第1章流体力学的基本概念

合集下载

第一章 流体力学的基本概念

第一章 流体力学的基本概念
dx dy dz dt u v w
第一章 流体力学的基本概念
x x( x0 , y 0 , z 0 , t , ) y y ( x0 , y 0 , z 0 , t , ) z z ( x , y , z , t , ) 0 0 0
τ固定,t变化时,迹线;
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
流体的物理量表示为流体质点和时间的函数。
p p( x0 , y0 , z0 , t )
T T ( x0 , y0 , z0 , t )
( x0 , y0 , z0 , t )
(x0 , y0 , z0) 固定,t 变化: 表示某一确定流体质点的空间位臵及相 关物理量随时间的变化规律。 (x0 , y0 , z0)变化,t 固定: 表示同一时刻不同流体质点的空间位臵 及相关物理量。
0
有限大的正数
r0 , r 互为反函数。
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
2.两个参考系间的相互转换
r0 r0 (r , t )
x0i x0i ( x j , t )
x0 x0 ( x, y, z , t ) y0 y0 ( x , y , z , t ) z z ( x, y , z , t ) 0 0
三、两个参考系间的相互转换
2.两个参考系间的相互转换
(2) 已知欧拉参考系的物理量
u u (r , t )
积分 代入
dr u (r , t ) dt
dx dt u ( x, y , z , t ) dy v ( x, y , z , t ) dt dz dt w( x, y , z , t )

流体力学重点概念总结

流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

大学流体力学课件5——第一章流体的基本概念(粘性)

大学流体力学课件5——第一章流体的基本概念(粘性)
粘性的定义


牛顿内摩擦定律
粘度


粘温特性
牛顿流体
§1-2
流体的主要物理性质
二、粘性
1. 粘性的定义
现象: # 手粘油或水,感觉不同; # 油加温,变稀,易流
# 右图:下盘转动,会带动上盘
§1-2
流体的主要物理性质
二、粘性 1.粘性的定义
一般分析:
定义:
流体内部质点间或流层间因相对运动而产生 内摩擦力,以反抗相对运动的性质。
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (2) :运动粘度
量纲和单位:
国际单位制:
物理单位制:
工程单位制:
例: 机械油的牌号 液压油 20#: N32:
§1-2
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (3) 相对粘度
恩氏粘度计
恩氏粘度
§1-2
流体的主要物理性质
二、粘性
间隙中速度梯度近似按线性分布处理; 计算过程中注意单位统一; 作业中应作图,并分析
§1-2
流体的主要物理性质
二、粘性
4.粘~温, 粘~压特性
一般
粘温特性是工程液体的重要技术参量 粘性阻力的微观机理: 分子引力产生粘阻 (液体中为主) 分子动量交换产生粘阻 (气体中为主)
§1-2
流体的主要物理性质
流体力学中分两步走的研究方法: 分析无粘性流体模型 ----→初步运动规律
考虑粘性影响修正
----→实际运动规律
§1-2
流体的主要物理性质 小 结
二、粘性
0. 粘性是流体区别于固体的重要特性
是产生流动阻力的内因
1. 粘性:流体质点间可流层间因相对运动而产生 摩擦力以反抗相对运动的性质 2. 牛顿内摩擦定律反映粘性的数值关系 3. 粘度是粘性的度量 4. 符合牛顿内摩擦定律的流体为牛顿流体 5. 不考虑粘性的流体称为理想气体

流体力学基本知识

流体力学基本知识
流体在长直管(或明渠)中流动,所受的摩 擦阻力称为沿程阻力。为了克服沿程阻力而消耗 的单位重量流体的机械能量,称为沿程水头损失
hf。
(二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫
使主流脱离边壁而形成漩涡,流体质点间产生剧 烈地碰撞,所形成的阻力称局部阻力。为了克服 局部阻力而消耗的重力密度流体的机械能量称为
5.断面平均流速:流体流动时,断面各点流速一般 不易确定,当工程中又无必要确定时,可采用断
面平均流速(v)简化流动。断面平均流速为断
面上各点流速的平均值。
精品课件
二、恒定流的连续性方程
压缩流体容重不变,即体积流 量相等。流进A1断面的流量等于流 出A2断面的流量;
精品课件
三、恒定总流能量方程
(一)恒定总流实际液体的能量方程
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
精品课件
压缩性:流体压强增大体积缩小的性质。 不可压缩流体:压缩性可以忽略不计的流体。 可压缩流体:压缩性不可以不计的流体。
精品课件
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为:
lim ( Pa)
p=dp/dω
点压强就是静压强
精品课件
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。 (2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
精品课件
二、流体静压强的分布规律

