新北师大版七年级下轴对称图形练习题名校

合集下载

最新北师大版七年级下册轴对称单元测试试题以及答案(5套题)

最新北师大版七年级下册轴对称单元测试试题以及答案(5套题)

七年级下册轴对称单元测试试题一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、如图,∠ A=50°,DE垂直平分AC,/ B=60°,则∠ DCB等于B、20°C、25 °D、30°2、在等腰△ ABC中,AB=AG则∠ C的取值范围是()A、/ C≤ 45°B、/ C> 90°C、0°v∠ CV 90°D、90°V∠ CV 180 °3、剪纸是中国的民间艺术.剪纸方法很多,如图是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):■一上f $ 所示的四副图案,不能用上述方法剪出的是(A 、 、 B、D 專4、 F 列图形中,不是轴对称图形的是() B、A、C、5、如图,将长方形ABCD沿BD对折,∠ CDB=67.5°,则图中等于45°C ZA 、3B 、)个。

C、D、F列图形不是轴对称图形的是(有一个角是45 的直角三角形B 、有两个角分别是40° 和100 °C 、有一个角是60 的等腰三角形D 、有一个角是40 的直角三角形一个等腰三角形两边长分别是7厘米和15厘米,则这个等腰三角形的周长是(29厘米B 、37厘米C 、29厘米或37厘米D 、28厘米或36厘米8、一个等腰三角形的两边长分别是4厘米和5厘米,这个三角形的周长是(A、13厘米B、14厘米C、13厘米或14厘米D、12厘米或13厘米9、下列说法中:①点A, B在直线I的两旁,且AB与直线I交于点0, 若AO= B0,则点A与点B关于直线I对称;②两个全等三角形一定关于某条直线对称;③一个对称图形的对应点一定位于对称轴两侧;④若△ ABC与厶A' B' C 成轴对称,则△ ABC与厶A' B' C 全等, 其中错误的有()个。

(完整版)北师大版七年级数学下简单的轴对称图形练习题

(完整版)北师大版七年级数学下简单的轴对称图形练习题

5.3 简单的轴对称图形(3)一、选择题1、如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cm B.4cm C.3cm D.2cm2、到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点3、如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是()A.点D到AB边的距离大于点D到AC边的距离B.点D到AB边的距离小于点D到AC边的距离C.点D到AB边的距离等于点D到AC边的距离D.点D到AB边的距离与点D到AC边的距离大小关系不确定二、填空题4、如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为。

三、解答题5、把两个同样大小的含30°角的三角尺像如图所示那样置放,其中M是AD与BC的交点,这时MC的长度就等于M到AB的距离。

你知道这是为什么吗?6、如图,OE平分∠AOB,在OA、OB上取OC=OD,PM⊥CE于E,PN⊥DE于N.线段PM与PN有什么关系?证明你的结论.轴对称图形一、填空题:1、在等腰三角形中,已知顶角为底角度数的4倍,则顶角等于2、等腰三角形△ABC 中,AB = 5cm ,BC= 2cm ,则底边长等于3、等腰三角形的两边长分别为2cm 和5cm ,则三角形的周长等于4、△ABC 中,AB=AC ,AD⊥BC 于D ,且AB+AC+BC= 50cm ,AB+BD+DA =40cm ,那么AD=5、如图,△ABC 中,AB =AC ,DM 是AB 的中垂线,△BCD 的周长是14,BC = 5,那么AB =6、周长为20,一边长为 4的等腰三角形的底边长为 ,腰长为7、等腰三角形的顶角的外角是8、如图,△ABC DE⊥BC,BC=20,则△DCE 的周长为 9、等腰三角形周长为40 则等腰三角形的底边长为 _________ 10、如图,等边△ABC 中,AD 是中线,AD=AE ,则∠EDC =二、选择题(共21分,每小题3分)1、一个三角形具备下列条件仍不是等边三角形的是( ) (A )一个角的平分线是对边的中线或高线 (B )两边相等,有一个内角是60° (C )两角相等,且两角的和是第三个角的2倍 (D )三个内角都相等2、 △ABC 中,AB=AC ,点D 上AC 上,且BD=BC=AD ,则∠A 等于( ) (A )30° (B )45° (C )36° (D )72°3、一个等腰三角形的顶角为钝角,则底角a 的范围是 ( )(A )0°<a<9 (B )30°<a<90° (C )0°<a<45° (D )45°<a<90° 4、已知点A 、B ,以点A 和点B 为其中两个顶点作位置不同的等腰直角三角形,则一共可作出( )(A )2个 (B )4个 (C )6个 (D ) 8个 5、如图,△ABC 中,AB=AC ,∠A=36°,∠ABC 和∠ACB 的 平分线交于点F ,则图中共有等腰三角形 ( ) (A )7个 (B )8个 (C )9个 (D )10个6、等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( ) (A )25° (B )40° (C )25°或40° (D )50°三、1.如图,在直角三角形ABC 中,∠C=90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合 .试探究,当∠A 满足什么条件时,点D为AB 的中点?并说明你的理由.2. 在△ABC 中,∠ABC 和∠ACB 的平分线交于点O.过O 作EF∥BC 交AB 于E ,交AC于F. 请你写出图中所有等腰三角形,并探究EF 、BE 、FC 之间的关系;A B CMD A B C DE A B C E D FDC ABE AB C O E F四、解下列各题:1、如图,在△ABC 中,BC=AC ,∠A=90°,AC=7cm ,AD 是∠BAC 的平分线,交BC 于D ,DE⊥AB 于E ,CD=3cm ,求△DEB 的周长.2、已知等腰三角形两腰上的高相交所成的锐角等于 50°,求这个三角形顶角的度数3、如图,△ABC 中,AB=AC ,点P 、Q 分别在AB 、AC 上,且BC=CP=PQ=AQ ,求∠A五、(本题满分14分)如图,在△ABC 中,AB=AC ,∠ABC 和∠ACB 的平分线交于点O. 1、结合图形,请你写出你认为正确的结论;2、过O 作EF∥BC 交AB 于E ,交AC 于F. 请你写出图中所有等腰三角形,并探究EF 、BE 、FC 之间的关系;ACDBEABCP QABCOA BC O EF3、若AB≠AC,其他条件不变,图中还有等腰三角形吗?若有,请写出所有的等腰三 角形,若没有,请说明理由;线段EF 、BE 、FC 之间,上面探究的结论是否还成立?4、如图,直线MN 分别交直线AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=50°,∠2=65°,(1)求证:AB ∥CD ;(2)在(1)的条件下,求∠AEM 的度数.5、已知∠AOB=90°,在∠AOB 的平分线OM 上有一点C ,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA 、OB 相交于点D 、E . (1)如图1,当CD ⊥OA 于D ,CE ⊥OB 于E ,求证:CD=CE .(2)当三角板绕点C 旋转到CD 与OA 不垂直时,在图2这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.ABCOEF。

