变性原理求得的动态全补偿条件,往往难于实
现。通常,只能实现静态(稳态)全补偿或部分补偿。

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

基本概念两种常用校正装置设计方法频率法2

基本概念两种常用校正装置设计方法频率法2

第六章1. 基本概念2. 两种常用校正装置3. 设计方法(1)频率法(2)根轨迹法(3)复合校正 6—1 校正的基本概念一、性能指标的提法:1.稳态误差:Ess 或v Kp Kz Kv 2.动态品质:(1) 时域指标:δ% ts (2)开环频域指标:Wc ν(3)闭环频域指标:Mr Wr 或Wb 如何改变性能的问题?1. 改变系统参数:增大开环传递函数K →ess ↓→h ↘v ↘→σ(改善很有限,且稳态与动态有些矛盾)2. 改变系统结构:增加辅助装置定义:利用增加辅助装置改变系统性能方法称为— 辅助装置包括:校正装置 、控制器、调节器二、校正方式:1. 串联校正:图P36 2. 反馈校正:图 3. 复合校正:(1)按给定输入的 图 目的:理论上可以做到:C (S )=R (S )即C (t )=R (t )(2)按扰动输入的 图 目的:理论上完全消除N (s )对输入影响Cr (s )=0工程上一般采用近似补偿 三、设计方法 (频域法) 1. 试探法(分析法)首先根据检验选定校正装置的基本形式→算出校正装置的参数→检验校正后的性能指标→是否符合; 如果符合则完成设计 ;否从新设计2.综合法(数学法)首先由要求的性能指标→画出希望的开环L(w)曲线→再与原系统的L (W )想比较→得到校正装置的Lc(w)→反写出校正装置的传函6—2常用的校正装置分类:讨论电的校正装置1。

无源校正装置(RC 网络)2。

有源校正装置(运放器)调节器一、无源超前校正装置(RC 网络 传函 伯德图) 电路:U2U1CR2R1传函:(复阻抗法)Gc(s)=1+Tas/a(1+Ts) a 衰减系数 T 时间常数必须补偿a 的衰减:把原K 增加a 倍或再串一个放大器(a 倍) 补偿后:aGc(s)=1+TaS/1+TS (a>1) 二、无源迟后校正装置 电路;6—3一、超前校正问题的提出 例:系统如图所示,要求1. 在单位斜坡输入下稳态误差ess<0.1;2. 开环剪切频率3. 相角裕度 幅值裕度问是否需要校正,怎样校正?解:首先进行稳态计算K=10可以满足稳态误差要求。

第6章 控制系统的校正及综合

第6章   控制系统的校正及综合
W
(s ) =
100 s + 1 s 10
A(ω c ) ≈
100
ωc
ωc
10
=1
ω c = 31.6
31.6 γ (ω c ) = 180° + − 90° − arctan = 17.5° 10
6.2 串联校正
Bode图如下图所示 图如下图所示
6.2 串联校正
γd
γd
频率特性为
jω T + 1 Wc ( jω ) = ⋅ γ d jω T + 1 1
γd
6.2 串联校正
校正电路的Bode图如下:
ω 2 = γ d ω1
ωmax = ω1 ⋅ ω2,ϕ max γ d −1 = arcsin γ d +1
6.2 串联校正
引前校正的设计步骤:
(1)根据稳态误差的要求确定系统开环放大系数,绘制 Bode图,计算出未校正系统的相位裕量和增益裕量。 (2)根据给定相位裕量,估计需要附加的相角位移。 (3)根据要求的附加相角位移确定γd。 (4)确定1/Td 和γd/Td ,使校正后中频段(穿过零分贝线) 斜率为-20dB/十倍频,并且使校正装置的最大移相角 出现在穿越频率的位置上。 (5)计算校正后频率特性的相位裕量是否满足给定要求, 如不满足须重新计算。 (6)计算校正装置参数。
6.2 串联校正
校正电路的Bode图:
6.2 串联校正
例6-3 一系统的开环传递函数为
K W (s ) = s (s + 1 )(s + 2 )
试确定滞后-引前校正装置, 试确定滞后-引前校正装置,使系统满足 下列指标: 下列指标:速度误差系数 K v = 10,相位裕 量 γ (ωc ) = 50°,增益裕量 GM ≥10dB 。

