第四章 原子的精细结构:电子的自旋

合集下载

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋原子是构成物质的基本单位,其结构包括核和围绕核运动的电子。

在原子结构中,电子自旋和核自旋是两个非常重要的物理概念,它们对原子的性质和行为都有重要影响。

一、电子自旋1.电子自旋的概念电子自旋是电子固有的一种内禀性质,它并不是电子真正的旋转运动,而是描述电子的一种量子性质。

电子自旋可以用两种态来描述,即上自旋态和下自旋态,分别用↑和↓表示。

这两种态是对应于电子自旋在空间中的两个方向,它们之间没有中间态。

2.电子自旋的测量电子自旋的测量是基于量子力学的原理,它具有不确定性。

当进行电子自旋的测量时,不可能同时测量出电子的位置和自旋方向。

根据量子力学的测不准原理,测量电子的自旋方向会使得其位置的不确定性增加,反之亦然。

3.电子自旋的性质电子自旋在原子结构中具有重要的作用。

它决定了原子在外加磁场下的行为,从而影响了原子的磁性。

电子自旋还与化学键的形成和原子光谱的性质有关。

由于电子自旋的存在,原子的能级结构会呈现出一些特殊的规律,如Pauli不相容原理等。

4.康普顿散射电子自旋还与康普顿散射现象相关。

康普顿散射是指X射线与物质中的自由电子相互作用而发生散射的现象。

在康普顿散射中,X射线会与电子的自旋磁矩相互作用,使得散射角度发生变化,从而可以用来测量电子的自旋。

二、核自旋1.核自旋的概念核自旋是核子固有的自旋角动量,通常用I来表示。

与电子自旋类似,核子的自旋也具有量子性质,即其自旋角动量只能取离散的数值。

在自然界中,存在很多核素,它们的核自旋可以是整数或半整数。

2.核自旋的性质核自旋是核物理研究的重要参数之一,它与原子核的稳定性、核衰变、核磁共振等现象密切相关。

核自旋还可以影响原子的磁性和核荷分布,从而影响原子的化学性质。

3.核自旋共振核自旋可以通过核磁共振技术来研究。

核磁共振是一种利用核自旋的方法来研究物质结构和性质的技术。

在核磁共振中,外加磁场使得具有核自旋的原子核产生共振吸收信号,从而可以得到有关原子核的信息。

原子光谱的精细结构

原子光谱的精细结构

原子光谱的精细结构是指由于电子的自旋-轨道相互作用引起的原子能级分裂和光谱线的多重结构。

在没有考虑这种相互作用时,氢原子等简单原子的光谱呈现出由玻尔模型预测的离散谱线。

然而,当考虑到相对论效应和电子的自旋性质时,情况变得更加复杂。

以下是一些关于原子光谱精细结构的关键点:
1. 自旋-轨道相互作用:电子不仅具有轨道运动,还具有内在的自旋。

这两种运动之间的相互作用导致了原本单一的能级分裂为多个子能级,形成了精细结构。

2. 精细结构常数:描述自旋-轨道相互作用强度的物理量是精细结构常数(通常表示为α),其值约为1/137。

这个常数在量子电动力学中起着核心作用,并与电磁相互作用的强度有关。

3. 光谱线分裂:由于能级的分裂,当电子在不同能级之间跃迁时,会发出或吸收特定波长的光,形成光谱线。

精细结构导致这些光谱线进一步分裂为更窄的谱线,这些谱线之间的间隔通常很小,但可以通过高分辨率光谱仪观测到。

4. 量子数:为了描述具有精细结构的能级,需要引入额外的量子数。

除了主量子数n、角量子数l和磁量子数m_l之外,还需要考虑自旋量子数m_s。

这些量子数共同决定了电子在原子中的状态和相应的能级。

5. 相对论效应:除了自旋-轨道相互作用外,相对论效应也对原子光谱的精细结构有贡献。

特别是对于重原子,这些效应更为显著。

6. 实验观测:原子光谱的精细结构最早是在实验中通过高分辨率光谱学技术观察到的,这些观察结果对理解和验证量子理论的发展起到了关键作用。

通过研究原子光谱的精细结构,不仅可以更深入地理解原子内部的电子行为,还可以精确测量基本物理常数,并在精密测量和光谱学等领域找到应用。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋

原子结构知识:原子结构中电子自旋和核自旋1.引言原子结构是指原子内部的组成和排列方式,包括核子和电子的结构。

在原子结构中,电子自旋和核自旋是两个重要的概念,它们对于原子的性质和行为起着重要作用。

2.电子自旋电子是原子中最轻的带电粒子,它的自旋是电子最重要的特性之一。

电子自旋是指电子围绕自身轴心旋转的现象,它的大小和方向可以用自旋量子数来描述。

根据量子力学理论,电子自旋量子数可以取两个值,分别为+1/2和-1/2。

这意味着电子自旋可以分为两种状态,即自旋向上和自旋向下。

3.核自旋与电子自旋类似,核自旋也是原子结构中非常重要的一个概念。

核自旋是指原子核内部核子(质子和中子)围绕自身轴心旋转的现象。

核子的自旋量子数也可以取两个值,分别为+1/2和-1/2。

不同于电子自旋,核自旋的大小和方向会受到核外电子的屏蔽效应的影响。

这意味着核自旋的取值范围和性质会受到核外电子的影响而发生改变。

4.电子自旋和核自旋的相互作用在原子结构中,电子自旋和核自旋之间存在着相互作用。

这种相互作用会对原子的性质和行为产生影响。

在原子内部,电子与核子之间会发生自旋-轨道耦合,这是因为电子不仅有自旋运动,还有轨道运动。

这种耦合会导致电子的自旋和轨道运动不再是完全独立的,而是相互影响的。

另外,电子自旋和核自旋之间还会发生磁相互作用,这种相互作用会导致原子具有磁性。

5.电子自旋和核自旋在原子物理中的应用电子自旋和核自旋在原子物理中具有广泛的应用。

其中,最重要的应用之一是核磁共振(NMR)技术。

核磁共振是利用原子核的自旋性质来获取物质结构和性质的一种分析方法。

通过NMR技术,可以研究原子核自旋和化学环境之间的相互作用,从而获取大量化学信息。

此外,电子自旋和核自旋还在磁共振成像(MRI)领域得到广泛应用,用于医学诊断和研究。

6.结论电子自旋和核自旋是原子结构中重要的概念,它们对于原子的性质和行为具有重要影响。

在原子内部,电子自旋和核自旋之间存在相互作用,这种相互作用会引发许多重要的物理现象。

原子的精细结构.

原子的精细结构.
11
《原子物理学》第四章 原子的精细结构:电子的自旋
为使氢原子束在磁场区受力,则要求磁场在Å的线度 范围内是非均匀磁场(实验的困难所在)。 在外加非均匀磁场中原子束产生分裂。是对原子在外 磁场中取向量子化的首次直接观察,是原子物理学中最 重要的实验之一。
12
《原子物理学》第四章 原子的精细结构:电子的自旋
分析矢量μ的进动。图(b)取自与B 垂直的、μ进动平面上的一小块扇面。 μ与B的垂直距离即为扇面半径 显然:d sin d d d sin sin 于是: dt dt d d d dt sin d 由此知 即为角速度。 ( b) dt 6
3
《原子物理学》第四章 原子的精细结构:电子的自旋
§4-1 原子中电子轨道运动的磁矩
1.经典表示式
由经典电磁理论,载流 线圈的磁矩: iSn 电子绕核运动等效于一 载流线圈,必有一个磁矩。
i
n

r
i
n
L
r
v 设电子旋转频率: 2r
则原子中电 子绕核旋转 的磁矩为:
e
电子与自旋相联系的 磁矩类似于电子轨道 运动的磁矩。可写出 电子自旋的磁矩为:
3 s s ( s 1) B B 2 m 1 s B B sz 2
但这两个式子与实验不符,为此乌仑贝 克与古兹米特进一步假设:电子的磁矩 为一个玻尔磁子,即为经典数值的2倍。
(*如果视电子为带电小球,半径为0.01nm,它绕自身 1 的轴线旋转,则当其角动量为 时,表面处的切向线速 2 度大大超过光速!)
电子自旋假设受到各种实验的支持,是对电子认识的一 个重大发展。狄拉克于1928年找到一种与狭义相对论相融 洽的理论,可由狄拉克相对量子力学严格导出电子自旋的 自然结果。