最新北师大版七年级下册数学轴对称图形的单元测试试题以及答案

最新北师大版七年级下册数学轴对称图形的单元测试试题以及答案

最新七年级下册数学轴对称图形的单元测试试题1.如图所示,图中不是轴对称图形的是()A. B.C. D.2.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2C.3 D.43、正六边形的对称轴有条。

4.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B=______.5.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是______.6.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为 .7.一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:8. 下列说法错误的是()A.等边三角形是轴对称图形 B.成轴对称的两个图形对应点的连线被对称轴垂直平分 C.成轴对称的两个图形的对应边相等、对应角相等 D.成轴对称的对应线段必在对称轴两侧9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R 落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()10.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有____种.等腰三角形1.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=2.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.3. 如图所示,P、Q是△ABC边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC= .4.一个等腰三角形的两边长是4cm和6cm,那么这个等腰三角形的周长是。

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。

北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。

北师大版七年级(下)全等三角形、对称轴综合测试卷

北师大版七年级(下)全等三角形、对称轴综合测试卷

北师大版七年级(下)轴对称数学综合测试卷一、选择题1.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点; (4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 A.0 B.1 C.2 D.3 ) ( )2.如图,△ABC 和△A′B′C′关于直线 L 对称,下列结论中正确的有( (1)△ABC≌△A′B′C′ (2)∠BAC=∠B′A′C′ (3)直线 L 垂直平分 CC′ (4)直线 BC 和 B′C′的交点不一定在直线 L 上. A.4 个 B.3 个 C.2 个 D.1 个第2题 第5题 第7题 3.一个角的对称轴是( ) A.这个角的其中的一条边 B.这个角的其中的一条边的垂线 C.这个角的平分线 D.这个角的平分线所在的直线 4.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对 称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有( ) A.4 个 B.3 个 C.2 个 D.1 个 5.如图,在平面内,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 等于( ) A.115° B.130° C.120° D.65° 6.下图是我国几家银行的标志,其中是中心对称图形的有( )A.1 个 B.2 个 C.3 个 D.4 个 7.如图,∠1=∠2,PD⊥AB,PE⊥BC,垂足分别为 D、E,则下列结论中错误的是( ) A.PD=PE B.BD=BE C.∠BPD=∠BPE D.BP=BE 8.如图,∠AOB 和一条定长线段 a,在∠AOB 内找一点 P,使 P 到 OA,OB 的距离都等于 a,作法如下:(1)作 OB 的垂线段 NH,使 NH=a,H 为垂足. (2)过 N 作 NM∥OB. (3)作∠AOB 的平分线 OP,与 NM 交于 P. (4)点 P 即为所求. 其中(3)的依据是( ) A.平行线之间的距离处处相等 B.到角的两边距离相等的点在角的平分线上 C.角的平分线上的点到角的两边的距离相等 D.到线段的两个端点距离相等的点在线段的垂直平分线上第8题 第 10 题 第 11 题 9.下列四个图形中,如果将左边的图形作轴对称变换,能变成右边的图形的是()A.B.C.D.10.如图,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜 中共可得到小凳的象( ) A.2 个 B.4 个 C.16 个 D.无数个 11.如图,直线 l1、l2、l3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条 公路的距离相等,则供选择的地址有( ) A.1 处 B.2 处 C.3 处 D.4 处二、填空题 11.已知等腰三角形的腰长是底边长的 ________.4 ,一边长为 11cm,则它的周长为 3第 12 题第 13 题第 14 题第 17 题12. 如图, 在△ABC 中, AB=AC, E 分别是 AC, 上的点, BC=BD, D, AB 且 AD=DE=EB, 则∠A=( ) 度. 13.如图,如果直线 m 是多边形 ABCDE 的对称轴,其中∠A=130°,∠B=110°.那么∠ BCD 的度数等于______________ 度. 14.如图,等边△ABC 中,D、E 分别在 AB、AC 上,且 AD=CE,BE、CD 交于点 P,若∠ ABE:∠CBE=1:2,则∠BDP= ( )度.15. 等腰三角形的“三线合一”是指 ( )( ) , , ( ) 互相重合. 16. 在直线、角、线段、等边三角形四个图形中,对称轴最多的是( ) ,它有 ( )条 对称轴;最少的是() ,它有() 条对称轴. 17. 如图,DE 是 AB 的垂直平分线,交 AC 于点 D,若 AC=6 cm,BC=4 cm,则△BDC 的 周长是 ( ) . 18. 一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图,猜想实际的时间应是 ( ) .第 18 题 第 19 题 第 20 题 第 21 题 19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=30,BD:CD=3:2,则点 D 到 AB 的距离为( ) cm. 20.如图,D、E 为 AB、AC 的中点,将△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,若∠ B=50°,则∠BDF=( ) 度. 21. 如图,直角△ABC 中,∠C=90°,∠BAC=2∠B,AD 平分∠BAC,CD:BD=1:2, BC=2.7 厘米,则点 D 到 AB 的距离 DE= 厘米,AD= ( )厘米.三、解答题1.已知:如图 7—110,△ABC 中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E 度数?2.如图 7—111,在 Rt△ABC 中,B 为直角,DE 是 AC 的垂直平分线,E 在 BC 上,∠BAE:∠ BAC=1:5,则∠C 的度数?3.如图 7—112,∠BAC=30°,AM 是∠BAC 的平分线,过 M 作 ME∥BA 交 AC 于 E,作 MD⊥ BA,垂足为 D,ME=10cm,则 MD 的长度?4.如图 7—119,点 G 在 CA 的延长线上,AF=AG,∠ADC=∠GEC.求证:AD 平分∠BAC.5.已知:如图 7—120,等腰直角三角形 ABC 中,∠A=90°,D 为 BC 中点,E、F 分别为 AB、 AC 上的点,且满足 EA=CF.求证:DE=DF.6.已知,如图Δ ABC 中,AB=AC,D 点在 BC 上,且 BD=AD,DC=AC.将图中的等腰三角 形全都写出来.并求∠B 的度数.ABDC7.如图,已知 P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为 C、D, (1)∠PCD=∠PDC 吗? 为什么? (2) 是 CD 的垂直平分线吗? 为什么? OPA CPODB8. 已知,△ABC 中,∠ABC 为锐角,且∠ABC=2∠ACB,AD 为 BC 边上的高,延长 AB 到 E,使 BE=BD,连接 ED 并延长交 AC 于 F.求证:AF=CF=DF.答案 三、1.∠ABC=∠BDE - ∠BAD=100° =30° -70° ∠ACB = ∠ABC =30 ∠DAC = 180-100 - 30 =50 因为 BE//AC ∠E = ∠DAC=50°2∵DE 是 AC 的垂直平分线∴AE=CE ∴∠C=∠CAE ∵∠BAE∶∠BAC=1∶5 ∴∠BAE=1/5∠BAC ∴∠CAE=4/5∠BAC ∴∠C=4/5∠BAC 即∠BAC=5/4∠C ∵∠B=90° ∴∠BAC+∠C=90° ∴5/4∠C+∠C=90° ∠C=40°3 解:过 E 点作 AB 的垂线交 AB 于 F因为 ME‖AB,且 AM 是∠BAC 的平分线 所以∠EMA=∠MAB=1/2 乘以 30°=15° 所以三角形 AEM 为等腰三角形 所以 AE=EM=10cm 又,在直角三角形 AEF 中 ∠BAC=30° 所以 EF=1/2AE=5cm 又 EFDM 为长方形,所以 MD=EF=5cm4 证明:∵AF=AG, ∴∠G=∠GFA. ∵∠ADC=∠GEC, ∴AD∥GE. ∴∠BAD=∠GFA,∠DAC=∠G. ∴∠BAD=∠DAC,即 AD 平分∠BAC.5.证明:连 AD,如图,∵△ABC 为等腰直角三角形,D 为 BC 中点, ∴AD=DC,AD 平分∠BAC,∠C=45°, ∴∠EAD=∠C=45°,在△ADE 和△CDF 中∴△ADE≌△CDF, ∴DE=DF.6. 解 析因为 AB=AC,BD=AD,DC=AC,由等腰三角形的概念得△ABC,△ADB,△ADC 是等腰三角形,再根据角之间的关系求得∠B 的度数.解 答图中等腰三角形有△ABC,△ADB,△ADC ∵AB=AC ∴△ABC 是等腰三角形; ∵BD=AD,DC=AC ∴△ADB 和△ADC 是等腰三角形; ∵AB=AC ∴∠B=∠C ∵BD=AD,DC=AC ∴∠B=∠BAD,∠ADC=∠DAC ∴5∠B=180° ∴∠B=36° .7.解: (1)∠PCD=∠PDC。