西工大、西交大自动控制原理 第六章 线性系统的校正方法_04_反馈校正1231

西工大、西交大自动控制原理 第六章 线性系统的校正方法_04_反馈校正1231

,即:G2(s)G3(s) 1
则:E(s) 0 。完全消除了由输入信号 r(t) 引起的误差。
此时称为完全补偿。
复合控制不改变系统的稳定性(加入顺馈不改变系统的 闭环特征方程式),很好地解决了提高精度和稳定性之 间的矛盾。
二、对干扰信号的复合控制
要减小或消除由干扰信号引起的系统的稳态误差, 可采用如图所示的复合控制:
1800 900 86.90 82.40 56.30 43.30 故小闭环(内回路)稳定; 再计算小闭环(内回路)在ωc=13处的幅值:
20lg 2.86c 18.9db
0.25c 0.1c
满足 |G2Gc|>>1
(5)求反馈校正装置的传递函数Gc(s) 在求出的G2(s)Gc(s)中,代入已知的
G3 (s)
F (s)
R(s) E(s)
G1 (s)
G2 (s) C(s)
R(s) 0
C
f
(s)
E(s)
[1
G1 1
( s)G3 ( s)]G2 G1(s)G2 (s)
(
s)
F
(s)
不加补偿环节 G3(s) 时,
C
f
(
s)
E(s)
1
G2 ( s) G1 ( s )G2
(
s)
F
(
s)
显然,加入补偿环节 G3(s) 后,系统误差 e f (s) 减小了。
一、对输入信号的复合控制
要减小或消除由输入信号引起的系统稳态误差,可 以采用如下图所示的复合控制:
G3 (s)
R(s)
E(s) G1 (s)
G2 (s) C(s)
其中 G3(s) 为补偿环节。

控制工程基础第五章——校正

控制工程基础第五章——校正

三 系统常用校正方法(2)
前馈校正 (复合控制)
对输入的
对扰动的
系统校正的基本思路
系统的设计问题通常归结为适当地设计串 联或反馈校正装置。究竟是选择串联校正还是 反馈校正,这取决于系统中信号的性质、系统 中各点功率的大小、可供采用的元件、设计者 的经验以及经济条件等等。
一般来说,串联校正可能比反馈校正简单, 但是串联校正常需要附加放大器和(或)提供隔离。 串联校正装置通常安装在前向通道中能量最低的地方。 反馈校正需要的元件数目比串联校正少,因为反馈校 正时,信号是从能量较高的点传向能量较低的点,不 需要附加放大器。
显然不满足要求。
令 20lgG(j0)0 或 G0(j0) 1 可求得ω0,再求得γ。

☆ 超前校正设计的伯德图
☆ 超前校正设计⑵
☆ 超前校正设计⑶
⒊确定超前校正装置的最大超前相位角
m4 52 75 23
⒋确定校正装置的传递函数
①确定参数α ②确定ωm
1 1 s sii n n m m1 1 s sii2 2n n 3 32.28
PID 传递 函数
G c(s)U E ((s s))K PK I1 sK D s
Gc(s)KP(1T1IsTDs)
KP——比例系数;TI——积分时间常数; TD——微分时间常数
二 PID控制器各环节的作用
比例环节 积分环节 微分环节
即时成比例地反映控制系统的偏差 信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。
为了充分利用超前装置的最大超前相位角,一般取校正后系统的
开环截止频率为 0 m 。故有 Lc(m)L(0 ' )0d B
于是可求得校正装置在ωm处的幅值为
2 lG 0 g c (jm ) 1 l0 g 1 l2 0 g .2 3 8 .5 d8 B最后得校正装置

几种常用的串联校正装置及校正方法

几种常用的串联校正装置及校正方法

⼏种常⽤的串联校正装置及校正⽅法⼏种常⽤的串联校正装置及校正⽅法⼀、相位超前校正装置1.电路2.传递函数3.频率特性⼆、校正原理⽤频率法对系统进⾏超前校正的基本原理,是利⽤超前校正⽹络的相位超前特性来增⼤系统的相位裕量,以达到改善系统瞬态响应的⽬的。

为此,要求校正⽹络最⼤的相位超前⾓出现在系统的截⽌频率(剪切频率)处。

由于RC组成的超前⽹络具有衰减特性,因此,应采⽤带放⼤器的⽆源⽹络电路,或采⽤运算放⼤器组成的有源⽹络。

⼀般要求校正后系统的开环频率特性具有如下特点:①低频段的增益充分⼤,满⾜稳态精度的要求;②中频段的幅频特性的斜率为-20dB/dec,并具有较宽的频带,这⼀要求是为了系统具有满意的动态性能;③⾼频段要求幅值迅速衰减,以较少噪声的影响。