化工原理第一章流体力学基础

化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP

第一章流体力学基本概念

第一章流体力学基本概念

分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

高等流体力学

高等流体力学

高等流体力学第一章 流体力学的基本概念连续介质:流体是由一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所 谓的连续介质。

流体质点:是指微小体积内所有流体分子的总和。

欧拉法质点加速度:时变加速度与位变加速度和zuu y u u x u u t u dt du a x z x y x x x x x ∂∂+∂∂+∂∂+∂∂==质点的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数,用dtd表示。

在欧拉法描述中的任意物理量Q 的质点随体导数表述如下:x kk Qu t Q dt dQ ∂∂+∂∂= 式中Q 可以是标量、矢量、张量。

质点的随体导数公式对任意物理量都成立,故将质点的随体导数的运算符号表示如下:x kk u t dt d ∂∂+∂∂= 其中t∂∂称为局部随体导数,x k k u ∂∂称为对流随体导数,即在欧拉法描述的流动中,物理量的质点随体导数等于局部随体导数与对流随体导数之和。

体积分的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数。

则在由流体质点组成的流动体积V 中标量函数Φ(x, t )随时间的变化率就是体积分的随导函数。

由两部分组成①函数Φ 对时间的偏导数沿体积V 的积分,是由标量场的非恒定性引起的。

②函数Φ通过表面S 的通量。

由体积V 的改变引起的。

()dV divv dt d dV v div t dS u dV t dV dt d v v n s v v ⎥⎦⎤⎢⎣⎡Φ+Φ=⎥⎦⎤⎢⎣⎡Φ+∂Φ∂=Φ+∂Φ∂=Φ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()dV adivv dt da dV av div t a dS au dV t a adV dt d v v n s v v ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+∂∂=+∂∂=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 变形率张量: 11ε12ε13εD ij = 21ε 22ε 23ε 31ε 32ε 33ε其中ii ε表示所在方向的线性变形率,其余ij ε(j i ≠)为角变形率。

第1章流体力学的基本概念

第1章流体力学的基本概念

第1章流体力学的基本概念流体力学是研究流体的运动规律及具与物体相互作用的机理的一门专门学科。

本章叙述在以后章节中经常用到的一些基础知识,对于具它基5岀内容在本科的流体力学或水力学中已作介绍,这里不再叙述。

1.1连续介质与流体物理量111连续介质流体^任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。

例如, 常温下每立方厘米水中约含有3x1022个水分子,相邻分子间距离约为3x10-8厘米。

因而,从微观结构上说,流体是有空隙的、不连续的介质。

但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大呈分子"集体"所显示的特性,也就是所谓的宏观特性或宏观星,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。

因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的"质点"。

从而认为,輕体就是由这样的一个紧挨看f 的连那质点所组成的,没有任何空隙的够体,即所谓的"连续介质"。

[同时认为,流体的物理力学性质,例如密度、速度、压强和育僵等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。

因此,不再从那些永远运动的分子岀发,而是在宏观上从质点岀发来硏究流体的运动规律,从而可以利用连续函数的分析方法。

长期的实践和科学实验证明,利用连续介质假走所得出的有关流体运动规律的基本理论与客观实际是符合的。

所谓流体质点,是J旨微小体积內所有流体分子的总体而该微小体积是几何尺寸很(N但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大呈分子的统计平均特性,且具有确定性。

1.1.2流体物理量根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。

流体的物理量是指反映流体宏观特性的物理臺,如密度、速度、压强、温度和能呈等。

对于流体物理呈,如流体质点的密度何以地定义为微小特征体积内大呈数目分子的统计质星除 以该特征体积所得的平均值,即r AM p = InnAV 式中,表示体积AV中所含流体的质呈。

