电厂汽轮机辅机运行优化及改进 林永莛
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电厂汽轮机辅机运行优化及改进林永莛
发表时间:2019-06-13T10:21:38.507Z 来源:《电力设备》2019年第3期作者:林永莛
[导读] 摘要:对电厂汽轮机辅机运行进行优化和改进,提升了汽轮机组的工作效率,提高了电厂对资源的有效利用。
(国电福州发电有限公司福建省福州市 350309)
摘要:对电厂汽轮机辅机运行进行优化和改进,提升了汽轮机组的工作效率,提高了电厂对资源的有效利用。在实际电厂工作中,可通过试验计算对比找到电厂汽轮机辅机系统设备的最佳运行方式,采用改进措施提升辅机设备的运行效率和稳定性,不仅能提高辅机系统的经济性和节能目的,同时也是保障辅机系统安全性的有效措施,为电力行业技术的发展指明了有效途径。
关键词:电厂汽轮机辅机;运行优化;改进
1火力发电厂汽轮机辅机类型
1.1抽气设备
火力发电厂汽轮机组会将射流式抽气机、容积式真空泵抽气机来作为辅机,其中,容积式真空抽气机的主要运行模式是离心式或液环式;而射流式抽气机则主要是不断地喷射气体来提高抽气设备的蒸汽压力。抽气设备是火力发电厂汽轮机组的主要组成部分,其主要作用在于:启动汽轮机组的同时抽出加热器、凝汽器等处的空气,以便能够及时创造出所需真空值。待汽轮机实现正常运行之后,为了能够对凝汽器的真空值进行有效维持,还可将凝汽器内的少量空气(由外界漏入)和不凝结气体抽出。
1.2冷却设备
火力发电厂汽轮机组所采用的冷却设备主要包括封闭式冷却设备与开放式冷却设备,其中,开放式冷却设备配备的电源系统为直流电源系统,封闭式冷却设备则主要是由冷却水箱、喷水池来进行组成。水温在冷却之后通常可以维持在5~10℃,既可提高火力发电厂的经济效益,又可降低汽轮机组的运行成本。
1.3凝汽设备
凝汽设备可细分为凝结水泵、抽水设备、冷凝器等多个设备,若运行周期内凝汽设备的涡轮排气状态为真空状态,那么就可大幅度提高火力发电厂的生产效率与工作质量,无疑会有利于火力发电厂的可持续性发展。
2电厂汽轮机辅机运行优化改进
2.1给水泵运行优化
锅炉给水泵是火力发电厂重要的辅助设备,也是厂用电消耗最多的辅助设备。给水泵能量损失主要来源于三个方面:运行效率低造成的流量过剩;扬程储备引起;出于安全运行考虑而配备参数偏大型号的给水泵。火力发电厂中的大型机组往往会选用功率较大的电动给水泵,其耗电量接近厂用电量的二分之一。出于对大型机组的整体经济性考虑,对给水泵的运行方式进行优化至关重要。通过机组在不同负荷及运行条件下给水泵的流量-扬程特性曲线和流量-效率特性曲线,确定出最佳的给水泵组运行方式。
对于大功率汽轮机来说,若机组按(2台汽动给水泵+1台电动泵)运行方式进行配置。从负荷的变化来看,当处于低负荷状态下,采用单泵运行或电泵备用方式的经济性要优于1台运行或1台备用的运行方式;当处于低负荷状态的持续时间比临界时间长的时候,电泵备用的运行方式最为经济有效。当负荷高低状态频繁发生变化时,则不应采用(电泵+汽泵备用)的运行方式。为保障汽轮机的安全运行,当电动泵的容量小于运行中的汽动泵,当汽动泵发生故障或者出现跳闸问题后,仅仅通过电动泵在维持汽轮机主机运行的时间内,须将机组迅速降低至同电动泵容量相适应的负荷。若机组按容量均匀的3台电动给水泵运行方式进行配置,泵组在低负荷滑压工况下比定压运行工况下的效率要低。
2.2 循环水泵运行优化及改进措施
在负荷状态下的机组水温被冷却到特定温度时,伴随循环水流量的变化凝汽器压力也会随之产生一定程度的变化,从而对循环水泵的耗功产生较为直接的影响。所以当增加循环水流量后,机组所承受的压力随之减小,出力也会相应增加。那么一旦机组出力增加值与循环水泵耗功值差达到最大,凝汽器就处于最佳运行状态,这时也是循环水泵的最佳运行方式。由于循环水泵的流量是不可持续调节的,可以根据现有的循环水泵数量以及泵叶片调整角度的变化来组合出不同的循环水泵运行方式。在工作实测中笔者发现,对循环水泵进行不同的组合,通过泵流量及耗功、凝汽器性能、汽轮机出力增加值与机组的负荷状态、循环水温变化情况相结合,从而计算出特定条件下的机组最佳运行背压,最终可以确定出循环水泵的最佳运行方式。但是在实际操作中,还应考虑循环水泵切换操作的安全性。可以通过在机组间加装联络管、采用双速电机、安装变频器等方法,实现辅机的节能效果。
2.3抽气设备运行方式优化
抽气设备的作用是将非凝固气体抽出,以确保凝器设备的真空度。而对抽气设备运行产生的影响因素包含:入风口处的温度、压力、泵转速等。为了不影响抽气设备自身,运行优化可以从提升冷却液的冷却效率入手,严格控制温度,增大泵的空气流速。此种方式还可使凝气设备的换温度能力得到提升,实际应用效果最佳。
2.4 凝结水系统运行优化及改进措施
凝结水泵的流量和扬程均偏大的问题是由于凝结水泵的出力点与凝结水系统的阻力不匹配所引起,是促进凝结水系统进行优化和改进的主因。电厂机组运行时,凝结水泵是处于小流量高扬程点状态下运行,如果凝结水调整门开度小,会增加凝结水系统的阻力,对应的处理设备的工作压力也会随着增大,从而造成电能的浪费。那么将凝结水泵的定速运行改成变速运行,调整门保持全开状态,通过管道阻力不变,凝结水水泵转速改变的方式来实现凝结水系统的运行优化。此种方式下,当凝结水水泵的转动速度变小后,扬程和流量曲线会随之下移,在流量减少后扬程也会随之降低,这个过程中水泵始终保持在高工作效率范围内。此外为保证凝结水系统的节能性,还可减少叶轮级数,使凝结水泵的扬程降低,从而解决不匹配的问题。
2.5其他辅机的运行改进措施
输送水体系改进:在实际工作中最常见的是因输送水体系规格不匹配,导致的泵口崩裂和大量漏水问题。解决这一问题的改进措施是,在凝气设备处安装可与空气接触的输送水泵,起到消除因水泵冲撞而造成震动的作用。
改进输送水位调控力度;输送水位的高低会直接影响辅机的工作效率。辅机的实际运行中,输送水位往往达不到预期的设计要求,随之会带来一些列诸如输送水位温度升高、气泡冲击等问题。那么需要通过试验方法改变输送水为预期设计高度的方法来解决,同时增大可