三、校正⽅法⽅法多种,常采⽤试探法。

总体来说,试探法步骤可归纳为:1.根据稳态误差的要求,确定开环增益K。

2.根据所确定的开环增益K,画出未校正系统的博特图,量出(或计算)未校正系统的相位裕度。

若不满⾜要求,转第3步。

3.由给定的相位裕度值,计算超前校正装置应提供的相位超前量(适当增加⼀余量值)。

4.选择校正装置的最⼤超前⾓频率等于要求的系统截⽌频率,计算超前⽹络参数a和T;若有截⽌频率的要求,则依该频率计算超前⽹络参数a和T。

5.验证已校正系统的相位裕度;若不满⾜要求,再回转第3步。

例某单位反馈系统的开环传递函数如下设计⼀个超前校正装置,使校正后系统的静态速度误差系数Kv=20s-1,相位裕度为γ≥50°。

解:根据对静态速度误差系数的要求,确定系统的开环增益K。

绘制未校正系统的伯特图,如图中的蓝线所⽰。

由该图可知未校正系统的相位裕度为γ=17°根据相位裕度的要求确定超前校正⽹络的相位超前⾓由P133页,式(6-5)超前校正装置在w m处的幅值为在为校正系统的开环对数幅值为-6.2dB 对应的频率,这⼀频率就作为是校正后系统的截⽌频率。

串联校正和反馈校正

串联校正和反馈校正
图6-14可知,滞后网络的最大幅值衰减为 20lg b ,令
20lg b 20lg Go ( jc' ) 20dB
可求出滞后网络参数b=0.1。
当b=0.1时,为了确保滞后网络在ωc’处只有5 滞后相角,则应使滞 后校正网络的第二交接频率1/bT= ωc’ /10,即1/bT=0.3弧度/秒, 由此求出滞后网络时间常数T=33.3秒,即第一交接频率为1/T=0.03 弧度/秒。
20
性 改。善稳态精度。
40 20
20 l1

T
T
0
T1
60
90 180



滞后-超前校正
Gc
s

R1Cs 1R2Cs R1Cs 1R2Cs 1
1
R1C 2 s
1、滞后-超前网络
串联校正
X
i
s

E
s
Gc
s

控制器
-
N s
对象
X o s
在系统主反馈回路内采用的 校正方法,校正装置串联在系统 的前向通道中。
反馈校正
Xi s Es
--
N s
控制器
对象
Gc s
Xo s
在系统主反馈回路内采用的 校正方法,在系统中增加某些局 部反馈环节。
串联校正
串联超前校正频率特性法的步骤
(1)根据稳态性能的要求,确定系统的开环放大 系数K;
(2)利用求得的K值和原系统的传递函数,绘制原 系统的伯德图;
(3) 在 伯 德 图 上 求 出 原 系 统 的 幅 值 和 相 角 裕 量 , 确定为使相角裕量达到规定的数值所需增加的 超前相角,即超前校正装置的φm值,将φm值 代入式(6-4)求出校正网络参数α,在伯德图上 确定原系统幅值等于-10lgα对应的频率ωc’; 以这个频率作为超前校正装置的最大超前相角 所对应的频率ωm,即令ωm=ωc’;

第6章自动控制系统的校正

第6章自动控制系统的校正

比例,积分、微分(PID)调节器(相位滞后-超前校正)
PID调节器
R(s)

E (s)
Kp
KI

M (s)
G0 (s)
C (s)