流体的基本概念和物理性质

流体的基本概念和物理性质

密度 密度差会形成自然循环、热对流和自 然对流换热等现象。
F
热板
自然循环锅炉 1—给水泵 2—省煤器 3—汽包 4—下降管 5—联箱 6—蒸发受热面 单位体积流体所具有的质量。 用符号ρ表示,单位为kg/m3 。
m 均质流体定义式: V m 非均质流体定义式为: lim
第一篇
第一篇
工程流体力学
第一章 流体的基本概念和性质 第二章 流体静力学 第三章 流体动力学
第一章 流体的基本概念和性质 流体的定义和连续介质假设 流体的压缩性和膨胀性 流体的粘性 作用在流体上的力
第一节 流体的定义和连续介质假设
一、流体的定义 通俗定义:能流动的物质称为流体。 力学定义:在任何微小剪切力的持续作 用下能够连续变形的物质,称为流体。
• 气体易于压缩;而液体难于压缩; • 液体有一定的体积,存在一个自由表面; 气体能充满任意形状的容器,无一定的体积, 不存在自由表面。
•液体和气体的共同点:两者均具有流动性 ——在任何微小切应力作用下都会发生变 形或流动,故二者都是流体。
从微观角度看
流体是由大量做无规则运动的分子组成的,分子之间存在空 隙,在标准条件下,1mm3气体含有2.7×1016个左右的分子, 分子间距离是3.3×10-6mm。
1 dV V dt V
单位为m3
流体温度的增加量, 单位为℃(K)
流体原有的体积, 单位为m3
•关于体胀系数αv
液体的体胀系数很小;
如:水在98000Pa下,10~20℃内,
αv =150×10-6 1/ ℃
大多数液体αv随压强的增大而稍减小; 水在50℃以下,
αv 随压强增大而增大;
一般情况下
通常把液体视为不可压缩流体。 通常在流速较高,压强变化较大的场合,气 体视为可压缩流体,必须将密度视为变量。 在流速不高(比声速小得多时),压强变化 较小,密度变化不大( )的场合, 气体可视为不可压缩流体。如锅炉的尾部烟 2 1 100% 20% 道中和空调系统通风管道中的气体等。 1

化工原理第一章流体力学

化工原理第一章流体力学

反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力

工程流体第一章

工程流体第一章
11
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8

第1章 流体力学基本知识

第1章 流体力学基本知识

数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;

hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流

实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即

从元流推广到总流,得:

由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2

带入上式,得:


ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)

(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介

本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。


v
2 2 2
2g
h12

第一章 流体力学基础知识

第一章 流体力学基础知识

第一章流体力学基础知识本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。

然后介绍流体介质,气动力系数,矢量积分知识。

最后引入控制体,流体微团及物质导数的概念。

为流体力学及飞行器空气动力学具体知识的学习做准备。

1.1流体力学的基本任务和研究方法1.1.1流体力学的基本任务流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。

而空气动力学则是一门研究运动空气的科学。

众所周知,空气动力学是和飞机的发生,发展联系在一起的。

在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。

事实上,空气动力学研究的对象还不限于飞机。

空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。

在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。

研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。

1.1.2空气动力学的研究方法空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。

其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。

这些不同的方法不是相互排斥,而是相互补充的。

通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。

实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。

贾月梅主编《流体力学》第一章课后习题答案

贾月梅主编《流体力学》第一章课后习题答案

《流体力学》习题与答案周立强中南大学机电工程学院液压研究所第1章流体力学的基本概念1-1.是非题(正确的打“√”,错误的打“”)1. 理想流体就是不考虑粘滞性的、实际不存在的,理想化的流体。

(√)2. 在连续介质假设的条件下,液体中各种物理量的变化是连续的。

(√ )3. 粘滞性是引起流体运动能量损失的根本原因。

(√ )4. 牛顿内摩擦定律适用于所有的流体。

()5. 牛顿内摩擦定律只适用于管道中的层流。

()6. 有旋运动就是流体作圆周运动。

()7. 温度升高时,空气的粘度减小。

()8. 流体力学中用欧拉法研究每个质点的轨迹。

()9. 平衡流体不能抵抗剪切力。

(√ )10. 静止流体不显示粘性。

(√ )11. 速度梯度实质上是流体的粘性。

(√ )12. 流体运动的速度梯度是剪切变形角速度。

(√ )13. 恒定流一定是均匀流,层流也一定是均匀流。

()14. 牛顿内摩擦定律中,粘度系数m和v均与压力和温度有关。

()15. 迹线与流线分别是Lagrange和Euler几何描述;它们是对同一事物的不同说法;因此迹线就是流线,流线就是迹线。

()16. 如果流体的线变形速度θ=θx+θy+θz=0,则流体为不可压缩流体。

(√ )17. 如果流体的角变形速度ω=ωx+ωy+ωz=0,则流体为无旋流动。

(√ )18. 流体的表面力不仅与作用的表面积的外力有关,而且还与作用面积的大小、体积和密度有关。

()19. 对于平衡流体,其表面力就是压强。

(√ )20. 边界层就是流体的自由表明和容器壁的接触面。

()1-2已知作用在单位质量物体上的体积力分布为:,物体的密度,坐标量度单位为m;其中,,,;,,。

试求:如图1-2所示区域的体积力、、各为多少?题1-2图解:答:各体积力为:、、1-3作用在物体上的单位质量力分布为:,物体的密度为,如图1-3所示,其中,,,;。