原子的精细结构电子的自旋

原子的精细结构电子的自旋

原子的精细结构电子的自旋原子是化学分子的基本单位,也是化学反应和化学变化的基本参考物。

原子结构是原子面临化学反应和化学变化的基本特征。

原子由核,电子和电子云构成。

核是原子中带有正电荷的中心,而电子则存在于核外的电子云中,又称外层电子。

电子是原子中最活跃的成分,掌握对电子的研究可以掌握整个原子的特征和行为。

其中包括原子的精细结构和电子自旋。

一、原子的精细结构原子的精细结构是指原子中电子能级的精细结构,通过电子吸收能、发射能和电子竞争的方式进行研究,以探测电子的能级结构和运动规律。

(一)原子能级原子能级是指原子中每个电子在不同能量状态下所处的状态。

原子中的能级可被分为基态,电子激发态以及离散态。

基态是能量最低的状态,所有能量处于基态的状态。

离散态是中间状态,处于基态和激发态之间。

电子激发态是指原子中的电子因为吸收或者失去能量而移动到一个较高的能量状态,成为激发态。

电子跃迁是指电子在不同的能量态之间运动时所产生的变化,这种变化会产生一定的能量。

电子跃迁的能量差可以通过光谱来测量,也可以通过测量电触发的荧光强度来测量。

(二)光谱分析光谱分析是一种探测化学物质的工具,通过电子的吸收和发射能来进行化学分析。

光谱分析可以被用于化学分析,探测电子沿着不同化学反应模式的运动规律。

光谱分析可以被用于探测分子和原子的特征,包括丰度,引力能和外加势能等等。

从光谱分析中可以得知原子的基态,激发态和离散态之间的能差,以及电子传递特征,提供了关于原子的精细结构和电子自旋的信息。

二、电子自旋电子自旋是指电子的一个内禀性质,即电子在原子内部的旋转方向。

电子是一种带有负电荷的基本粒子,也是电子云中最活跃的成分。

电子的自旋是由于自身的旋转而产生的,它与电子的电荷和运动都有关系。

电子的自旋是一种内在的、量子力学的性质,是由能量的守恒和角动量的守恒原理共同决定的。

(一)电子的自旋量子数电子的自旋是用量子力学的方法描述的,它具有双重自性,既是粒子,又是波。

第四章 电子的自旋

第四章  电子的自旋

在原子内部,有两种角动量 L 和 S


必然存在一个总角动量以及相 应的磁矩。

s 与s



l 与 l

分别共线,合成后

j ls

l s


三、 总角动量
电子的运动=轨道运动+自旋运动
电子有轨道角动量l,又有自旋角动量s,所以电子的 总角动量是
总自旋角动量: S Si
i e e Li L 总轨道磁矩: l li 2m i 2m i
i
总自旋磁矩:
e e s si S i S m i m i
总角动量: J L S
总磁量子数 m j j, j 1,, j 1, j.共2j1个值
对于单电子s=1/2,所以
1 1 1 l 0, j ; l 0, j l , l 取两个值 2 2 2
例如:当
1 3 l 1 时, j 1 2 2
1 1 j 1 2 2
h h L l (l 1) 2 2 2
h 3 h S s( s 1) 2 2 2
J
h 15 h 3 h j ( j 1) , 2 2 2 2 2
J 2 L2 S 2 2LS cos
J 2 L2 S 2 j ( j 1) l (l 1) s( s 1) cos 2 LS 2 l (l 1) s( s 1)
e L l (l 1) B 2m
外场方向投影:

z cos ml B
2l 1 个奇数,但实验结果是偶数。

原子的精细结构—电子自旋

原子的精细结构—电子自旋

j , z m j g j B
轨道 g 1 l 运动
l , z
e Lz m l B 2me
S z ms
S s ( s 1)
e e s S s( s 1) 2 s( s 1) B me me
自旋 gs 2 运动
s , z
e e Sz m s 2m s B me me
自旋-轨道耦合 的附加能量。
作数量级估计(对氢,n=2):
U e2 ( c ) 2 4 0 2 E0 2 4a1 3 (1.44eV nm)(197eV nm) 2 105 eV 2(0.511106 eV ) 2 (4 0.53nm)3
精确计算:求 S L 2 2 2 J S L J S L 2S L
L 0, 1, 2, 3,
能级重数
2S+1
2
S1/ 2
S P D F
J 值= L S , S +1, ,L S L
见课本p163,表……
(4)施特恩-盖拉赫实验的解释
Bz dD z2 cos z 3kT
其中μ 应为原子的总磁矩,即轨道磁矩和自旋磁矩 的合成 cos J cos mJ g J B
§4.4 碱金属双线
(1)碱金属谱线的精细结构:定性考虑 碱金属的原子光谱有四个主要线系(以锂为例): 主线系:np→2s跃迁;
锐线系:ns→2p跃迁;
漫线系:nd→2p跃迁;
基线系:nf→3d跃迁。
当用高分辨率光谱仪观察,发现这些谱线有双 线结构:
主线系
np→2s
线系限
锐线系
ns→2p

第四章原子的精细结构:电子的自旋

第四章原子的精细结构:电子的自旋

不加磁场
加磁场经典预言
加磁场实验结果
斯特恩-盖拉赫实验对氢原子的结果 斯特恩盖拉赫实验时空间量子化的最直接的证明,它是第 一次量度原子的基态性质的实验,又是这个实验,进一步开辟 了原子束及分子束实验的新领域。
三、实验问题
1、先看例子(Ag、Zn l 0 )在屏上能看到几束
理论上:( 2l 1 1 )只有一个值
x vt
1 Fz 2 zt t 2m
d O
P
S1 S2
S N
z1

z2
x
D
通真空泵
原子束在经过磁场区(长度D)到达出口处时,已偏离x轴z1 距离,那时与x轴的偏角为:
Fz t dz1 Fz d arctan arctan arctan 2 dx mv mv d
§18 原子中电子轨道运动的磁矩
一、经典表示式
1、磁矩 从经典电磁学知道,一载流线圈有一个磁矩μ ,它可以表示成:
ˆ IS iSen
i
-----电流大小
S
-----载流线圈所围面积
ˆ en -----垂直与该面积的单位矢量,即和导线线圈平面垂直
因 和 S
线圈平面。
子的1/1836,实际核磁子值
因为核磁矩比电子磁矩
小得多,所以原子磁矩主要由电子磁矩组成。玻尔磁子
也可作为原子磁矩的单位。
2、磁相互作用比电相互作用小
4 0 2 e 1 e 2 B ec 2 2me 2 4 0 c me e 1 1 ea1 c c ea1 2 2
它在z方向的分量只有两个:
1 sz 2
1 : 即:自旋量子数在z方向的分量只能取 2