北师大版数学七年级下第五章《生活中的轴对称》单元测试题.docx

北师大版数学七年级下第五章《生活中的轴对称》单元测试题.docx

北师大版数学七年级下第五章《生活中的轴对称》单元测试题.docx初中数学试卷桑水出品七年级下册第五章《生活中的轴对称》单元测试题龙华中英文实验学校班级: 姓名: 成绩:一、选择题(每小题3分,共36 分)1. 下列图形中,不是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 圆D. 等腰梯形2.下图中的图形属于是轴对称图形的有( )A.(1),(2)B. (1),(4)C. (2),(3)D. (3),(4)3.下列轴对称图形中,对称轴条数最多的是( )A. 等腰三角形B. 60度的角C. 长方形D. 等边三角形4.下列说法错误的是()A. 成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B. 关于某条直线对称的两个图形全等C. 全等的三角形一定关于某条直线对称D. 若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( ).A. B. C. D.6.等腰三角形中的一个角等于100°,则另两个内角的度数分别为()A.40°,40°B.100°,20°C.50°,50°D.40°,40°或100°,20°7.已知等腰三角形的一边等于3,一边等于6,则它的周长等于 ( )A.12B.12或15C.15D.15或188.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形;④线段垂直平分线上的点到这条线段两个端点的距离相等A.①②③④B.①②③C.②④D.②③④9.等腰三角形的周长为20厘米,其中一边长为8厘米,则腰长为()A.6厘米B.8厘米C.6厘米或8厘米D.以上都不对10.如图,OE 是AOB ∠的平分线,OA BD ⊥于点D,BO AC ⊥于点C ,则关于直线OE 对称的三角形有()A. 1对B.2对C.3对D.4对11.如图,在折纸活动中,小明制作了一张ABC ?纸片,点D,E 分别是边AB ,AC 上,将ABC沿着DE 折叠压平,A 与A ’重合,若?=∠75A ,则=∠+∠21 ( )A.?150B.?210C.?105D.?75第10题图第11题图12.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边ACE ,△BCE 的周长等于18cm ,则AC 的长等于()A .6cmB .8cmC .10cmD .12cm二、填空题(每小题3分,共12 分)13.△ABC 中,AB 的垂直平分线交AC 于D ,如果AC =5 cm ,BC =4cm ,那么△DBC 的周长是。

