根轨迹绘制的基本规则

合集下载

第2讲 绘制根轨迹的基本规则

第2讲 绘制根轨迹的基本规则

证明:(2)对称性
因为特征方程的根或为实数,或为共轭复数,所以根轨迹对 称于实轴。
规则2:根轨迹的分支数及其起点和终点
闭环特征方程:
n
m
s pl K0 s zi 0 (1 GH 0)
l 1
i 1
当K0 由0 变化时,方程中任一根由始点连续地向终点变化
的轨迹称为根轨迹的一条分支;
例1 绘制下图所示系统的根轨迹
解: 1) 有三条根轨迹分支,它们的始点为开环极点(0,-1,-2) 2) 三条根轨迹分支的终点均在无限远
3) 渐近线与正实轴的夹角
2k 1 , , 5 ,
3
33
j j1.414 [s]
k 0,1,2
渐近线与正实轴的交点为
- A
1 3
2
1
4)实轴上的-1 至0和-2至-∞间 的线段为根轨迹
3) 渐近线与正实轴的夹角
2k 1 , , 5 ,
3
33
Im j1.414 [s]
k 0,1,2
渐近线与正实轴的交点为
- A
1 3
2
1
4)实轴上的-1 至0和-2至-∞间 的线段为根轨迹
180
60
2
1 60
0
Re
控制系统方框图
j1.414
❖ n=[1]; ! 分子 1 各项系数 ❖ d1=[1 0]; ! 分母第一项 (s+0) 各项系数 ❖ d2=[1 3 2]; ! 分母第二项( s^2+3s+2) 各项系数 ❖ d=conv(d1,d2); ! 分母二项相乘 ❖ rlocus(n,d); ! 绘制根轨迹 ❖ sgrid; !绘制出阻尼系数和自然频率栅格
例3 已知一单位反馈控制系统的开环传递函数为

根轨迹法的基本法则

根轨迹法的基本法则

为求根轨迹从P3点处的出射角,在其附
近找一个实验点Sa,并认为该点在根轨
迹上,则它应满足幅角条件:
m
n
(s z j ) (s pi ) (2k 1)
j 1
i 1
P3 s3 a
j j
-1 -2 -3 -4 (2k 1)180o 前提:Sa无限靠近P3
例如,某系统开环零极点分布 如图。现在要判断实轴上的某
P1j 1Fra bibliotek Sai 1
j
点Sa是不是根轨迹上的点. P5 Z2
各开环零、极点的幅角: P2
P4 Z1
P3
0
(sa - z2 ) 0o (sa - p5 ) 0o
(sa - p1) 1 (sa - p2 ) 2
G(s)
K (s 1)
s(s 4)(s2 2s 2)
四个开环极点:0、-1+j、-1-j、-4 一个开环零点:-1
共有四条根轨迹,
实轴上的根轨迹为0→-1 , -4→-∞
渐近线与实轴交点:
n
m


a
i 1
pi z j
j 1
nm

(0) (1
j) (1 4 1
求出重根为: s1、2 = - 2.07
之间找;若求出的重根点在 实轴上但不符合“实轴上根 轨迹”的判断规则就要舍去
法则六 根轨迹的起始角与终止角
复数极点附近根轨迹形态怎样?
在复数极点附近取一个试验点Sa,各零、极点到试 验点Sa的矢量幅角和应满足幅角条件,当Sa点无限 趋近该复数极点时,可求出根轨迹从该点出射方向。
i1
j 1
i1
闭环特征方程的根(即闭环极点)与特征方程的系数关系:

根轨迹绘制的基本法则

根轨迹绘制的基本法则

规则七、 根轨迹与虚轴的交点:交点和相应的Kr值 利用劳斯判据求出。 根轨迹与虚轴的交点对应于临界稳定状态,此时系统 出现虚根。 在例4-2-2中,系统闭环特征方程式为:
1 Kr ( s 5) s ( s 1)( s 2)
1 3 6 2K r 3 5K r
0,
s( s 1)( s 2) K r ( s 5) 0
同理可证明入射角。
例4-2-3
设系统开环零极点图如图4-7。p
0 0
j
3
确定根轨迹离开共轭复数根的出射角。
其中 ( p3 z1 ) 85 , ( p3 p1 ) 135
( p3 p2 ) 45 , ( p3 p4 ) 90
0 0
×●
P3
P2 × ●
n m j j 1 i 1
i
nm
对例4-2-2,渐近线与实轴夹角为:

l 180 n m


180 l 2

( l 1,3,) 90 , 90 ( 270 )
0
0 0
交点坐标为:
1 2 ( 5 ) 2
1 , 即(1,j0)。
j

× × ×
﹣2 ﹣1
P3
s0 点为从 p3 出发的根轨迹上一点。
z ( p1 p 2 p 3 p 4 ) 180 l
0
j
×●
z
P3
P1
p 3 180 l z ( p1 p 2 p 4 )
0
P2
×●
Z1
×
01 P
P2