史特恩-盖拉赫试验的解释

史特恩-盖拉赫试验的解释

UB μ B UE DE
比较运动电子在磁场中的能量和电子对在电 场中的能量
B

e 2me
1 e2
2 40
c

4 0
mee2
2

e

c

1 2


a1

e

c
D ea1, E cB
UB BB
U E ea1E 2
第四章:原子的精细结构:电子的自旋 第一节 原子中电子轨道运动磁矩 第二节 施特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
第四章:原子的精细结构:电子的自旋
第一节 原子中电子轨道运动磁矩 第二节 史特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
第一节:原子中电子轨道运动的磁矩
库仑相
相 互作用 互 作 磁偶极矩和 用 外磁场的相 方 互作用 式
原子中磁偶 极矩之间相 互作用
观察到两个取向;
难道是轨道角动量矢量合成?
第四章:原子的精细结构:电子的自旋
第一节 原子中电子轨道运动磁矩 第二节 史特恩—盖拉赫实验 第三节 电子自旋的假设 第四节 碱金属双线 第五节 塞曼效应 第六节 氢原子能谱研究进展
埃伦费斯特和他的学生,1924年,莱顿. 左起: 第开, 古兹密特, 汀柏根, 埃 伦费斯特, 克罗尼格, 和费米。
dD 3KT
讨论:
1、如果 l(l 1)B 量子化,
cos 可以是任意的,
z cos 不是量子化的,
z2不是量子化的。
Z

原子物理学 第4章 原子的精细结构

原子物理学 第4章 原子的精细结构
第四章 原子的精细Fra bibliotek构:电子的自旋
Manufacture: Zhu Qiao Zhong
2
§4-1 原子中电子轨道运动的磁矩
1.经典表示式
电子绕核运动等效于一载流线圈,必有磁矩.
eˆn
iSeˆn
e t
Seˆn
e
2r /
v
r 2eˆn
e 2me
mevreˆn
e 2me
L
iS
eˆn
i
(电子)旋磁比
def
8
量子数与状态的关系、简并
量子数与状态的关系
对给定的 n ,有 l 个不同形状的轨道( l ); 确定的轨道有(2 l +1)个不同的取向( m l ).
简并和简并度
简并:被当作同一较粗糙物理状态的两个或多个不同的较精细 物理状态. 简言之,能量相同的状态称为简并态.
简并度:简并态的数目. 例如原子中的电子,由其能量确定的同一能级状态,可以有两种 不同自旋的状态.所以该能级是两种不同自旋状态的简并态.
本章引进电子自旋假设,对磁矩的合成以及磁场对磁矩的作用 进行分析,进而考察原子的精细结构.
本章还介绍史特恩-盖拉赫实验、碱金属双线和塞曼效应,它 们证明了电子自旋假设的正确性.
由电子自旋引起的磁相互作用是产生精细结构的主要因素.
到现在为止,我们的研究还只限于原子的外层价电子,其内层电 子的总角动量被设为零.
10
轨道角动量取向量子化
第四章 原子的精细结构:电子的自旋
Manufacture: Zhu Qiao Zhong
11
§4-2 史特恩-盖拉赫实验(1921)
实验原理:从射线源O逸出的具有磁矩的氢原子束,经狭缝S1 和S2后,以速度v沿x方向运动. 进入一个在z方向存在梯度的非均 匀的强磁场Bz. 原子在Bz的作用下将偏离x轴,而落到屏上距x轴距 离z2处.实验结果:在屏上有两条对称的沉积痕迹.

原子物理学杨福家1-6章_课后习题答案

原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第一章习题1、2解速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)(2)(3)作运算:(2)×sinθ±(3)×cosθ,得(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)若记,可将(6)式改写为(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0若 sinθ=0, 则θ=0(极小)(8)(2)若cos(θ+2φ)=0 ,则θ=90º-2φ(9)将(9)式代入(7)式,有由此可得θ≈10-4弧度(极大)此题得证。

(1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.,其他值从书中参考列表中找.解:(1)依和金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=×104kg/m3依:注意到:即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学第4章

原子物理学第4章

价电子的轨道:n ≥ 2
Li: Z=3=212+1 Na:Z=11=2(12+22)+1 K: Z=19=2(12+22+22)+1 Rb:Z=37=2(12+22+32+22)+1 Cs:Z=55=2(12+22+32+32+22)+1 Fr:Z=87=2(12+22+32+42+32+22)+1
3、Na原子的能级与能级跃迁
主线系:从l=1的p态→n=3, l=0的3s态, n=3,4… 锐线(二辅)系:从l=0的s态→n=3, l=1的3p态, n=4,5… 漫线 (一辅)系:从l=2的d态→n=3, l=1的3p态, n=4,5… 基线(柏格曼)系:从l=3的f态→n=3, l=2的3d态, n=4,5,6…
Rhc En 2 (n D l )
-e

r Rnl

2
2
21
20
n=2
r r1
图4-5、轨道的贯穿
0
4
r Rnl
2
2
32
31
30
n=3
r r1
0 9
l 越小,电子波 函数靠近核的概率 越大,贯穿的几率 越大,能量越低
小结:碱金属原子光谱
1、实验规律:
所有的碱金属原子的光谱,具有相仿的结构,实验观 察的谱线一般分为四个线系。