数学北师大版七年级下册轴对称练习题

数学北师大版七年级下册轴对称练习题

轴对称练习题第5章生活中的轴对称1.轴对称现象练习1一、判断题1.轴对称图形只有一条对称轴.()2.轴对称图形的对称轴是一条线段.()3.两个图形成轴对称,这两个图形是全等图形.()4.全等的两个图形一定成轴对称.()5.轴对称图形指两个图形.()二、填空题1.找出下列每个轴对称图形的对称轴并画在图上.2.我国传统木质结构房屋,窗子常用各种图案装饰,如图1是一常见的图案,这个图案有_________条对称轴.图13.如图2,图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有_________条对称轴.图2三、选择题1.选择观察下列平面图形,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列图形中对称轴最多的是()A.圆B.正方形C.角D.线段3.下列图形中,是轴对称图形的是()4.选择将三角形绕直线l旋转一周,可以得到如图所示主体图形的是()5.下列图形不是轴对称图形的是()A.角B.线段C.直线D.三角形四、解答题1.一轴对称图形画出了它的一半,请你以虚线为对称轴徒手画出图形的另一半.图32.将一张纸对折后,用剪刀剪上一个你喜欢的图案,展开后看是不是一个轴对称图形.参考答案1.轴对称现象一、1.× 2.× 3.√ 4.× 5.×二、1.略 2.两 3.四三、1.C 2.A 3.D 4.B 5.D四、略5.1 轴对称现象同步练习2◆基础训练一、选择题1.选出图中的轴对称图形().A.(1),(2) B.(1),(4) C.(2),(3) D.(3),(4)2.如图,下列图案是我国几家银行的标志,其中轴对称图形有().A.1个 B.2个 C.3个 D.4个3.下列图形中对称轴最多是().A.圆 B.正方形 C.角 D.线段二、填空题4.如果一个图形沿一条直线折叠后,直线______,那么这个图形叫轴对称图形,•这条直线叫_________.5.•对于两个图形,•如果沿着一条直线对折后_________,•那么就称这两个图形_________,这条直线就是_________.三、解答题6.如图,(1)至(10)个图案中都是对称图形,请观察并指出哪些是轴对称图形,哪些图案成轴对称.7.右图中阴影三角形与哪些三角形成轴对称?整个图形中有几条对称轴?◆能力提高一、填空题8.我国传统木质结构房屋,窗子常用各种图案装饰,如图是一常见的图案,•这个图案有_____条对称轴.9.如图,图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有_______条轴对称.二、解答题10.找出下面的轴对称图形,并说出有几条对称轴.11.(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:•正多边形对称轴的条数与边数n有什么关系?根据你的分析结果回答,正十边形,正十六边,•正二十九边形分别有几条对称轴?正五十边形呢?正一百边形呢?答案:1.B 2.C 3.A 4.略 5.略6.轴对称图形是(1)(3)(4)(6)(8)(10),•轴对称是(2)(5)(7)(9)7.根据两图形成轴对称的定义可知,阴影三角形与①②成轴对称;整个图形共有两条对称轴,对称轴见下图.8.两 9.四10.(1)是轴对称图形,有3条对称轴;(2)是轴对称图形,有5条对称轴;(3)是轴对称图形,有4条对称轴;(4)是轴对称图形,有1条对称轴;(5)是轴对称图形,有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,有1条对称轴.(8)是轴对称图形,有1条对称轴;(9)(10)都不是轴对称图形.11.正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,•正六边形有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴,正多边形对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条,所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形有29条对称轴,正五十边形有50•条对称轴,正一百边形有100条对称轴.。

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。

北师大七下数学《轴对称图形》经典试题

北师大七下数学《轴对称图形》经典试题

北师大七下数学《轴对称图形》经典试题------------------------------------------作者xxxx------------------------------------------日期xxxx第五章《生活中的轴对称》(2)一.选择题1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C. D.2.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对3.正方形的对称轴的条数为()A.1 B.2 C.3 D.44.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2 B.OP1=OP2 C.OP1⊥OP2且OP1=OP2D.OP1≠OP25.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A.30° B.45° C.60° D.75°6.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPDD.PC=PD7.用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.8.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE9.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°10.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°11.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73° B.56°C.68° D.146°12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm二.填空题13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.16.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.17.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.18.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.19.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.三.解答题20.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.21.如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE,∠DBC=∠ECB.(1)说明:其中有几对三角形成轴对称,并指出其对称轴;(2)连接AO,试判断直线OA与线段BC的关系,并说明理由.22.如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)①若DE=6cm,求点D到BC的距离;②当∠ABD=35°,∠DAC=2∠ABD时,求∠BAC的度数.23.如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?25.在等腰三角形中,过其中的一个顶点的直线如果能把这个等腰三角形分成两个小的等腰三角形,我们称这种等腰三角形为“少见的三角形”,这条直线称为分割线,下面我们来研究这类三角形.(1)等腰直角三角形是不是“少见的三角形”?(2)已知如图所示的钝角三角形是一个“少见的三角形”,请你画出分割线的大致位置,并求出顶角的度数;(3)锐角三角形中有没有“少见的三角形”?如果没有,请说明理由;如果有,请画出图形并求出顶角的度数.26. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE =,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由;(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.27.已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边与∠ACM 的平分线CF 交于点F(1)如图(1)当点E 在BC 边得中点位置时○1猜想AE 与EF 满足的数量关系是 . ○2连结点E 与AB边得中点N,猜想BE和CF满足的数量关系是 .○3请证明你的上述猜想; (2)如图(2)当点E在BC边得任意位置时,AE和EF 有怎样的数量关系,并说明你的理由?图9 图10 图11 图(1)N F A E 图(2)F A28.在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.参考答案与解析一.选择题1.【分析】根据轴对称图形的概念求解.解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.2.【分析】分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C3.【分析】根据正方形的对称性解答.解:正方形有4条对称轴.故选:D.解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选:B.5.【分析】要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选:C.6.【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是解:A.PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理成立,B.OC=OD,根据SAS判定定理成立,C.∠OPC=∠OPD,根据ASA判定定理成立,D.PC=PD,根据SSA无判定定理不成立,故选D.7.【分析】根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.解:A.当长方形如A所示对折时,其重叠部分两角的和中,一个顶点处小于90°,另一顶点处大于90°,故A错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故B错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故C错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,故D正确.故选:D.8.【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.9.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A 关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.10.【分析】根据AD∥BC可得出∠C=∠1=70°,再根据AB=AC即可得出∠B=∠C=70°,结合三角形的内角和为180°,即可算出∠BAC的大小.解:∵AD∥BC,∴∠C=∠1=70°,∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=40°.故选A.11.【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC的度数.解:∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故选A.12.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.二.填空题13.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.14.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.15.【分析】由等腰三角形的性质证得∠E=∠F=20°,由三角形的外角定理证得∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.解:∵DE=DF,∠F=20°,∴∠E=∠F=20°,∴∠CDF=∠E+∠F=40°,∵AB∥CE,∴∠B=∠CDF=40°,故答案为:40°.16.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DC即可得解.解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.17.【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.18.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.三.解答题19.本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.解:正确1个得,全部正确得.20.【分析】首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.21.【分析】过点A作AD⊥BC于点D,利用等HL求得Rt△ABD≌Rt△ACD,由全等三角形的性质就可以得出∠B=∠C.证明:过点A作AD⊥BC于点D,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL).∴∠B=∠C.22.【分析】(1)利用轴对称图形的性质即可得出答案;(2)根据∠DBC=∠ECB得到∠OBC=∠OCB,所以OB=OC,由全等三角形的性质得出AB=AC,OB=OC,说明AO是线段BC的垂直平分线.解:(1)△ABD和△ACE,△BOE和△COD,△EBC和△DBC,都关于AO所在直线对称,其对称轴为AO所在直线;(2)∵∠DBC=∠ECB,∴OB=OC,∴点O在线段BC的垂直平分线上,在△DBC和△ECB中,∴△DBC≌△ECB(SAS),∴∠ABC=∠ACB,∴AB=AC,∴点A在BC的垂直平分线上,因此AO是线段BC的垂直平分线.23.【分析】根据轴对称的性质可得PM=EM,PN=FN,然后求出△PMN的周长=EF.解:∵P点关于OA、OB的对称点分别为E、F,∴PM=EM,PN=FN,∴△PMN的周长=PM+MN+FN=ME+MN+FN=EF,∵EF=15,∴△PMN的周长=15.24.【分析】(1)由BD平分∠ABC,得到∠ABD=∠DBC 根据等腰三角形的性质得到∠D=∠ABD等量代换得到∠D=∠DBC,于是得到结论;(2)解①作DF⊥BC于F.根据角平分线的性质即可得到结论;②根据角平分线的定义得到∠ABC=2∠ABD=70°,由平行线的性质得到∠ACB=∠DAC=70°,于是得到结论.(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC又∵AB=AD∴∠D=∠ABD∴∠D=∠DBC,∴AD∥BC;(2)解:①作DF⊥BC于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6(cm),②∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,∵AD∥BC,∴∠ACB=∠DAC=70°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.25.【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.【精品文档】【精品文档】。