P2 × ●

4-2根轨迹绘制的基本法则

4-2根轨迹绘制的基本法则

0
0
0
0
0
同学们,头昏了吧?
j
j
j
0
j j 0 0
14
0
2015-1-28
4-2根轨迹绘制的基本法则
作业
• • • • 4 -1 4-3(1)(2) 4—4(1) 4-8(1)
2015-1-28
4-2根轨迹绘制的基本法则
15
4 3 2 * s 5 s 8 s 6 s k 0 2)渐近线。由于n m 4 ,故有四条渐近线, a 1.25 a 45 , 135 应用劳思判据
3)确定分离点。
1 0 i 1 d pi
n
s4 1 s3 5 s 2 34 / 5 s1 (204 25 K * ) / 34 s0 K*
R( s )
K * ( s 1) s( s 2)( s 3)
C ( s)
j
a (2k 1)180o / (3 1) 90o
a (0 2 3) (1) / (3 1) 2
(4)分离点(用试探法求解)
1 1 1 1 d 1 d d 2 d 3 d 2.47
5)利用模值条件,可得分离点的根轨迹增益
2 4 . 75 7 . 25 K d* i 1 16.37 |d z| 15 .25 i
| d p |
3
所以,当
2015-1-28
K * 16.37
系统输出产生振荡
4-2根轨迹绘制的基本法则 13
根轨迹示例
j
j j 0
j
j j
4-2根轨迹绘制的基本法则
12
例子4-5 P150
解:1) m=1,n=3, K * (s 20) G( s) z1=-20,p1=0,p2=p3=-12, 2 s ( s 24 s 144 ) 2)实轴上0--12 ,-12--20 必为根轨迹。 3)渐近线。n-m=2 故有2条渐近线. 180 12 12 (20) 90 2 2 2 1 2 1 4)确定分离点。 d d 12 d 20 试探法:d=-4.75

180根轨迹绘制法则

180根轨迹绘制法则
s(s 2.5)(s 0.5 1.5 j)(s 0.5 1.5 j)
解:将开环零极点标注在s平面上。
j
由法则1,确定根轨迹起点和终点。
由法则2,确定有4条根轨迹分支。
由法则4,确定实轴上的根轨迹 [-∞,-2.5]、[-1.5,0] 。
由法则3,确定根轨迹有1条渐近线
-3 -2 -1 0
K1 K1 0
K1 0
m
1
n

1
j1 d z j i1 d pi
K1
分分离点离点
分离角: (2k 1) / l
K1
K1 0
K1
会合? 点? ?
K1 0
式中,zi , pj 分别为开环系统 的零点和极点; l 为在s平面上 相遇又立即分开的根轨迹的条 数,k 0,1, , l 1。
称为终值角,以 zi 标志。
根轨迹的
j
起始角 [s]
p1 p1
p3
0

p2
p2
根轨迹的j 终止角
p1
z1
p1
z1
z1
0
z2
z2 p2 z2源自p2j[s] p1
p1
[s]

0

p2 p2
出射角对(a)复极点,
(b入) 射角对复零点。
法则6:根轨迹起始角和终值角。
用试探法得d≈-2.3。
由法则6,确定起始角和终止角。
p3 (2k 1) (135o 90o 26.6o ) 71.6o p4 71.6o 本题无须确定终止角。
由法则7,确定根轨迹与虚轴的交点。
闭环特征方程为:s4 5s3 8s2 6s K* 0

