选修4-4_第一讲_坐标系 (用)
人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件
A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,
高中数学 选修4-4 1.坐标系
1.坐标系
教学目标班级______姓名_________
1.了解常见的坐标系.
2.了解坐标法,并能运用解决相关问题.
教学过程
一、知识要点.
1.坐标系:坐标系是联系几何与代数的桥梁;是数形结合的有力工具;利用坐标系可以使数与形相互转化.
2.常用坐标系:①数轴、平面直角坐标系、空间直角坐标系;②极坐标系(重点)、柱坐标系、球坐标系.
3.坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系,这就是研究几何问题的坐标法.
二、例题分析.
1.运用坐标法解决实际问题.
例1:某信息中心O接到位于正西、正北、正东方向三个观测点A、B、C的报告:A、B 两个观测点同时听到一声巨响,C观测点听到巨响声的时间比它们晚4s. 已知各观测点到信息中心的距离都是1020m. 试确定巨响发生的位置.(假设声音传播速度为340m/s,各观测点均在同一平面上)
练1:已知ABC ∆的三边a ,b ,c 满足2225a c b =+,BE ,CF 分别是边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.
作业:1.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.
2.已知点A 为定点,线段BC 在定直线l 上滑动,已知4||=BC ,点A 到直线l 的距离为3,求ABC ∆外心的轨迹方程.。
人教版高中数学选修4-4课件:第一讲二极坐标
4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.
人教A版高中数学选修4-4课件 极坐标系的概念(人教A 版)
[3]一点的极坐标有否统一的表达式?
有。(ρ,2kπ+θ)
1、极坐标系的建立:
在平面内取一个定点O,叫做极点. 引一条射线OX,叫做极轴。 再选定一个长度单位和计算角度的正方向。 (通常取逆时针方向).
O X
这样就建立了一个极坐标系.
2、极坐标系内一点的极坐标的规定
人民教育出版社 高中/选修4-4
对于平面上任意一点M,用表示线段OM的长度, 用表示以射线OX为始边,射线OM为终边所成的 角,叫做点M的极径, 叫做点M的极角,有序数对 (,)就叫做M的极坐标。
点M:在角终边的反向延长线上,且|OM|=||
5 M(-2, 5)
6
6
O°
x
° O
x•
•M(-2, 5) M (, )
6
小结: 从比较来看, 负极径比正极径多了一个操作,
将射线OP“反向延长”.
2
3•
F
5
6 B•
A•
2
D
•
。 O1
- 人民教育出版社 高中/选修4-4
A( 4,0)
4
B(3, 56)
(1)已知两点P(5、 ),Q(1, ),求线段PQ的长度。
4
4
(2)已知两点P(5、5 ),Q(1, ),求线段PQ的长度。
4
,4
(3)说明满足条件 , 0的点M(,)所组成的图形
3
思考:在本节开头关于修建高速公路的问题中能否
在极坐标系中解题。
人民教育出版社 高中/选修4-4
数学运用
例3. 已知点Q(, ),分别按下列条件求出点P的坐标:
人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结
在△OMB 中,同理 → |MB|= ρ2+36-12ρcosθ. → → 由|MA|· |MB|=36,得 (ρ2+36)2-(12ρcosθ)2=362. 即 ρ4+72ρ2-144ρ2cos2θ=0. 即 ρ2=72(2cos2θ-1)=72cos2θ. 所以,点 M 的轨迹的极坐标方程为 ρ2=72cos2θ.
3.柱坐标系与球坐标系 (1)柱坐标系
一般地,如图,建立空间直角坐标系 Oxyz,设 P 是空间任意 一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示 点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ, θ, z)(z∈R)表示,这样我们建立了空间的点与有序数组(ρ,θ,z)之间 的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有 序数组(ρ,θ,z),叫做 P 的柱坐标,空间点 P 的直角坐标与柱坐 x=ρcosθ, 标之间的变换公式为y=ρsinθ, z=z.
2ac (2)当 a≠c 时,方程可化为 x +y - x=0,其轨迹是以 a-c
2 2
ac ac 2ac ( ,0)为圆心, 为半径的圆,但不包括点(0,0)和( , a-c |a-c| a-c 0).
【例 2】
x′=2x, 在同一坐标系中, 经过伸缩变换 y′=2y
后,
曲线 C 变为曲线(x-5)2+(y+6)2=1,求曲线 C 的方程,并判 断是什么曲线.