北师大版七年级数学下册 第五章 生活中的轴对称练习(含答案)

北师大版七年级数学下册 第五章 生活中的轴对称练习(含答案)

第五章生活中的轴对称一、单选题1.下列图形中,属于轴对称图形的是( )A.B.C.D.2.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm3.以下图形中对称轴的数量小于3的是( )A.B.C.D.4.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置),她就立刻告诉了妈妈正确的时间,请问正确的时间是()A .6点20分B .5点20分C .6点40分D .5点40分 5.如图,在44⨯正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是( )A .△B .△C .△D .△6.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .MAP MBP ∠=∠C .ANM BNM ∠=∠D .AP BN = 7.下列说法中,正确的是( )A .线段是轴对称图形,对称轴是线段的垂直平分线B .等腰三角形至少有1条对称轴,至多有3条对称轴C .全等的两个三角形一定关于某直线对称D .两图形关于某直线对称,对称点一定在直线的两旁8.如图,在△ABC 中,△BAC =90°,AB =3,AC =4,BC =5,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP +BP 的最小值是( )A .5B .4C .3D .79.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论正确的有是( )(1)32C EF '∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.A .1个B .2个C .3个D .4个10.如图,在△ABC 中,AB =AC ,BC =10,S △ABC =60,AD△BC 于点D ,EF 垂直平分AB ,交AB 于点E ,AC 于点F ,在EF 上确定一点P ,使PB +PD 最小,则这个最小值为( )A .10B .11C .12D .13二、填空题11.看镜子里有一个数“”,这个数实际是_____.12.如图,30A ∠=︒,62B '∠=︒,ABC V 与A B C '''V 关于直线l 对称,则C ∠=__________.13.如图所示的五角星是轴对称图形,它的对称轴共有_____条.14.如图,在四边形ABCD 中,120BAD ∠=︒,90B D ∠=∠=︒,在BC ,CD 上分别找一点M ,N ,使AMN ∆的周长最小,则AMN ANM ∠+∠的度数为______.三、解答题15.如图,是3×3的正方形网格,将其中两个方格涂黑,使得涂黑后的整个图案是轴对称图形.请在以下备用网格中画出四个不同的图案(如果绕正方形的中心旋转,能重合的图案视为同一种,例如,下列四个图形就属于同一种).16.在图1中,已知AB=AC,EB=FC,在图2中,五边形ABCDE是正五边形,请你只用无刻的直尺分别画出两个图中的一条对称轴.17.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M,如图,在l上画出一点M,使得AM+BM最小.18.如图,将书页的一角斜折过去,使角的顶点A落在'A处,BC为折痕,BD平分'A BE.(1)求CBD ∠的度数.(2)若'120A BE ︒∠=,求CBA ∠的度数.19.如图,在四边形ABCD 中,AD △BC ,E 为CD 的中点,连接AE 、BE ,BE △AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .答案1.C 2.C 3.D 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.810512.88°13.5.14.120︒15.如图所示.16.由分析作图如下:17.解:如图,点M 即为所求.作A 点关于直线l 的对称点A′,连接A′B 交l 于点M ,连接AM ,此时AM+BM 的值最小.18.(1)由折叠的性质可知△ABC=A BC '∠ △12A BC A BA ''∠=∠又△BD 平分A BE ∠' △12A BD A BE ''∠=∠ △180A BA A BE ∠+∠=''︒ △1()2CBD A BC A BD A BA A BE ∠=∠+∠=+∠''∠''=1180029⨯︒=︒ (2)△'120A BE ∠=︒''180********A BA A BE ∴∠=︒-∠=︒-︒=︒ △△ABC=A BC '∠ △1302CBA A BA '∠=∠=︒ 19.(1)△AD △BC (已知),△△ADC =△ECF (两直线平行,内错角相等), △E 是CD 的中点(已知),△DE =EC (中点的定义).△在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ADE △△FCE (ASA ),△FC =AD (全等三角形的性质).(2)△△ADE △△FCE ,△AE =EF ,AD =CF (全等三角形的对应边相等), △BE 是线段AF 的垂直平分线,△AB=BF=BC+CF,△AD=CF(已证),△AB=BC+AD(等量代换)。