s
KDs
PID调节器的运动方程为:
de(t) m(t) K p e(t) K I e(t)dt K D dt
写成传递函数形式
K Ds 2 K ps K I KI M(s) G e (s) Kp K Ds E(s) s s
式中 KC=R1/R0 ——比例放大倍数 T1=R1C1——积分时间常数
PI调节器的Bode图
其Bode图如图所示。从图可见, PI 调节器提供了负的相位角,所 以 PI 校正也称为滞后校正。并且 PI 调节器的对数渐近幅频特性在 低频段的斜率为-20dB/dec。因而 将它的频率特性和系统固有部分 的频率特性相加,可以提高系统 的型别,即提高系统的 稳态精度 。
6.1.2 有源校正装置 有源校正装置是由运算放大器组成的调节器。有 源校正装置本身有增益,且输入阻抗高,输出阻抗低, 所以目前较多采用有源校正装置。缺点是需另供电源。
有源校正装置
6.2 串联校正 6.2.1 比例(P)校正
RS
比例校正GC(S) 系统固有部分G1(S)
35 s0.3s 10.01s 1
第6章 自动控制系统的校正
一、校正的概念
当控制系统的稳态、静态性能不能满足实 际工程中所要求的性能指标时,首先可以考虑 调整系统中可以调整的参数;若通过调整参数 仍无法满足要求时,则可以在原有系统中增添 一些装置和元件,人为改变系统的结构和性能, 使之满足要求的性能指标,我们把这种方法称 为校正。增添的装置和元件称为校正装置和校 正元件。系统中除校正装置以外的部分,组成 了系统的不可变部分,我们称为固有部分。

自动控制原理6.4 反馈校正

自动控制原理6.4 反馈校正

tg1
2 1 4Leabharlann 4 2 2§6—1 系统校正的基本概念
性能指标(续)
b n 2 4 2 4 4 1 2 2
c n
tg1
1 4 4 2 2
2 1 4 4 2 2
§6—1 系统校正的基本概念
性能指标(续)


% e 1 2 100%
ts

4,
n
cts

8
tg

2、高阶系统频域指标与时域指标的关系:
1
Mr sin
% 0.16 0.4Mr 1100% 1 Mr 1.8
§6—1 系统校正的基本概念
性能指标(续)
ts

k c
,
其中,k 2 1.5Mr 1 2.5Mr 121 Mr 1.8
R1
Ur
Uc
R2
Gcs
Z2 Z1 Z2

R

R2 R1
R1Cs 1
R2R1Cs 1 R2
R1Cs 1
R1R2Cs R1 R2
R1 R2
R2 R1 R2
R1Cs 1
超前网络(续)
§6—2 常用校正装置及其特性
设 R2 1
R1 R2
0:
j
A(0) ,0 00
α=0.2

α=0.5
1
A 1, 00 0 0.2 0.5
2. 对数频率特性:
§6—2 常用校正装置及其特性
L
1
0
T
1 0.5T
1 0.2T

20

《自动控制原理》复习资料 (2)

《自动控制原理》复习资料 (2)

1. 闭环控制系统又称为反馈控制系统。

2.对控制系统的首要要求是系统具有稳定性。

3. 若要全面地评价系统的相对稳定性,需要同时根据相位裕量和幅值裕量来做出判断。

4. 系统主反馈回路中最常见的校正形式是串联校正和反馈校正。

5. 某典型环节的传递函数是G(s)=1/(s+2),则系统的时间常数是 0.5。

6. 若要求系统的快速性好,则闭环极点应距虚轴越远越好。

7. 在扰动作用点与偏差信号之间加上积分环节能使静态误差降为0。

8.二阶系统的传递函数G(s)=4/(s 2+2s+4),其固有频率ωn =2。

9. 远离虚轴的闭环极点对瞬态响应的影响很小。

10.为满足机电系统的高动态特性,机械传动的各个分系统的谐振频率应远高于机电系统的设计截止频率。

11.当奈奎斯特图逆时针从第二象限越过负实轴到第三象限去时称为正穿越。

12.对于最小相位系统一般只要知道系统的 开环幅频特性就可以判断其稳定性。

13.判断一个闭环线性控制系统是否稳定,在时域分析中采用劳斯判据;在频域分析中采用奈奎斯特判据。

14.若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为10/(s+0.2)+5/(s+0.5)。

1. 根据采用的信号处理技术的不同,控制系统分为模拟控制系统和数字控制系统。

2. 若系统的传递函数在右半S 平面上没有零点和极点,则该系统称作最小相位系统。

3. 输入相同时,系统型次越高,稳态误差越小。

4. 延迟环节不改变系统的幅频特性,仅使相频特性发生变化。

5. PID 调节中的“P”指的是比例控制器。

6. 用频率法研究控制系统时,采用的图示法分为极坐标图示法和对数坐标图示法。

7. 一般开环频率特性的低频段表征了闭环系统的稳态性能。

8. 复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。

9. 奈奎斯特图中当ω等于截止频率时,相频特性距-π线的相位差叫相位裕量。

第六章_线性系统的校正方法

第六章_线性系统的校正方法
若输入信号的带宽:
中频区
0 ~ M
噪声信号主要作用的频带为:
1 ~ n
而且使
1 ~ n
b (5 ~ 10) M
处于
0 ~ b 之外。
0
M
1
n