2绘制根轨迹的基本法则

2绘制根轨迹的基本法则
K
g
s ( s + 1 )( s + 5 )
,试确定根轨
上例已经确定了渐近线、实轴上的根轨迹段和分离(会合)点等, 下面确定根轨迹与虚轴的交点。
方法一:闭环特征方程: 3 + 6s 2 + 5s + K g = 0 ,令 s = jω 代入闭环特 s 征方程 ( jω ) 3 + 6( jω ) 2 + 5( jω ) + K g = 0 分解为实部和虚部: K g − 6ω 2 ) + j (5ω − ω 3 ) = 0 ( K g − 6ω 2 = 0 ω = 1,± 5 于是有: ,显然交点为 ⇒ 3 K g = 0,30 5ω − ω = 0 方法二:构造劳斯表
根据根轨迹相角条件可以写出的方向角其它各极点指向的方向角各零点指向的方向角其它各极点指向的方向角由各零点指向的方向角其它各极点指向的方向角由各零点指向的方向角其它各极点指向的方向角由各零点指向考虑到k的取值为所以上式可以写成为
4.2 绘制根轨迹的基本法则
一、 180°根轨迹作图法则
法则1:根轨迹的起点和终点 根轨迹的起点是指根轨迹增益 K g = 0 时,闭环极点在s平面上的位置, K g时闭环极点在s平面上的位置。 =∞ 而根轨迹的终点则是指 根轨迹起始于系统的开环极点(包括重极点),而终止于开环零点。 根轨迹起始于系统的开环极点(包括重极点),而终止于开环零点。 ),而终止于开环零点 法则2:根轨迹的连续性和对称性 根轨迹具有连续性,且对称于实轴。 根轨迹具有连续性,且对称于实轴。 法则3:根轨迹的分支数 根轨迹的分支数取传递函数分子、分母阶数 和 的大者 的大者。 根轨迹的分支数取传递函数分子、分母阶数m和n的大者。 法则4:根轨迹的渐近线 当系统的开环增益Kg→∞时趋向无穷远处的根轨迹共有n-m条,n-m条 根轨迹趋向无穷远的方位由渐近线决定。

简述绘制根轨迹的规则

简述绘制根轨迹的规则

简述绘制根轨迹的规则
1.确定系统的传递函数,通常为开环传递函数。

2. 求出传递函数的特征方程,并确定系统的极点和零点。

3. 根据特征方程的根的实部和虚部的符号,确定根轨迹的起点
和方向。

实部为负时,起点在左侧无穷远点;实部为正时,起点在右侧无穷远点。

如果有根在虚轴上,起点在最靠近虚轴的点。

4. 根据特征方程的根的虚部和实部的大小,确定根轨迹的曲线
形状。

虚部相同时,曲线形状取决于实部的大小。

实部相同时,曲线形状取决于虚部的大小。

5. 根据系统的零点,确定根轨迹离开或逼近的方向。

如果零点
是实数,离开或逼近方向与实轴上的零点位置有关。

如果零点是虚数,离开或逼近方向与虚轴上的零点位置有关。

6. 根据根轨迹的数量和方向,确定系统的稳定性和性能。

在根
轨迹穿过虚轴时,系统发生振荡。

在根轨迹趋近无穷远点时,系统响应速度较慢,稳定性较好。

绘制根轨迹需要一定的数学基础和图像分析能力。

在实际应用中,通常使用计算机软件进行绘制和分析。

- 1 -。

绘制根轨迹的基本法则

绘制根轨迹的基本法则

4.2 绘制根轨迹的基本法则本节讨论根轨迹增益*K (或开环增益K )变化时绘制根轨迹的法则。

熟练地掌握这些法则,可以帮助我们方便快速地绘制系统的根轨迹,这对于分析和设计系统是非常有益的。

法则1 根轨迹的起点和终点:根轨迹起始于开环极点,终止于开环零点;如果开环零点个数m 少于开环极点个数n ,则有)(m n -条根轨迹终止于无穷远处。

根轨迹的起点、终点分别是指根轨迹增益0=*K 和∞→时的根轨迹点。

将幅值条件式(4-9)改写为∏∏∏∏==-==--=--=mi inj j mn m i i nj jsz sp sz s ps K 1111*|1||1||)(||)(|(4-11)可见当s=j p 时,0*=K ;当s=i z 时,∞→*K ;当|s|∞→且m n ≥时,∞→*K 。