(完整版)新北师大版七年级下轴对称图形练习题(名校推荐)

(完整版)新北师大版七年级下轴对称图形练习题(名校推荐)

图 1 图2 图3第五章轴对称图形一、选择题1.下列图形中,轴对称图形的个数是()A .4个B .3个C .2个D .1个2.下列分子结构模型平面图中,有一条对称轴的是()3.如图1,将长方形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,则图中45︒的角(虚线也视为角的边)的个数是()A .5个B .4个C .3个D .2个 4.下列说法中错误的是()A .两个关于某直线对称的图形一定能够完全重合B .对称图形的对称点一定在对称轴的两侧C .成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D .平面上两个能够完全重合的图形不一定关于某直线对称5.如图2,△AOD 关于直线l 进行轴对称变换后得到△BOC ,下列说法中不正确的是().A .∠DAO=∠CBO ,∠ADO=∠BCOB .直线l 垂直平分AB 、CDC .△AOD 和△BOC 均是等腰三角形D .AD=BC ,OD=OC6.将一个正方形纸片依次按图a ,图b 的方式对折,然后沿图c 中的虚线裁剪,最后将图d 的纸再展开铺平,所看到的图案是().abcd7.如图3,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,A B C D图 5 图7 图6图4 △ABC 折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长为()A .10 cmB .12cmC .15cmD .20cm8.图4是小明在平面镜里看到的电子钟示数,这时的实际时间是()A .12:01B .10:51C .10:21D .15:109.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图5所示的图形,两条直角边在同一直线上.则图中等腰三角形有()个.A .1个B .2个C .3个D .4个10.如图6,AB AC =,120BAC ∠=︒,AB 的垂直平分线交BC 于点D ,那么DAC ∠的度数为().A .90︒B .80︒C .70︒D .60︒11.已知等腰三角形的顶角是底角的4倍,则顶角的度数为.12.如图8(下页),AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD=2,AD=3,则图中阴影部分的面积是.13.下午2时,一轮船从A 处出发,以每小时40海里的速度向正南方向行驶,下午4时,到达B处,在A 处测得灯塔C 在东南方向,在B 处测得灯塔C 在正东方向,则B 、C 之间的距离是.14.如图9,在ABC ∆中,ABC ACB ∠=∠,AB=25cm ,AB 的垂直平分线交AB 于点D ,交AC于点E ,若BCE ∆的周长为43cm ,则底边BC 的长为.15.如图10,把宽为2cm 的纸条ABCD 沿EF GH ,同时折叠,B 、C 两点恰好落在AD 边的P点处,若△PFH 的周长为10cm ,则长方形ABCD 的面积为.16.在△ABC 中,已知AB =AC ,∠A =36°,AB 的垂直平分线MN 交AC 于D .在下列结论中:①∠C =72°;②BD 是∠ABC 的平分线;③∠BDC=100°;④△ABD是等腰三角形;A EP D G H F BA C D 图10 图8 图9图11 ⑤AD=BD=BC.上述结论中,正确的有.(填写序号)17.如图16,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.∠ACB=°,∠BAC =°.三、解答题18.如图11,在ABC △中,90C =o ∠,AD 平分BAC ∠,DE AB ⊥,如果5cm DE =,32CAD =o ∠,求CD 的长度及B ∠的度数.。

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习(含答案)

北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。

最新北师大版七年级下册数学第五章轴对称图形单元试卷

最新北师大版七年级下册数学第五章轴对称图形单元试卷

最新北师大版数学七年级下册第五章轴对称图形单元试卷一、选择题1.下列几何图形中,对称轴条数最多的是()(A)等腰三角形(B)正方形(C)等腰梯形(D)长方形2.下面的图形中,不是轴对称图形的是()ABCD3.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()4.下列美丽的车标中是轴对称图形的个数有()A.1个B.2个C.3个D.4个5.下列图形中,不是轴对称图形的是()6.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()A.B.C.D.试卷第1页,总7页7.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=().A.40°B.30°C.20°D.10°8.如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为().A.20°B.30°C.40°D.45°9.如图,矩形纸片ABCD沿EF折叠后,∠FEC=25°,则∠DFD1的度数为()A.25°B.50°C.75°D.不能确定10.下列图形中,不一定是轴对称图形的是()A.线段B.等腰三角形C.四边形D.圆11.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A.25B.C.35D.12.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF的大小是()FAEBDCA.80°B.140°C.160°D.180°试卷第2页,总7页二、填空题13.下面5个平面图形中,轴对称图形的个数是__________.14.如图,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为.15.小明照镜子时,发现衣服上的英文单词在镜子呈现为“”,则这串英文字母是________;16.如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.17.正五角星有_____条对称轴;角的对称轴是___。