b
第一节 系统的设计与校正问题 三、 校正方式 串联校正、反馈校正、前馈校正、复合校正 1、串联校正与反馈校正
R( s )
N (s)
(Ta s 1)( T20 1)a b s log Gc ( s) , (T1s 1 Ts ()( Ta 1)1) 2s 网络的滞后 T1T2 TaTb , ( aTa s 1) 部分: T1 T2 Ta Tb Tab
a
T2 1 T1 Ta , , T1 Tb a Tb T1 aTa , T2 a (Ta s 1) (Tb s 1) Gc ( s) , (aTa s 1) Tb ( s 1) a
1 4 2
4
2
第一节 系统的设计与校正问题 相角裕度
arctg
2 1 4 4 2 2
1 2
超调量
% e
ts
100%
调节时间
3.5
n
7 c t s tg
第一节 系统的设计与校正问题 二、 系统带宽的确定
一般要求系统的稳定裕度在45o左右 的斜率为-20dB/dec
2
第三节 串联校正
2.超前校正装置的设计
超前校正是利用相位超前特性来增加系 统的相角稳定裕量,利用幅频特性曲线的正斜 率段增加系统的穿越频率。从而改善系统的平 稳性和快速性。为此,要求校正装臵的最大超 前角出现在系统校正后的穿越频率处。

自动控制理论第六章控制系统的校正与设计

自动控制理论第六章控制系统的校正与设计

第一节 系统校正的一般方法
幅相频率特性曲线:
Im
Gc(s)=
1+aTs 1+Ts

dφ(ω) dω
=0

ωm=
1 Ta
=
1 T
·aT1
0
φm 1ω=0 α+1
2
ω=∞
α Re
两个转折频率的几何中点。
最大超前相角:
sinφm=1+(a(a––11)/)2/2
=
a–1 a+1
φm=sin-1
a–1 a+1
滞后校正部分:
(1+ T1S) (1+αT1S)
超前校正部分:
(1+ T2S)
(1+
T2 α
S)
L(ω)/dB
1
1
0 α T1
T1
-20dB/dec
φ(ω)
0

T2
T2
ω
+20dB/dec
ω
第一节 系统校正的一般方法
(2) 有源滞后—超前
R2
校正装置 传递函数为:
ur R1
GGcc(式(ss))中==K:(K1(cc1(+(1+1aK+T+TTcT01=S1S1S)SR)()()12(1R(+1+1+1+RT+TaT33T2S2S2S)S))) T1=
a=
1+sinφm 1–sinφm
第一节 系统校正的一般方法
(2) 有源超前校正装置
R2 C
R3
Gc(s)=
R3[1+(R1+R2)Cs] R1(1+R2Cs)

系统的性能指标与校正解读

系统的性能指标与校正解读


PID 不仅适用于数学模型已知的控制系 统,而且对大多数数学模型难以确定的 工业过程也可应用。

PID 控制参数整定方便,结构灵活,在
众多工业过程控制中取得了满意的应用
效果,并已有许多系列化的产品。并且,
随着计算机技术的迅速发展,数字PID
控制也已得到广泛和成功的应用。
1、P控制(比例控制)
P控制对系统性能的影响:
1)Kp>1

开环增益加大,稳态误差减小;
幅值穿越频率增大,过渡过程时间缩短; • 系统稳定程度变差。只有原系统稳定裕 量充分大时才采用比例控制。 2)Kp<1 与Kp>1时,对系统性能的影响正好相反。
2、PD控制(比例加微分控制) U s d K p 1 Td s ut K p t K pTd t s dt

3)当中频段斜率高于-40dB/dec,系统的稳 定性难以稳定
3、高频段
中频段以后( >10c)的区段 高频段的斜率越大,系统的抗干扰能力越 强

低频段表征了闭环系统 的稳定性 开环频率特性 态特性 中频段表征了系统的动 高频段表征了系统的复 杂程度
加入校正环节后,应使开环传递函数的BODE 图满足: 1) 低频段的增益充分大,以保证稳态误差 的要求 2) 中频段使对数幅频特性的斜率等于20dB/dec,并占据充分宽的频带,以保证 系统具有适当的相位裕量 3) 高频段的增益应尽快减小,以便使噪声 影响减到最小
系统快速性指标
4 )延迟时间 td 5) 最大超调量 MP% --系统平稳性指标
2
稳态性能指标
稳态误差 eSS ----系统准确性指标
二 频域性能指标