~D相同而n不同的光谱 和
R R 2、碱金属原子的光谱项: Tnl 2 n (n D l ) 2
• 量子数亏损:D l

nn

原子物理学(原子的精细结构电子自旋)

原子物理学(原子的精细结构电子自旋)
通过调控材料中电子自旋的取向, 可以制备具有特殊磁学性质的自
旋极化材料。
自旋电子学
利用电子自旋的特性,开发新型 自旋电子学器件,如自旋晶体管
和自旋存储器等。
磁性材料研究
通过研究电子自旋的磁学性质, 有助于深入了解磁性材料的微观
结构和物理性质。
05 原子物理学的发展前景与 挑战
原子物理学与其他学科的交叉研究
原子核位于原子的中 心,电子围绕原子核 运动。
原子的电子排布
电子在原子核外的不同能级轨道 上运动,离原子核越远的轨道,
其能量越高。
电子按照一定的规律填充在不同 的能级轨道上,形成电子排布。
电子排布决定了原子的化学性质 和电子状态,是研究原子结构的
重要内容。
原子的能级与光谱
原子的能级是指原子内部电子 运动的能量状态,不同的能级 具有不同的能量。
原子物理学在新能源与技术中的应用
太阳能电池技术
01
原子物理学在太阳能电池技术中的应用,通过优化材料结构和
提高光电转换效率,为可再生能源的发展提供支持。
核聚变能源
02
通过原子物理学对核聚变反应过程的研究,实现可控核聚变能
源的开发,为未来能源供应提供可持续的解决方案。
磁约束核聚变装置
03
利用原子物理学的原理和技术,设计和建造磁约束核聚变装置,
当原子从一个能级跃迁到另一 个能级时,会吸收或释放一定 频率的光子,形成光谱。
光谱分析是研究原子能级结构 和性质的重要手段,可以用于 元素分析和化学分析等。
02 原子核的结构与性质
原子核的组成
01
02
03
质子和中子
原子核由质子和中子组成, 质子带正电荷,中子不带 电。

杨福家-原子物理-第四版-第四章

杨福家-原子物理-第四版-第四章

第四章原子的精细结构
第四章:原子的精细结构:电子的自旋
如果用分辨率足够高的摄谱仪观察,可以发现原子光谱 中每条谱线并不是简单的一条线,而是由多条谱线组成。 例如,氢原子的 H 线并不是单线,而是由七条谱线组成; nm 常见的钠原子黄光是由 1 588.996nm 和 2 589.593两条很靠 近的谱线组成的,其波长差约为0.6nm。
Bz Bz 0 x y
Bz 0 z
m 2 2 kT
热平衡时原子速度分布满足:
m F ( )= ( )e 3 2 kT dF (v) 3kT 由 0, 可得最可速率为v= dv m

mv 3kT
2
《原子物理学》(Atomic Physics)
第四章原子的精细结构

M B
另一方面,由刚体力学知识得
dL M B dt
《原子物理学》(Atomic Physics)
第四章原子的精细结构
第一节:原子中电子轨道运动磁矩
由 -L
代入

dL M B dt
B
d dL dt dt
M
i
《原子物理学》(Atomic Physics)
第四章原子的精细结构
磁场中,电子角动量量子化与角动量空间量子化
Z 2 ћ 0 -ћ -2ћ l =2
L
L L L L
h L l (l 1) 6 2
2 LZ ml 0 2
ml= 2, 1, 0, -1,-2
式中
Lz ml
(1)
l
称为角量子数,它的取值范围为
l 0,1, 2,…, n 1

原子物理学 第四章 碱金属原子和电子自旋

原子物理学 第四章 碱金属原子和电子自旋

的原子态,多重度:2
n 3 2 S1/ 2 表示: 3, 0, j 1/ 2 的原子态,多重度:2
32 D5 / 2
32 D3 / 2
Li原子能级图(考虑精细结构)
4.5 单电子辐射跃迁选择定则
1、选择定则
单电子辐射跃迁(吸收或发射光子)只能在下列条件下
发生:
l 1 j 0, 1
R hc (n l ) 2
n, 能级,即给定 En,l

Es 仍与 j 有关。
能量E由
n, l , j 三个量子数决定。
3、碱金属原子能级的分裂
1 时, j 能级不分裂 2 1 Rhc 2 Z *4 j El , s 1 2 3 2n (l )(l 1) 2 当 0 时, Rhc 2 Z *4 1 El , s j 1 2 2n3l (l ) 2