试求:作用在图示区域内的质量总力?解:题图1-3答:各质量力为:、、,总质量力。

第1章流体力学基础部分

第1章流体力学基础部分

∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数

流体力学基础知识

流体力学基础知识

返回 上页 下页
流体力学基础知识
(2)相对压强 相对压强是以大气压强(p0)为零点计算的压强。
用符号p表示。 在实际工程中,因为被研究对象的表面均受大气压
强作用,因此不需考虑大气压强的作用,即常用相对 压强。 p gh
如果液体是自由表面,则自由表面压强:
p gh
返回 上页 下页
流体力学基础知识
对变化量 。
1 dV
V0 dT
流体压缩性的大小,一般用压缩系数β(Pa-1)
来表示。压缩系数是指单位压强所引起的体积相对
变化量。
1 dV
V0 dp
返回 上页 下页
流体力学基础知识
一般结论: 水的压缩性和热膨胀性是很小的,在建筑设备
工程中,一般计算均不考虑流体的压缩性和热膨胀 性。
气体的体积随压强和温度的变化是非常明显的 ,故称为可压缩流体。
参数不随时间而变化的流动。 非恒定流动是指流体中任一点压强和流速等参数
随时间而变化的流动。 自然界的流体流动都是非恒定流动,在一定条件
下工程上近似认为是恒定流。
返回 上页 下页
流体力学基础知识
3.压力流和无压流 压力流是流体在压差作用下流动时,流体各个
过流断面的整个周界都与固体壁相接触,没有自由 表面。
、f Z
FZ m
返回 上页 下页
流体力学基础知识
当流体所受质量力只有重力时,由G=mg可得 单位质量力为:
fX 0、fY 0、fZ -g
2、表面力 表面力是指作用在流体表面上的力,其大小与
受力表面的面积成正比。 流体处于静止状态时,不存在黏性力引起的内
摩擦力(切向力为零),表面力只有法向压力。对于 理想流体,无论是静止或处于运动状态,都不存在 内摩擦力,表面力只有法向压力。

流体力学 第一章

流体力学 第一章
分子平均自由程 << 流体质点尺度 << 流动问题的特征长度
二、连续介质的概念(2)
问题:按连续介质的概念,流体质点是指 A、流体的分子 B、流体内的固体颗粒 C、几何的点 D、几何尺寸同流动空间相比是极小量, 又含有大量分子的微元体
连续介质:质点连续地充满所占空间的流体。
连续介质模型
组成流体的最小物质实体是流体质点 流体由无限多的流体质点连绵不断地组成,质点之 间无间隙
流体的主要物理性质
?问题:与牛顿内摩擦定律直接有关的因素是: A、切应力和压强 B、切应力和剪切变形速率 C、切应力和剪切变形 D、切应力和流速
牛顿流体:内摩擦力按粘性定律变化的流体 非牛顿流体:内摩擦力不按粘性定律变化的流体
流体的主要物理性质
动力粘性系数μ:又称绝对粘度、动力粘度、粘 度,是反映流体粘滞性大小的系数。
二、连续介质的概念(2)
连续介质模型的优点:
1、排除了分子运动的复杂性。 2、物理量作为时空连续函数,可以利用连续函 数这一数学工具来研究问题。
二、连续介质的概念(2)
连续介质模型 不适用
稀薄气体, 激波面等
第二节
流体的主要物理性质
流体的主要物理性质
流体的主要性质
可流动性 惯性 粘性 可压缩性
流体的粘度是由流动流体的内聚力和分子的动量交换所引 起的
y F C u+u u U
τ
τ
h B
U=0
x
流体的主要物理性质
粘性是流体抵抗剪切变形(相对运动)的一种属性 流体层间无相对运动时不表现粘性
粘性产生的机理
液体
分子间内聚力
流体团剪切变形
改变分子间距离
分子间引力阻止 距离改变 内摩擦抵抗变形