高 考 真 题 【例 8】 在极坐标系中, 圆 ρ=2cosθ 的垂直于极轴的两条切 线方程分别为( )
A.θ=0(ρ∈R)和 ρcosθ=2 π B.θ=2(ρ∈R)和 ρcosθ=2 π C.θ=2(ρ∈R)和 ρcosθ= D.θ=0(ρ∈R)和 ρcosθ=1
高中数学选修4-4(人教A版)第一讲坐标系1.3知识点总结含同步练习及答案
第一讲 坐标系 三 简单曲线的极坐标方程
一、知识清单
极坐标与极坐标方程
二、知识讲解
1.极坐标与极坐标方程 描述: 极坐标系 在平面上取一个定点O ,由O 点出发的一条射线Ox,一个长度单位及计算角度的正方向(通常取 逆时针方向),合称为一个极坐标系.O 点称为极点,Ox称为极轴.平面任一点M 的位置可以由 线段OM 的长度ρ 和从Ox到OM 的角度θ 来刻画.这两个数组成的有序对(ρ, θ)称为点M 的极坐 标.ρ 称为极径,θ 称为极角. 在极坐标系(ρ, θ)中,一般限定ρ ≥ 0.当ρ = 0时,就与极点重合,此时θ 不确定.给定点的极坐 标(ρ, θ),就唯一地确定了平面上的一个点.但是,平面上的一个点的极坐标并不是唯一的,它有 无穷多种表示形式.事实上,(ρ, θ)和(ρ, θ + 2kπ)代表同一个点,其中k 为整数.可见,平面上的 点与它的极坐标不是一一对应关系.这是极坐标与直角坐标的不同之处,如果限定ρ ≥ 0, 0 ≤ θ ≤ 2π,则除极点外,平面上的点就与它的极坐标系构成一一对应关系. ρ < 0,此时极坐标(ρ, θ)对应的点M 的位置按下面规则确定:点M 在与极轴成θ 角的射线的反向 延长线上,它到极点O 的距离为|ρ|,即规定当ρ < 0时,点M (ρ, θ)就是点M (−ρ, θ + π). 极坐标与直角坐标系的关系 设M 为平面上的一点,它的直角坐标系为(x, y),极坐标为(ρ, θ).则有{ x = ρ cos θ 或
⎧ ρ2 = x 2 + y 2 ⎨ ⎩ tan θ = y (x ≠ 0) ,ρ < 0也成立. x
y = ρ sin θ
曲线的极坐标方程 在给定的平面上极坐标系下,有一个二元方程F (ρ, θ) = 0.如果曲线C 是由极坐标(ρ, θ)满足方程 的所有点组成的,则称此二元方程F (ρ, θ) = 0为曲线C 的极坐标方程. 圆心(a, 0)在极轴上且过极点的圆,其极坐标方程是ρ = 2a cos θ ;圆心在点(a, 圆,其极坐标方程是ρ = 2a sin θ,0 ≤ θ ≤ π.
人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系
【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
高中数学平面直角坐标系
你能建立不同的直角坐标系解决这个问 题吗?比较不同的直角坐标系下解决问 题的过程,建立直角坐标系应注意什么 问题?
建系时,根据几何特点选择适当的直角坐标系 :
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
1.在同一直角坐标系下,求满足下列图形的伸缩变换: 曲线4x2+9y2=36变为曲线
x y 1
2 2
x x 1解:设伸缩变换 , 0 y y
代入x +y =1得 x y 1
2 2
2 2 2 2
1 3 2 2 则 又4 x 9 y 36 1 2
y 3 y
(1)2x+3y=0; (2)x2+y2=1 1 x x x 2 x 2 解: 1由伸缩变换 得 y 3y y 1 y 3 代入2x+3y=0 得x+y=0
1 x x x 2 x 2 2 由伸缩变换 得 y 3y y 1 y 3 2 y2 x 代入x2 +y2 =1得 4 + 9 =1
x x y 3 y
2
通常把 2 长变换。
叫做平面直角坐标系中的一个坐标伸
(3)怎样由正弦曲线y=sinx得到曲 线y=3sin2x? 写出其坐标变换。 y y=3sin2x y=sinx 2
O
x
(3)怎样由正弦曲线y=sinx得到曲线 y=3sin2x? 写出其坐标变换。 在正弦曲线y=sinx上任取一点P(x,y),保持纵坐 1 标不变,将横坐标x缩为原来的 2 ,在此基础上, 将纵坐标变为原来的3倍,就得到正弦曲线 y=3sin2x. 设点P(x,y)经变换得到点为
高中数学选修4-4全套教案(PDF)
高中数学选修4-4全套教案第一讲坐标系一平面直角坐标系课题:1、平面直角坐标系教学目的:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
*变式训练如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置?例2已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?*变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程例3已知Q (a,b ),分别按下列条件求出P 的坐标(1)P 是点Q 关于点M (m,n )的对称点(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)*变式训练用两种以上的方法证明:三角形的三条高线交于一点。
高中数学第一讲四柱坐标系与球坐标系简介1柱坐标系课件新人教A版选修4-4
将直角坐标化为柱坐标
[例 1] 设点 A 的直角坐标为(1, 3,5),求它的柱坐标. [思路点拨] 由公式求出 ρ,再由 tan θ=xy求 θ.