4.4 电子自旋与轨道运动的相互作用
一、电子自旋
1、电子自旋概念的提出
为了说明碱金属原子光谱的双线结构,和解释斯特恩-革拉赫 实验结果,两位不到25岁的荷兰大学生乌仑贝克和古兹米特 大胆地提出电子的自旋运动的假设。
“你们还年轻,有些荒唐没关系”(导师埃 按照这一假设,电子除轨道运动外,还存在一种自旋运动, 伦菲斯特)
和自旋运动相联系还存在自旋角动量。
2、电子自旋角动量量子数
1 s 2
3 电子自旋角动量大小 S s( s 1) 2
3、电子自旋角动量空间取向量子化
1 sz ms 2 1 1 ms s, s 1,......, s , 2 2 ms :自旋磁量子数
* * 0 q r 0 Z e (r m ) 0 Z e B 3 3 3 4 r 4 m r 4 m r e 0 Z *e 0 Z * e 2 s El , s s B S 2 3 3 4 m r m 4 mr

原子物理学第4章 原子的精细结构:电子的自旋

原子物理学第4章 原子的精细结构:电子的自旋
反向,写成矢量式则为:
e

e 称为旋磁比 2me
L
磁矩在外磁场 B 中将受到力矩的作用,力矩将使得磁矩 绕外磁场 B 的方向旋进。我们将这种旋进称为拉莫尔进动。相应
的频率称为拉莫尔频率 L,下面我们来计算这个频率。 由电磁学知在均匀外磁场中受到的力矩为
2、 L 有2l+1个取向,则 S 也应该有2s+1个取向
S s ( s 1)
其中s称为自旋量子数
S z ms , ms s, s 1,,s
实验表明:对于电子来说
s
ms
1 1 , 2 2
即 S 有两个空间取向
1 2
3、与自旋角动量 S 对应的自旋磁矩用 s 表示。由 L 式知,轨道磁矩与轨道角动量之间的对应关系是
二、量子表示式
量子的磁矩表示式与经典表示式有同样的形式,即:
但根据量子力学的计算,角动量 L 是量子化的,这包括它的 大小和空间取向都是量子化的。量子力学的结论为:
L
L l (l 1), Lz ml
式中l为角量子数,ll 0,1,2,, n 1; ml为轨道磁量子数,m l 0,1,2,,l

式中 是精细结构常数(1/137),a1为第一玻尔半径。 ea1 是原子的 电偶极矩的量度,而 B 则是原子的磁性偶极矩的量度,后者是前者的 1 倍,这说明:磁相互作用至少比电相互作用小两个数量级。
2
§4.2 史特恩—盖拉赫实验
上一节的讨论表明:不仅原子中电子轨道的 大小、形状和电子运动的角动量、原子内部的能
§4.1 原子中电子轨道运动磁矩
一、经典表示式
在电磁学中,我们曾经定义闭合回路的磁矩为:

原子物理学 原子的精细结构:电子的自旋 (4.2.1)--施特恩-盖拉赫实验

原子物理学 原子的精细结构:电子的自旋  (4.2.1)--施特恩-盖拉赫实验
sin d
d
e

L
进 动 角 频 率 :
frequency

2
dL dt
magnetic field
磁矩绕磁场进动示意图
d sin d
d
dt


sin ddtddt
sin


பைடு நூலகம்


d
dt
( 2 )量子表示式
l


L
L l l 1 l 0,1,2,, n 1
z d
o s1 s2
S
N
z1 a z2 x
D
通真空泵
z
S
x N
Bz x

Bz y
0
Fz

z
Bz z
原子束对应的最可几速 率:
mv 2 3kT
原子束在磁场区内的运动方程
x vt
z1

1 2
at 2

1 2
Fz m
t2
原子束经过磁场区到 达出口处时与 x 轴的偏角
a
l L ll 1
ZB

LZ
L

e
o
Y
X
L ll 1 l 0,1,2,, n 1
Lz ml
ml 0,1,2,,l
磁矩在 z 方向的投影
l,z


LZ


ml


e 2me
ml
玻尔磁子
Born magneton
e

1 2
a
( 3 )角动量取向量子
L ll 1 化

原子物理学杨福家1-6章-课后习题标准答案

原子物理学杨福家1-6章-课后习题标准答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

电子自旋角动量和自旋磁矩

电子自旋角动量和自旋磁矩
2 2 2 2 2
J 2 L2 S 2 2LS cos
cos J 2 L2 S 2 j( j 1) l(l 1) s(s 1)
2LS
2 l(l 1) s(s 1)
L 和 S 不是平行或反平行,而是有一定的夹角
当 j l s时
cos
l l(l 1)
s 0 s(s 1)
90o,
第四章 原子的精细结构
本章我们将引进电子自旋假设,对磁矩的合成以及 磁场对磁矩的作用进行讨论,去考察原子的精细结构, 并且我们要介绍史特恩-盖拉赫,塞曼效应,碱金属 双线三个重要实验,它们证明了电子自旋假设的正确 性。
电子自旋假设的引入,正确解释了氦原子的光谱和 塞曼效应.
可是“自旋是一种结构呢?还是存在着几类电子呢?”
当 B 不均匀时,P上有两条细痕,受两个力的作用。
均匀磁场中:
F 0
M
B
非均匀磁场中:
Fz
dB cos
dz
z
dB dz
1.实验证明了原子的空间量子化。
两条细痕 两个Fz 两个 z 两个 空间量子化
2.玻尔-索末菲理论与实验比较
轨道角动量:
p
n
h
2
n 1,2,3 , n
外场方向投影:
p
电子轨道运动的闭合电流为: i e
T
“-”表示电流方向与电子运动方向相反
z
面积: dA 1 r rd 1 r2dt
2
2
一个周期扫过的面积:
ir
d
∫ ∫ ∫ ∫ A =
dA =
T 0
1 r2dt 2
=
1 2m
T mr2dt
0
=
1 2m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩以及在z方向的分量分别表示为:
l l ( l 1) gl B , s s( s 1) g s B , j j( j 1) g j B l , z ml gl B , s . z m s g s B , j , z m j g j B
j j( j 1) g j B j ,z m j g j B
g—朗德因子
其中,j=l±s,mj=j,j-1,…,-j,共 2j+1个 数值。
g因子是反映物质内部运动的一个重要物理量, 但至今仍是一个假设。
引入 g因子后,电子的轨道磁矩、自旋磁矩和总磁
r 2 iS r n n 2 r 2
e e me rn L 2me 2me
def
e 定义旋磁比: 2me
则电子绕核运动的磁矩为 L
结论:电子绕核运动的磁矩与电子的轨道角 动量反方向,大小通过旋磁比联系。
当原子束落至屏上P点时,偏离x轴的距离为
原子经磁场区(长度为d)后,与x轴线的偏角为:
Bz dD z2 z z 3kT
z cos
Bz dD z2 z z 3kT
z cos
由以上讨论知,不仅μ呈量子化, μ在z方向的 投影也呈量子化,因为只有这样,z2的数值才 可能是分立的。故从实验测得z2是分立的,反 过来证明μ呈量子化。 此实验是空间量子化最直接的证明,它是第一 次量度原子基态性质的实验。
当只考虑轨道角动量时,
l l ( l 1) B j l , gl 1, 则 l , z m m B
s 3 B j s,gs 2, 则 s,z B
当只考虑自旋角动量时,
三、单电子的g 因子表达式
拉莫尔进动的角频率
L 2
二、轨道磁矩量子表达式
两个量子数(n、l)中,主量子数n决定体系 的能量,角动量量子数 l 决定轨道形状。 根据量子力学的计算,角动量 L 是量子化的, 这包括它的大小和空间取向都是量子化的。 角动量表达式
L
角动量z分量:
l (l 1),
l 0,1,2,n 1
三、实验结果及结论
结果:探测到原子位置有固定的位置,即原子 偏离x 轴的z2数值是分立的。 如H:z2只有两个,即在相片上只看到两条黑斑,
即H在外磁场中只有两取向。而经典理
论认为z2应在某个范围内连续取值。 结论:原子磁矩在外磁场方向即z 方向的投影是量 子化的。即证实了原子在外磁场中的空间量子化。
上式与实验不符,为与实验事实相符,乌仑贝克
与古兹米特进一步假设:电子的自旋磁矩z方向 分量为一个玻尔磁子,即为经典数值的2倍;磁 矩方向与自旋方向相反。
s 3 B s,z B
e 从以上的讨论可知: L 2me 两者相差一倍。
l
s
e S me
3. 电子的自旋磁矩(内禀磁矩) 前已得到电子轨道运动的磁矩
l l ( l 1) B l , z m m B
电子与自旋相联系的磁矩类似于电子轨道 运动的磁矩,可写出电子的自旋磁矩为 3 s( s 1) B B s 2 m 1 s,z s B B 2
3.拉莫尔进动的角速度 磁矩在均匀外磁场中受到的力矩 dL B dt d B 由 L 得 dt d 可改写为 dt
拉莫尔进动的角速度 B
d dt