1流体力学基本知识

1流体力学基本知识
G Mg γ = = = ρ⋅g V V
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 流体力学的基本概念流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。

本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。

连续介质与流体物理量连续介质流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。

例如,常温下每立方厘米水中约含有3×1022个水分子,相邻分子间距离约为3×10-8厘米。

因而,从微观结构上说,流体是有空隙的、不连续的介质。

但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。

因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。

从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。

同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。

因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。

长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。

所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。

流体物理量根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。

流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。

对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即VMV V ∆∆=∆→∆'limρ (1-1)式中,M ∆表示体积V ∆中所含流体的质量。

按数学的定义,空间一点的流体密度为VMV ∆∆=→∆0limρ (1-2)由于特征体积'V ∆很小,按式(1-1)定义的流体质点密度,可以视为流体质点质心(几何点)的流体密度,这样就应予式(1-2)定义的空间点的流体密度相一致。

为把物理概念与数学概念统一起来,方便利用有关连续函数的数学工具,今后均采用如式(1-2)所表达的流体物理量定义。

所谓某一瞬时空间任意一点的物理量,是指该瞬时位于该空间点的流体质点的物理量。

在任一时刻,空间任一点的流体质点的物理量都有确定的值,它们是坐标点),,(z y x 和时间t 的函数。

例如,某一瞬时空间任意一点的密度是坐标点),,(z y x 和时间t 的函数,即),,,(t z y x ρρ= (1-3)描述流体运动的两种方法描述流体运动的方法有拉格朗日(Lagrange )法和欧拉(Euler )法。

拉格朗日法拉格朗日法是以个别的流体运动质点为对象,研究这些指定质点在整个运动过程中的轨迹以及运动要素随时间变化的规律。

各个质点运动状况的总和就构成了整个流体的运动。

这种方法又称为质点系法。

在某直角坐标系0xyz 中,将0t t =时的某流体质点在空间的位置坐标),,(c b a 作为该质点的标记。

在此后的瞬间t ,该质点),,(c b a 运动到空间位置),,(z y x 。

不同的质点在0t 时,具有不同的位置坐标,如),,(c b a '''、),,(c b a ''''''……,这样就把不同的质点区别开来。

同一质点在不同瞬间处于不同位置;各个质点在同一瞬间t 也位于不同的空间位置。

因而,任一瞬时t 质点),,(c b a 的空间位置),,(z y x 可表为⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x(1-4a)式中c b a ,,称为拉格朗日变数。

若给定式中的c b a ,,值,可以得到某一特定质点的轨迹方程。

将某质点运动的空间位置的时间历程描绘出来就得到该质点的迹线。

将式(1-4a )对时间t 取偏导数,可得该流体质点在任意瞬间的速度u 在z y x ,,轴向的分量⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂==∂∂==∂∂=),,,(),,,(),,,(t c b a u t z u t c b a u t y u t c b a u tx u z z y y x x (1-5a )若坐标用i x 表示,3,2,1=i ,即用321,,x x x 代替z y x ,,;用i u ,即321,,u u u ,代替z y x u u u ,,;用k x 0,3,2,1=k ,即030201,,x x x ,代替c b a ,,;则式(1-4a )~ (1-5a)可写为),(0t x x x k i i = (1-4b )),(0t x u tx u k i ii =∂∂=(1-5b ) 对于某一特定质点,给定c b a ,,值,就可利用式(1-4)~ (1-5)确定不同时刻流质点的坐标和速度。

欧拉法欧拉法是以考察不同流体质点通过固定的空间点的运动情况来了解整个流动空间内的流动情况,即着眼于研究各种运动要素的分布场。

这种方法又叫做流场法。

采用欧拉法,流场中任何一个运动要素可以表示为空间坐标和时间的函数。

在直角坐标系中,流速是随空间坐标),,(z y x 和时间t 而变化的。

因而,流体质点的流速在各坐标轴上的投影可表示为⎪⎭⎪⎬⎫===),,,(),,,(),,,(t z y x u u t z y x u u t z y x u u z z y y x x (1-6a )或),(t x u u k i i = (1-6b )式中3,2,1,=k x k ,代表自变量z y x ,,。