已知点的直角坐标,确定它的柱坐标关键是确定ρ和 θ,尤其是θ,要注意求出tan θ后,还要根据点所在象限 确定θ的值(θ的范围是[0,2π)).
1.点A的直角坐标为(1,1,1),求它的柱坐标.
四
柱坐标系与球坐标系简介
1.柱坐标系
柱坐标系 (1)定义:建立空间直角坐标系 Oxyz,设 P 是空间任意一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点 Q 在平面 Oxy 上的极坐标,这时点 P 的位置可用有序数组 (ρ,θ,z) (z∈R)表示.这 样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系.把 建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点 P 的柱坐标,记作 P(ρ,θ,z) ,其中_ρ_≥__0_,_0_≤__θ_<__2_π_,__z_∈__R_.
解:ρ2=x2+y2=12+12=2,∴ρ= 2, 又tan θ=1,x>0,y>0,点在第一象限.
∴θ=π4,
∴点A的柱坐标为
பைடு நூலகம்
2,π4,1.
将点的柱坐标化为直角坐标
[例 2] 已知点 P 的柱坐标为4,π3,8,求它的直角坐标. [思路点拨] 直接利用公式求解.
已知柱坐标,求直角坐标,利用变换公式
x=ρcos θ, y=ρsin θ, z=z
即可.
3.点N的柱坐标为2,π2,3,求它的直角坐标.
x=ρcos θ, 解:由变换公式y=ρsin θ, 得
z=z, x=ρcos θ=2cosπ2=0,y=ρsin θ=2·sinπ2=2, 故点 N 的直角坐标为(0,2,3).
选修4-4第一讲-1平面直角坐标系及其伸缩变换习题课
5.在同一直角坐标标系中,经过伸缩换xy
3x后, y
曲线C变为曲线x2 9 y2 9,求曲线C的方程。
x2 y2 1
课本第8页
x x
(1)
y
4
y
(2)xy
2x 1y 2
小结:
建系时,根据几何特点选择适当的直角坐标系: (1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。
即|AB|-|AC|=
1 2
a(定值)
(-
a ,B0) 2
A(x,y)
y
(a ,0) 2
Cx
由双曲线的定义,实轴
2a 1 a得a 1 a,半焦距c 1 a,
2
4
2
得b2 c2 a2 3 a2 16
轨迹方程为
例2:已知直线L1⊥直线L2,垂足为M,点N ∈L2,(如图)以A,B为端点 的曲线段C上任意一点到L1的距离与到N的距离相等.若ΔAMN为 锐角三角形,且|AM|=√17,|AN|=3,|BN|=6.建立适当的坐标系,求曲 线段C的方程.
[思路分析]:坐标系的建立是本题的
突破口,由于L1⊥L2,故可选择它们 为坐标轴;也可以以线段MN的垂直
L1
y B
A
平分线为y轴.(哪一种更好呢?)由 M 题设可知曲线段C为抛物线的一部
N L2 x
分,L1为准线,N为焦点,很显然选择 标准方程y2=2px(p>0).下面的关键
是求出p的值,而ΔAMN为锐角三角
形及|BN|=6又起什么作用呢?请大
家认真思考.