北师大版七年级下轴对称 150题

北师大版七年级下轴对称  150题

北师大版七年级下轴对称 150题一.选择题(本大题共33小题.共99.0分。

在每小题列出的选项中.选出符合题目的一项)1. 如图.将三角形ABC纸片沿MN折叠.使点A落在点A′处.若∠AMN=50°.∠A′MB的度数是( )A. 20°B. 120°C. 70°D. 80°2. 如图.在3×3的正方形网格中已有两个小正方形被涂黑.再将图中其余小正方形涂黑一个.使整个图案构成一个轴对称图形的办法有种.( )A. 3B. 4C. 5D. 63. 下列图形中.不是轴对称图形的是( )A. 互相垂直的两条直线构成的图形B. 一条直线和直线外一点构成的图形C. 有一个内角为30°.另一个内角为120°的三角形D. 有一个内角为60°的三角形4. 如图.△ACD与△ABD关于AD所在的直线成轴对称.B.D.C三点共线.若AC=3.BD=2.则△ABC的周长是( )A. 5B. 10C. 6D. 125. 如图.若△ABC与△A′B′C′关于直线MN对称.BB′交MN于点O.则下列说法不一定正确的是( )A. AC=A′C′B. BO=B′OC. AA′⊥MND. AB//B′C′6. 下列说法正确的是( )A. 线段不是轴对称图形B. 两个全等三角形一定成轴对称C. 在轴对称图形中.对应点所连的线段被对称轴垂直平分D. 角是轴对称图形.角平分线是它的对称轴7. 如图所示的四个图形分别是节能.节水.低碳和绿色食品标志.在这四个标志中.其中是轴对称图形的共有( )A. 1个B. 2个C. 3个D. 4个8. 如图.在△ABC中.CD是边AB上的高.BE平分∠ABC.交CD于点E.BC=7.DE=2.则△BCE的面积为( )A. 10B. 8C. 7D. 49. 如图所示.在△ABC中.∠ACB=90∘.BE平分∠ABC交AC于点E.ED⊥AB于点D.如果AC=3.那么AE+DE的长为( )A. 2B. 3C. 4D. 510. 如图.在△ABC中.∠C=90°.AD平分∠BAC.BC=30.BD:CD=3:2.则点D到AB的距离为( )A. 18B. 12C. 15D. 不能确定11. 到三角形各边距离相等的点是三角形三条( )A. 中线的交点B. 三边垂直平分线的交点C. 角平分线的交点D. 高线的交点12. 用直尺和圆规作一个角的平分线的示意图如图所示.则能说明∠AOC=∠BOC的依据是( )A. SSSB. ASAC. AASD. 角平分线上的点到角两边距离相等13. 如图.在△ABC中.AC的垂直平分线交AB于点D.CD平分∠ACB.若∠A=50∘.则∠B的度数为( )A. 25∘B. 30∘C. 35∘D. 40∘14. 如图.四边形ABCD关于直线l对称.有如下结论: ①AB//CD; ②AC⊥BD; ③AO=CO; ④AB⊥BC.其中正确的是( )A. ① ②B. ② ③C. ① ④D. ②15. 把一张长方形纸片按如图所示折叠2次.若∠1=50°.则∠2的度数为( )A. 10°B. 15°C. 20°D. 25°16. 如图.把一张长方形纸片沿对角线BD折叠.∠CBD=25∘.则∠ABF的度数是( )A. 25∘B. 30∘C. 40∘D. 50∘17. 一张长方形纸条按如图所示折叠.EF是折痕.若∠EFB=35°.则:①∠GEF=35°.②∠EGB=70°.③∠AEG= 110°.④∠EFC′=145°.以上结论正确的有( )A. ①②B. ②③④C. ①②③D. ①②③④18. 如图.∠A=90°.E为BC上一点.点A和E关于BD对称.点B和C关于DE对称.则∠C的度数为( )A. 25°B. 30°C. 35°D. 45°19. 如图是一张直角三角形纸⽚.∠C=90°.AC=40.BC=50.将△ABC折叠使点B和点A重合.折痕为DE.则BD的长为( )A. 9B. 41C. 42D. 4420. 如图.将△ABC折叠.使点A与BC边中点D重合.折痕为MN.若AB=9.BC=6.则△DNB的周长为( )A. 12B. 13C. 14D. 1521. 如图.已知在△ABC中.O是∠ABC.∠ACB的平分线的交点.OD⊥BC于D.△ABC的周长为20.OD=5.那么△ABC的面积为( )A. 100B. 50C. 25D. 30022. 如图.已知在四边形ABCD中.∠BCD=90∘.BD平分∠ABC.AB=6.BC=9.CD=4.则四边形ABCD的面积是( )A. 24B. 30C. 36D. 4223. 如图.P是∠BAC平分线上的点.PM⊥AB于M.PN⊥AC于N.则下列结论:①PM=PN.②AM=AN.③△APM≌△APN.④∠PAN+∠APM=90°.其中正确结论的个数是( )A. 4个B. 3个C. 2个D. 1个24. 如图.△ABC的面积为S.AD平分∠BAC.AD⊥BD于D.连接CD.则△ACD的面积为( )A. 2S3B. S3C. S2D. S25. 四边形ABCD中.∠BAD=122°.∠B=∠D=90°.在BC.CD上分别找一点M.N.当三角形AMN周长最小时.∠MAN的度数为( )A. 58°B. 64°C. 61°D. 74°26. 如图.把一张长方形纸片ABCD.沿对角线AC折叠.点B的对应点为B′.AB′与DC相交于点E.则下列结论正确的有( )①△ABC≌△AB′C.②AE=CE.③△ADE≌△CB′E.④∠B′CE=∠EAB.A. 1个B. 2个C. 3个D. 4个27. 如图.在已知的△ABC中.按以下步骤作图:①分别以B.C为圆心.以大于12BC的长为半径作弧.两弧相交于两点M.N.②作直线MN交AB于点D.连接CD.若CD=AC.∠B=25°.则∠ACB的度数为( )A. 105°B. 100°C. 95°D. 90°28. 已知∠AOB=60∘.以O为圆心.以任意长为半径作弧.交OA.OB于点M.N.分别以点M.N为圆心.以大于12MN 的长度为半径作弧.两弧在∠AOB内交于点P.以OP为边作∠POC=15∘.则∠BOC的度数为( )A. 15∘B. 45∘C. 15∘或30∘D. 15∘或45∘29. 某平原有一条很直的小河和两个村庄.要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虚线)l表示小河.P.Q两点表示村庄.线段(实线)表示铺设的管道.画出了如下四个示意图.则所需管道最短的是( )A. B.C. D.30. 如图.将图1长方形纸片ABCD沿直线EF折叠成图2.已知图1中∠DEF=25°.则图2中∠EGB的度数为( )A. 60°B. 50°C. 40°D. 30°31. 如图.菱形ABCD的边长为2cm.∠A=120∘.点E是BC边上的动点.点P是对角线BD上的动点.若使PC+PE的值最小.则这个最小值为( )D. √ 3A. 5B. 2C. 3232. 如图.等腰三角形ABC的边BC为4.面积为24.腰AC的垂直平分线EF分别交边AC.AB于点E.F.若D为BC边的中点.M为线段EF上一动点.则△CDM的周长的最小值为( )A. 8 B. 10 C. 12 D. 1433. 如图.在△ABC中.AB的垂直平分线交BC于D.AC的垂直平分线交BC于E.∠BAC=124°.则∠DAE的度数为( )A. 68°B. 62°C. 66°D. 56°二.填空题(本大题共19小题.共57.0分)34. 如图.在Rt△ABC中.∠B=90∘.AD平分∠BAC.交边BC于点D.如果BD=2.AC=7.那么△ADC的面积等于.35. 如图.将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上.不与B.C重合).使点C落在长方形内部的点E处.若FH平分∠BFE.则∠GFH的度数是____.36. 如图.在△ABC中.∠C=90∘.AD平分∠BAC.过点D作DE⊥AB.垂足为点E.若BE=3.△BDE的周长为11.则BC=.37. 如图所示.已知△ABC的周长是20.BO.CO分别平分∠ABC和∠ACB.OD⊥BC于点D.且OD=3.则△ABC的面积是.38. 如图.将长方形纸片ABCD沿直线EN.EM进行折叠后(点E在AB边上).B′点刚好落在A′E上.若折叠角∠AEN= 30°15′.则另一个折叠角∠BEM=______.39. 如图所示.将一张长方形纸片斜折过去.使顶点A落在A′处.BC为折痕.然后再把BE折过去.使之与BA′重合.折痕为BD.若∠ABC=58°.则求∠E′BD的度数是______.40. 如图.将一张长方形纸片ABCD依次进行如下操作:①沿CE折叠.使点B落在CD边上的B′处(如图a).②沿CF折叠.使点A.E分别落在点A′.E′处.且点E′在CD的延长线上(如图b).那∠FCE′的角度是______ .41. 如图.把长方形纸片ABCD沿纸片EF折叠后.点B与点B’重合.点A恰好落BC边上的点A’的位置.若∠1=55∘.则∠DEA′的度数为_______.42. 如图.四边形ABCD中.∠BAD=120°.∠B=∠D=90°.在BC.CD上分别找一点M.N.使△AMN周长最小时.则∠AMN+∠ANM的度数是.43. 如图.在Rt△ABC中.∠C=90°.AC=BC=2.点D是BC边的中点.将△ACD沿直线AD翻折.如果点C落在点E 处.那么线段BE=______.44. 如图.在四边形ABCD中.∠B=∠D=90°.∠DAB=140°.M.N分别是边DC.BC上的动点.当△AMN的周长最小时.∠MAN=______ °.45. 如图.将△ABC沿直线DE折叠后.使得点B与点A重合.已知AC=5.△ADC的周长为17.则BC的长为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 1
图 2