第6章线性系统的校正方法

第6章线性系统的校正方法
(3) 适用范围(限制)
① 闭环带宽要求较高. 若已校正系统带宽过大, 使得通过 系统的高频噪声电平很高, 不符合对系统的性能要求 .
② 对截止频率附近相角迅速减小的待校正系统, 不宜采用 串联超前校正. 因为很难提供足够的相角超前量. 此时可考虑 两个或两个以上串联校正网络由隔离放大器串联在一起使用.
图6-2 串联校正与反馈校正
前馈校正又称顺馈校正, 是在系统主反馈回路之外采用的 校正方式.前馈校正装置接在系统给定值(或指令、参考输入信 号)之后, 主反馈作用点之前的前向通道上, 如图(a)所示.
(a)
另一种前馈校正装置接在系统可测扰动作用点与误差测 量点之间, 对扰动信号进行测量,并经变换后接入系统,形成一 条附加的对扰动影响进行曲补偿的通道, 如图(b)所示.

最大超前角为 m arctgaTm arctgTm
根据三角函数两角求和公式 仅与a有关, 一般a≤20.
m处的对数幅值为 Lm 20lg aGc ( jm) 10lg a
2 无源滞后网络 滞后网络传递函数为
式中分度系数 时间常数
传递函数与超前网络相似, 超前a>1, 滞后b<1
最大滞后角m发生在最大滞 后角频率m处, 且是1/T与1/bT 的几何中心. m及m分别为
为了使系统满足性能指标要求, 要对系统进行调整, 通常 首先调整系统开环增益值. 这是一种最简单的方法. 但是在多 数情况中, 仅改变增益仍有可能不满足给定性能指标的要求. 此时就需要在系统中引入称之为校正装置的附加装置.
所谓校正就是在系统中加入一些其参数可以根据需要而 改变的机构或装置,使系统整个特性发生变化,从而满足给 定的各项性能指标要求。
串联滞后校正设计的一般步骤.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
控制器
对象
Gc s
Xo s
在系统主反馈回路内采用的 校正方法,在系统中增加某些局 部反馈环节。
串联校正
• 超前校正 • 滞后校正 • 滞后-超前校正 • PID调节器
• 超前校正
1、超前网络
C
Gc s
X X
o i
s s
R2
R2
R1
1 Cs
R1
1 Cs
X i s
R1 R2
Xo s
令:R1C T,
1
1
Gs
Xi s
1 1 K
1 s
s
1 K
s
I lim Es lim 1 1
s0
s0 s K K
可见,K越大,I越小。源自2、误差平方积分性能指标(适用于