例3:已知ΔABC底边BC的长为2a(a>0),又知tanBtanC=t(t≠0).(a,t均为
1.直角坐标系和极坐标系
数学选修4-4 坐标系和参数方程第一讲 直角坐标系和极坐标系【基础知识】1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
3.平面直角坐标系中的伸缩变换(0)(,){(0)(,)(,)x x P x y y u y u P x y P x y λλφφ'=⋅>'=⋅>''定义:设点是平面直角坐标系中的任意一点,在变换:的作用下,点对到应点,称为平面直角坐标系中的坐标伸缩变换。
4.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
5.负极径的规定:在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角,当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM =ρ。
M (ρ,θ)也可以表示为))12(,()2,(πθρπθρ++-+k k 或 )(z k ∈ 6.直角坐标与极坐标的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则cos ,sin .x y ρθρθ==222,tan (0).yx y x xρθ=+=≠ 【典型例题】例1 求下列点经过伸缩变换'2,'3x x y y =⎧⎨=⎩后的点的坐标: (1) (1,2);(2) (-2,-1).【分析】利用伸缩(0){(0)x x y u y u λλφ'=⋅>'=⋅>变换:公式实行坐标之间的转化.【解】(1)(2,6);(2)(-4,-3).【点拨】利用伸缩(0){(0)x x y u y u λλφ'=⋅>'=⋅>变换:公式是解决坐标与坐标之间、曲线与曲线之间变换的重要手段例2 在伸缩变换⎩⎨⎧==y y x x '2'与伸缩变换⎩⎨⎧==yy x x 2'2'的作用下,单位圆122=+y x 分别变成什么图形?解:在⎩⎨⎧==y y x x '2'的作用下,单位圆变成椭圆1'4'22=+y x ;在⎩⎨⎧==yy x x 2'2'的作用下,单位圆变成圆4''22=+y x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
解:以△ABC的顶点A为原
点O,边AB所在的直线x轴,建立
E
直角坐标系,由已知,点A、B、
F的坐标分别为 A(0, 0) , B(c, 0) , F(c/2, 0).
O (A) F 设C点坐标为(x,y),则点E的坐标为(x/2,y/2),
ห้องสมุดไป่ตู้
Bx
由b2+c2=5a2,|AC|2+|AB|2=5|BC|2,
x' y'
2 2
x y
的作用下,
单位圆x2 y2 1 分别变成什么图形?
6. 已知点A为定点,线段BC在定直线 l 上滑动,已知 |BC|=4,点A到直线 l 的距离为3,求∆ABC的外心的 轨迹方程。
以 l 为X轴,过定点A垂直于X轴的直线为Y轴建 立直角坐标系,
设∆ABC外心为P(x,y),
故P在BC的垂直平分线PO上,
P
P即OP的(方68程0为5y,6=8-0x,5 ), 故PO 680 10B 答:因巨A响点发比生B在点信晚息4s中听心到的爆西炸偏声北,450, 距中心 6o80 1A 0mx
故|PA|- |PB|=340×4=1360
由双曲线定义P点在以A, B为焦点的双曲线
例2 圆O1与圆O2的半径都是1,|O1O2|=4,过动点P 分别作圆O1、圆O2的切线PM、PN (M、N分别为切点), 使得PM= 2 PN,试建立适当的坐标系,求动点P的轨迹
方程。
解:以直线O1O2为x轴,线段 O1O2的垂直平分线为y轴,建立平 M 面直角坐标系,
yP NX
则两圆的圆心坐标分别为
怎样由正弦曲线y=sinx得到曲线y=3sin2x?
y
在正弦曲线y=sinx上任取一
点P(x, y),保持纵坐标不变,将
横坐标x缩为原来的1/2;
O
x
在此基础上,将纵坐标变为原来 的3倍,就得到正弦曲线y=3sin2x.
即在正弦曲线y=sinx上任取一点P(x,y),若设点P(x,y)
经变换得到点为P’(x’, y’),坐标对应关系为:
O1 O O2
O1(-2, 0),O2(2, 0),设P(x, y)
则PM2=PO12-MO12= ( x 2)2 y2 1
同理,PN2= ( x 2)2 y2 1
( x 2)2 y2 1 2[( x 2)2 y2 1]
x2 12x y2 3 0, ( x 6)2 y2 33,
保持纵坐标y不变,将横坐标x缩为原来1/2,得到点 P’(x’, y’),坐标对应关系为:
x
1x 2
①
y y
我们把①式叫做平面直角坐标 系中的一个坐标压缩变换。
怎样由正弦曲线y=sinx得到曲线y=3sinx?
y
在正弦曲线上任取一点P(x, y),
保持横坐标x不变,将纵坐标伸长
2
为原来的3倍,就得到曲线y=3sinx。 O
x
上述变换实质上就是一个坐标的伸长变换
即:设P(x,y)是平面直角坐标系中任意一点,
设P(x, y)是平面直角坐标系中任意一点,保持横坐标
x不变,将纵坐标y伸长为原来的3倍,得到点P’(x’, y’),
坐标对应关系为:
x x
y
3
y
②
我们把②式叫做平面直角坐标系中的一个坐标伸长变换.