sin
s 3 B 自旋磁矩: s , z B
j j ( j 1) g j B j l s 总磁矩: j , z m j g j B m j j j l s
二、朗德因子(g因子)
定义一个 g因子,使得对任意角动量 j所对应的磁 矩以及它们在z方向上的投影都成立。表示为
一、乌仑贝克与古兹米特的电子自旋假说
1. 电子不是点电荷,除轨道角动量外还有自旋运动, 具有固有的自旋角动量S(内禀角动量)
1 S s( s 1), s 2 1 2. 它在z方向的分量只有两个: s z 2 1 即自旋量子数在z方向的分量只能取 : 2 1 S z m s , m s 2
其特点是 L不能与z方向重合,
这正是对角动量量子化条件 改动而产生的效果。 角动量矢量在空间的取向 不连续,量子化,取向的 个数与角动量量子数有关, 等于2l+1个。 空间量子化:原子体系角动量在外场(磁场和电 场)方向的投影只能取某些特定值的现象称空间 量子化。
第二节 施特恩—盖拉赫实验
(在外加非均匀磁场中原子束的分裂)
Lz ml , ml 0,1,, l
电子磁矩大小
l L l (l 1)
e l l ( l 1) l ( l 1) B 2m e
e B 0.5788 10-4 eV/T 2me 电子磁矩的z分量:l , z Lz ml
uB称玻尔磁子,为轨道磁矩的最小单元。
l ,z
e ml ml B 2m e
电子磁矩在z方向的投影
l L l ( l 1) B l , z Lz ml ml B 2 2 e 4 1 e 0 玻尔磁子 B ce 2me 2 4 0 c mee2 1 电偶极 c(ea1 ) 距量度 2 电磁波与物质中原子相互作用时 Em cBm
1.电子的自旋与轨道角动量的耦合
总角动量 j。满足矢量相 加法则,合成总角动量。 2.单电子的g 因子表达式 (1)电子的总磁矩:两分量。 j l cos(l , j ) s cos(s , j )
j j( j 1) g j B
电子各种角动量与 相应磁矩的关系
施 特 恩 (O· Stern) 和 盖 拉 赫 (W· Gerlach) 在 1921 年第一次通过实验直接证明了原子在外 场中角动量空间取向的量子化现象。角动量 的空间取向与原子磁矩的空间取向有着密切 的联系。
一、装置:原子源、两个狭缝、只在z 方向不均
匀的非均匀磁场、接收屏。
为使氢原子束在磁场区受力,要求磁场在的0.1nm线度 范围内是非均匀磁场(实验的困难所在)
磁相互作用与电相互作用比: 1 B cea m 1 1 Bm B 1 2 100 Em ea1 cBm ea1 2
三、角动量取向量子化(空间量子化)
根据轨道角动量及其分量的量子化条件
L l ( l 1), l 0,1,2, n 1 ml 0,1, , l Lz ml ,
自旋角动量受到质疑!
如:自旋电子表面线速度
mvr h, rl 10 (m)
16
vl
h mrl
1.0546 1034 J s 9.11031 1016
电子自旋假设受到各种实验的支持,是对电子 认识的一个重大发展。狄拉克于1928年找到一 种与狭义相对论相融洽的理论,可由狄拉克量
(2)g 因子表达式 结合上两式,总角动量对应的朗德因子: ˆ2 gl g s gl g s lˆ2 s gj ˆ 2 2 j2 ˆ 2 lˆ 2 3 1 s 2 ˆ 2 2 j
3 s( s 1) l ( l 1) g 2 2 j ( j 1)
第一节:原子中电子轨道运动的磁矩 一、经典表达式 1.磁矩: iSn
i为电流大小; S为电流所围的面积, n 是垂直于该积的单位矢量。 原子中电子绕核转必定与一个磁距相对应。 2.电子轨道磁矩 设电子旋转频率为 2 r 依电流的定义式得
e ie 2 r
(1)
设 在dt时间内旋进角度 d
d sin d d d sin (2) dt dt d (1)(2)式比较: dt
拉莫尔进动的角速度
B
表明:在均匀外磁场 B 中高速 旋转的磁矩不向 B靠拢,而是 以一定的 绕 B 作进动。 的 方向与 B一致。
子方程得出电子自旋的自然结果。
反过来看,电子轨道运动的磁矩为
l l ( l 1) B l , z m m B
在原子体系中并不普遍成立。
电子的运动=轨道运动+自旋运动
电子的总角动量
轨道角动量: L l (l 1) , 自旋角动量: S s ( s 1) ,
Z
沿x方向进入磁场的原子束只在Z方向上受力, B Z Fz z z 原子作平抛运动:x —匀速运动;z —匀加速运动。
x vt 原子在磁场区内的运动方程为: 1 FZ 2 z1 t 2 m
Z
μ B z
z
μ 与Z 方向的夹角
Fz t vz Fz d m arctg arctg arctg 2 vx v mv d
第四章 原子的精细结构:电子的自旋
第一节 第二节 第三节 第四节 第五节 原子中电子轨道运动磁矩 史特恩—盖拉赫实验 电子自旋的假设 碱金属双线 塞曼效应
玻尔理论考虑了原子主要的相互作用即核与 电子的静电作用,较为有效地解释了氢光谱。不 过随后高分辨率光谱仪发现光谱线还有精细结构, 说明还需考虑其它相互作用引起能量变化的原因。 本章在量子力学基础上讨论原子的精细结构。 本章我们将引进电子自旋假设,对磁矩的合 成以及磁场对磁矩的作用进行讨论,去考察原子 的精细结构,并且我们要介绍斯特恩-盖拉赫, 碱金属双线,塞曼效应三个重要实验,它们证明 了电子自旋假设的正确性。
l 0,1,2
相关文档
最新文档