若令上式中z y x ,,为常数,t 为变数,即可求得在某一空间点),,(z y x 上,流体质点在不同时刻通过该点的流速变化情况。

若令t 为常数,z y x ,,为变数,则可求得在同一时刻,通过不同空间点上的流体质点的流速分布情况(即流速场,velocity field )。

流速v是一个矢量,所以流速场是一个矢量场。

流速虽是流动的一个重要参数,但只有流场不足以完全说明流动的全部情况,还应知道其他表达流动的各个参数的分布情况。

一个标量,如流体的密度ρ,温度T 等,在空间和时间上的连续分布就成为一个标量场。

应力ij σ是一个二阶张量,所以应力在空间和时间上的分布是一个张量场。

表述流动的各种场的综合成为流场(flow field ),如流速场t)z,y,(x,v,密度场),,,(t z y x ρ等。

质点的加速度公式和随体导数质点加速度公式质点加速度是质点速度向量随时间的变化率。

在Lagrange 法中是以单个流体质点作为研究对象,因此位移函数(1-4)式对时间求二次偏导数可得流体质点的加速度a 在各轴向的投影:⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂==∂∂==∂∂=),,,(),,,(),,,(222222t c b a a t za t cb a a t ya t cb a a t xa z z y y x x (1-7a )或),(022t x a tx a k i ii =∂∂= (1-7b )欧拉法不追踪质点运动而着眼于流场,由速度场)t ,x (u ,k i 计算),(t x k 处的质点加速度i a 时必须求出该质点在t δ时间内的速度增量,在求其极值,即t )t ,x (u )t t ,x x (u lima k i k k i 0x 0t i i δδδδδ-++=→→ (1-8)式中k x δ是质点在t δ时间内的位移。

利用Taylor’s Series 展开,则)x t ,x ,t (O )tu t ()x u x ()t ,x (u )t t ,x x (u k 2k 2x i t k i kk i k k i k δδδδδδδδ+∂∂+∂∂+=++ 略去高阶微小量,所以t ki k x i x i t k i kk i k k i )x u(x )t u (t )t u t ()x u x ()t ,x (u )t t ,x x (u k k ∂∂+∂∂=∂∂+∂∂=-++δδδδδδ 代入式(1-8),得tx x u t u a kk i i i δδ∂∂+∂∂=注意到i x δ是质点位移,因而k kt u tx lim=→δδδ 则得欧拉法描述流体质点加速度的表达式ki k i i x uu t u a ∂∂+∂∂=(1-9a ) 或写为3i 32i 21i 1i i x uu x u u x u u t u a ∂∂+∂∂+∂∂+∂∂=(1-9b ) 以矢量表示为v )v (tv a ∇⋅+∂∂= (1-9c )在直角坐标系下,加速度表述为⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==z u u y u u x u u t u dt du a z u u y u u x u u t u dt du a zu u y u u x u u t u dt du a z z z y z x z z y y z y y y x y y y x z x y x x x x x (1-9d )以上三式中等号右边第一项t u x ∂∂、t u y ∂∂、tu z∂∂表示在每个固定点上流速对时间的变化率,称为时变加速度(当地加速度)。

等号右边的第二项至第四项之和z u u y u u x u u x z x y x x∂∂+∂∂+∂∂、z u u y u u x u u y z y y y x ∂∂+∂∂+∂∂、zu u y u u x u u z z z y z x ∂∂+∂∂+∂∂是表示流速随坐标的变化率,称为位变加速度(迁移加速度)。

因此,一个流体质点在空间点上的全加速度应为上述两加速度之和。

质点的随体导数将推导加速度公式的方法推广到质点上任意物理量的增长率的计算,引出质点的随体导数的概念。

质点携带的物理量随时间的变化率称为质点的随体导数,用DtD表示。

在欧拉法描述中的任意物理量Q 的质点随体导数表述如下:kk x Qu t Q Dt DQ ∂∂+∂∂= (1-10) 式中,),(t x Q Q k =可以是标量、向量或张量。

质点导数公式对任意物理量都成立,故将质点随体导数的运算符号表示如下:kk x u t Dt D ∂∂+∂∂= (1-11a ) 或332211x u x u x u t Dt D ∂∂+∂∂+∂∂+∂∂= (1-11b ) 其中,t ∂∂称为局部随体导数,kk x u ∂∂称为对流随体导数,即在欧拉法描述得流动中,物理量的质点随体导数等于局部随体导数与对流随体导数之和。

相关文档
最新文档