2x 3y
后的点的坐标:
①(1,2); ②(-2,-1).
2 曲线C经过伸缩变换
x'
1 3
x
y
'
1 2
y
后的曲线方程是
4x'2 9 y'2 36 则曲线C的方程是
.
3 将点(2,3)变成点(3,2)的伸缩变换是( )
A
x' y'
2 3 3 2
则A(0,3)B(x-2, 0)C(x+2, 0),
由|PA|=|PB|得 x2 6 y 5 0
340m/s,各相关点均在同 B
O
一平面上).
观测点 Ax
以接报中心为原点O,以BA方向为x轴,建立直角 坐标系.设A、B、C分别是西、东、北观测点,
则 A(1020, 0), B(-1020, 0), C(0, 1020)
设P(x, y)为巨响声点,
y
由B、C同时听到巨响声,得|PC|=|PB|, C
即x2+y2+c2=5[(x-c)2+y2], 所以2x2+2y2+2c2-5cx=0.
因为
uuuv BE
(
x
c,
y ),
uuuv CF
(
c
x,
y),
uuuv uuuv 所以BE CF
2
(x
2
c)( c
x)
y2
2
0.
22
2
=-(2x2+2y2+2c2-5cx)/4=0 因此,BE与CF互相垂直.
二 平面直角坐标系 中的伸缩变换
思考:y 怎样由正弦曲线y=sinx得到曲线y=sin2x?
2
O
x
在正弦曲线y=sinx上任取一点P(x, y),保持纵坐标不 变,将横坐标x缩为原来的1/2,就得到正弦曲线y=sin2x。
上述变换实质上就是一个坐标的压缩变换
即:设P(x,y)是平面直角坐标系中任意一点,
y
3
y
后的图形。
(1) 2x+3y=0;
(2) x2+y2=1
解:(1)由伸缩变换
x
y;
2
x得到
x
3y y
1
2 1
3
x y
代入
2x+3y=0;
得到经过伸缩变换后的图形的方程是 x y 0
(2)将
x
y
1
2 1
x 代入x2+y2=1,
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
例1.已知△ABC的三边a, b, c满足b2+c2=5a2,BE,CF分
别为边AC, CF上的中线,建立适当的平面y 直角坐标系探
究BE与CF的位置关系。
x2 a2
y2 b2
1上
a=680, c=1020, b2=c2-a2=10202-6802=5×3402.
所以双曲线的方程为:
x2 6802
y2 5 3402
1( x 0)
用y=-x代入上式,得 x 680 5, y 680 5,
坐标法
建系时,根据几何特点选择适当的直角坐标系, 注意以下原则:
y
3
得到经过伸缩变换后的图形的方程是 x2 y2 1
49
在伸缩变换
:
x y
x, ( y,(
0) 0)
下,
直线仍然变成直线,
而圆可以变成椭圆,
那么椭圆可以变成圆吗?
抛物线、双曲线变成什么曲线?
练习:
1
求下列点经过伸缩变换
x' y'
x y
B
x' y'
3 2 2 3
x y
x' y x' x 1
C
y'
x
D
y'
y1
4 曲线x2 y2 2 x 0 变成曲线 x'2 16 y'2 4x' 0
的伸缩变换是
.
5
在伸缩变换
x'
y'
2x y
与伸缩变换
第一讲 坐标系
一 平面直角坐标系
声响定位问题
观测点
某中心接到其正东、
正西、正北方向三个观测 点的报告:正西、正北两
观测点 信息中心
个观测点同时听到一声巨
y
响,正东观测点听到巨响
的时间比其他两个观测点
C
晚4s,已知各观测点到中
心的距离都是1020m,试
P
确定该巨响的位置。(假定
当时声音传播的速度为
x
1
x
2
③
y 3 y
把这样的变换叫做平面直角坐标系中的一个坐标伸缩变换
定义:
设P(x, y)是平面直角坐标系中任意一点,在变换:
:
x y
' '
x y
( 0) ( 0)
的作用下,点P(x, y) 对应P’(x’, y’).
称 为平面直角坐标系中的伸缩变换。
上述①②③都是坐标伸缩变换,在它们的作用下,可 以实现平面图形的伸缩。
① 0, 0
②把图形看成点的运动轨迹,平面图形的伸缩变换 可以用坐标伸缩变换得到;
③在伸缩变换下,平面直角坐标系不变,在同一直 角坐标系下进行伸缩变换。
例3 在直角坐标系中,求下列方程所对应的图形
经过伸缩变换:
x 2x