有超调情况)
I e2 tdt 0
xi t 1
xor t xo t
重视大误差, 忽略小误差
t
e2 t
et xor t xo t
t
I e2 tdt
系统的性能指标
性能指标分类: 一、时域性能指标 二、频域性能指标 三、综合性能指标
一、时域性能指标
根据系统在典型输入下输出 响应的某些特点统一规定的。
1 瞬态指标 t r t p ts M p
2
稳态指标
ess
K
K
p v
K a
二、频域性能指标 1、开环频域指标:
2、闭环频域指标
Amax
A0 0.707A0
1
Gc s
Xo Xi
s s
R2 Cs
R1
R2
1 Cs
Xo s
R2Cs 1
R1 R2 Cs
1
令:R2C T,
R1 R2 R2
1
1
1
则:Gc s
Ts 1
Ts 1
0 T
T
20
0
90
2、滞后校正的作用
X i s
-
Ts 1
Ts 1
L
20
相 统 衰 校 低稳相快统恒正角 稳 减频态反速采温G滞后滞 定 作s滞对段精,性用控 后用,后 ,后于的度还要滞制校使截作而校高特无允求后等X正系止用是o正精性破许不校。并统频来利s不度,坏适高正不稳率使用改、故作当的。是定前原幅变而利的对用提系如移系值用,,。 以 高牺开牲环快增速益性,换进取一稳步定
0
M r
c开环截止频率 相位裕度
K g增益裕度
r谐振频率
Mr
Amax
A0
相对谐振峰值
M复现频率(复现带宽)
b闭环截止频率闭环带宽
当系统为单位反馈系统时,
A0 1,表明系统为I型或高于I型;
A0 1,说明系统是0型系统。
b
三、综合性能指标(误差准则)
1、误差积分性能指标(适用于
,无
超调情况)
xi t 1
I
et 0
dt
xor t xo t
Es et estdt 0
I lim et estdt
t
s0 0
lim Es
et xor t xo t s0
t
例1
Xi s Es K
-
s
Xo s
试确定能使
I 值最小的K值
该系统为一阶系统,无超调
当xi t 1 时,
Es
性能最优系统就
是使 It取极小的
系统
• 系统的性能指标要根据它所要 完成的具体任务而提出;应有 所侧重;
• 性能指标的提出要有根据,不 能脱离实际;
• 几个性能指标会互相矛盾,要 折衷考虑并加以校正。
系统的校正概述
所谓校正(或称补偿)就是给系 统附加一些具有某种典型环节特性 的电网络,运算部件或测量装置等 ,靠这些装置的配置来有效地改善 整个系统的控制性能。
• PID调节器
Proportion Integral Differentiation
在当今的工业控制器中,有半数以上 采用了PID或变形PID控制方案。模拟 PID控制器大多数是液压的、气动的、 电气的和电子型的,或是由它们构成的 组合型。由于微处理器的大量应用,许 多变成了数字型的。
R2 R1 R2
R2
R1Cs 1
R1 R2
R2 R1 R2
R1Cs
1
1
1
1
则:Gc
s
Ts 1
Ts 1
0T
T
20 lg
20
m
arcsin
1 1
,
m
1
T
90 0
m
m
2、超前校正的作用
由超于前正校相正移不的改作变用,低使频
X i s
-
1
T截升特 精Tss止,性 度11 频具, ,率有所 若G附较以想s近大不进的 的能一相 相位 位提步X明 裕o高提s显 量稳高上 ,态开
Xo s
Gc
s
1s T1s
1 1
2s T2s
1 1
L 1
11
1
滞后网络 超前网络
0 T1
1 2
T2
20
20
90
0 90
实际上,无源校正网络常因负载 效应的影响而削弱了校正的作用 ,或使网络参数难以选择,故目 前在实际控制系统中,多采用以 运算放大器组成的有源校正部件 ,参看教材226页,表7-1。
这一附加的部分称为校正元件 或校正装置,通常是一些无源或有 源微积分电路,以及速度、加速度 传感器等。
校正装置在系统中的联结方式: • 顺馈校正 • 干扰补偿 • 串联校正 • 反馈校正
• 顺馈校正
Gr s
Xi s Es
-
补偿器放在 系统回路之外
Gs Xos
不影响特征方程,只补偿由于 输入造成的稳态误差。
L
20 40
既环改增善益了,原以系提统高的稳稳定态性精,度, 20又获则 的lg提得会 能K g高足降 力了够低 。系的系统快统的 速抗截 性止 。高频频率干,扰
20
11
11
c
c1
2
T2 T
20 lg T1 T
60
90 180
80
• 滞后校正
1、滞后网络
X i s
R1 R2 C
第七章 控制系统的 性能分析和校正
——用频率响应法 对单输入-单输出、线性定常系统
进行设计和校正
• 性能分析——一个系统,元部件 参数已定,分析它能达到什么指 标,能否满足所要求的各项性能 指标;
• 综合与校正——若系统不能全面 地满足所要求的性能指标,就要 考虑对原系统增加些必要的元件 或环节,使系统能够全面地满足 所要求的性能指标。
0
0
40
1
T
20
1 c2
T
性 改20。善lg K稳g 态精度。
1 c1
T1
60
90 180

滞后-超前校正 Gc s
R1Cs 1R2Cs 1 R1Cs 1R2Cs 1 R1C2s
1、滞后-超前网络
C1
1 s T1s
1 2s 1T2 s
1 1
X i s
R1 R2 C2
• 干扰补偿
Xi s Es
- Y s
Gn s
G1 s
当干扰直接可测量时
N s G2 s Xos
不影响特征方程,只补偿由于 干扰造成的稳态误差。
• 串联校正
X
i
s
E
s
Gc
s
控制器
-
N s
对象
X o s
在系统主反馈回路内采用的 校正方法,校正装置串联在系统 的前向通道中。
• 反馈校正 N s
Xi s Es
相关文档
最新文档