五章轴对称图形
一、选择题 1.下列图形中,轴对称图形的个数是()
A .4个
B .3个
C .2个
D .1个
2.下列分子结构模型平面图中,
有一条对称轴的是()
3.如图1,将长方形ABCD 纸片
沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,则图中45︒的角(虚线也视为角的边)的个数是()
A .5个
B .4个
C .3个
D .2个 4.下列说法中错误的是()
A .两个关于某直线对称的图形一定能够完全重合
B .对称图形的对称点一定在对称轴的两侧
C .成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴
D .平面上两个能够完全重合的图形不一定关于某直线对称
5.如图2,△AOD 关于直线l 进行轴对称变换后得到△BOC ,下列说法中不正确的是().
A .∠DAO=∠CBO ,∠ADO=∠BCO
B .直线l 垂直平分AB 、CD
C .△AO
D 和△BOC 均是等腰三角形D .AD=BC ,OD=OC
6.将一个正方形纸片依次按图a ,图b 的方式对折,然后沿图c 中的虚线裁剪,
最后将图d 的纸再展开铺平,所看到的图案是(). abcd
A B C D
图 3 图 5 图7 图 6
图4 7.如图3,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,
△ABC 折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长
为()
A .10 cm
B .12cm
C .15cm
D .20cm
8.图4是小明在平面镜里看到的电子钟示数,这时的实际时间是()
A .12:01
B .10:51
C .10:21
D .15:10
9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图5所示的图形,两条直角边在同一
直线上.则图中等腰三角形有()个.
A .1个
B .2个
C .3个
D .4个
10.如图6,AB AC =,120BAC ∠=︒,AB 的垂直平分线交BC 于点D ,那么DAC ∠
的度数为().
A .90︒
B .80︒
C .70︒
D .60︒
11.已知等腰三角形的顶角是底角的4倍,则顶角的度数为.
12.如图8(下页),AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD=2,AD=3,
则图中阴影部分的面积是.
13.下午2时,一轮船从A 处出发,以每小时40海里的速度向正南方向行驶,下午4时,到达B
处,在A 处测得灯塔C 在东南方向,在B 处测得灯塔C 在正东方向,则B 、C 之间的距离是.
14.如图9,在ABC ∆中,ABC ACB ∠=∠,AB=25cm ,AB 的垂直平分线交AB 于点D ,交AC 于
点E ,若BCE ∆的周长为43cm ,则底边BC 的长为.
15.如图10,把宽为2cm 的纸条ABCD 沿EF GH ,同时折叠,B 、C 两点恰好落在AD 边的P 点处,
若△PFH 的周长为10cm ,则长方形ABCD 的面积为.
16.在△ABC 中,已知AB =AC ,∠A =36°,AB 的垂直平分线MN 交AC 于D .在
下列结论中:①∠C =72°;②BD 是∠ABC 的平分线;③∠BDC=100°;④△ABD
是等腰三角形;
A E
P D G B A C D 图10 图8 图9
图11 ⑤AD=BD=BC.上述结论中,正确的有.(填写序号)
17.如图16,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.∠ACB=°,∠BAC =°.
三、解答题
18.如图11,在ABC △中,90C =o ∠,AD 平分BAC ∠,DE AB ⊥,如果5cm DE =,32CAD =o ∠,求CD 的长度及B ∠的度数.。

相关文档
最新文档