法则2 根轨迹的分支数,对称性和连续性:根轨迹的分支数与开环零点数m 、开环极点数n 中的大者相等,根轨迹连续并且对称于实轴。

根轨迹是开环系统某一参数从零变到无穷时,闭环极点在s 平面上的变化轨迹。

因此,根轨迹的分支数必与闭环特征方程根的数目一致,即根轨迹分支数等于系统的阶数。

实际系统都存在惯性,反映在传递函数上必有m n ≥。

所以一般讲,根轨迹分支数就等于开环极点数。

实际系统的特征方程都是实系数方程,依代数定理特征根必为实数或共轭复数。

因此根轨迹必然对称于实轴。

由对称性,只须画出s 平面上半部和实轴上的根轨迹,下半部的根轨迹即可对称画出。

特征方程中的某些系数是根轨迹增益*K 的函数,*K 从零连续变到无穷时,特征方程的系数是连续变化的,因而特征根的变化也必然是连续的,故根轨迹具有连续性。

法则3 实轴上的根轨迹:实轴上的某一区域,若其右边开环实数零、极点个数之和为奇数,则该区域必是根轨迹。

设系统开环零、极点分布如图4-5 所示。

图中,0s 是实轴上的点,)3,2,1(=i i ϕ是各开环零点到0s 点向量的相角,)4,3,2,1(=j j θ是各开环极点到0s 点向量的相角。

根轨迹绘制的基本原则

根轨迹绘制的基本原则
nm
k 0, 1, (n m 1)
交 点:
n
m
pi z j
i 1
j 1
nm
例: 已知: G(s)H (s)
K1
s(s 1)(s 2)
试由已知规则,确定根轨迹的相关数据。
解:按根轨迹绘制的规则:
规则1,3个极点也是起点:0,-1,-2;
无零点,则终点为无限零点:∞,∞,∞。
规则2,分支数: n=3>m=0,有3条根轨迹,对称于实轴。
同样s3点也不是根轨迹上的点。
[例]设系统的开环传递函数为:
Gk
(s)
s2(s
Kg (s 2) 1)(s 5)(s
10)
试求实轴上的根轨迹。
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
注意在原点有两个极点,双重极点用“ ”表示。
法则5. 两条或两条以上根轨迹分支在s平面上相遇又立即分 开的点——根轨迹的分离点,
(2)试探点左边的极点p2对试探点构 成的向量的相角为0°;
(3)试探点右边的极点p1对试探点 构成向量的相角为180°;
所以s1点满足根轨迹相角条件,
而且S1点一直可以左移到P2处,
于是[-p2 ,-p1]为实轴上的根轨迹。
z1
p3
3
1
p2
s2
s1 p1 s3
2
4
z2
p4
再看s2点:不满足根轨迹相角条件,所以不是根轨迹上的点。
分离点的坐标d 是下列方程的解:
m 1
n
1
i1 d zi j1 d p j
分离点
B

绘制根轨迹的基本原则

绘制根轨迹的基本原则

绘制根轨迹的基本原则绘制根轨迹是控制工程中常用的一种方法,它可以帮助我们分析系统的稳定性,相当于一个工程师的眼睛。

根轨迹是由根的轨迹组成的,而系统的根是指其特征方程的根。

特征方程是由系统的传递函数确定的,因此我们可以通过绘制特征方程的根轨迹来分析系统的动态性态。

绘制根轨迹的基本原则有以下几点。

1. 系统根轨迹的数量等于系统特征方程的根的数量。

这是因为每个根对应着系统中一个极点。

2. 根轨迹的起点和终点都在实轴上。

这是因为特征方程的根只有实数或成对的共轭复数根。

3. 根轨迹要从左侧的极点开始。

如果存在多个极点,则从最左侧的极点开始。

如果没有极点,则从传递函数的实轴交点开始。

4. 根轨迹要向右边的极点或者方向稳定,如果两个虚根前后交叉,则会出现不稳定性。

在解决此问题是,需要重新绘制,或者调整参数,使出现前后交叉的根跑到不相交的区域。

5. 当相邻两根的虚部相等时,其插值点在实轴上。

这个时候,由于两个根的插值点处于实轴上,因此根轨迹向这个点的方向发生了变化。

6. 根轨迹需要跨越系统的实轴部分。

无论极点的数量、位置以及根轨迹的线路,都必须穿过右半平面。

7. 根轨迹的末端,必须落到无限远点。

<1>{1}</1>因此,通过这几个基本原则,我们可以绘制出系统的根轨迹。

然而,在实际的工程中,我们会遇到许多不同的情况,例如系统传递函数变化、加入控制器等。

这时候,我们需要灵活应对,对基本原则进行微调,以便更好地分析系统的动态特性。

总结来说,根轨迹能够帮助工程师更好地了解控制系统的动态特性,这有助于他们进行有效的控制和优化。

在绘制根轨迹的过程中,需要严格遵循基本原则,同时对特殊情况进行灵活调整。

根轨迹的绘制法则

根轨迹的绘制法则

第4章 根 轨 迹 法根轨迹的基本概念所谓根轨迹是指控制系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上移动的轨迹。

一般取开环增益为可变参数,但也可以用系统中的其他参数,如某个环节的时间常数等。

根轨迹的绘制法则gnj jmi iK ps z s s D s N 1)()()()(11-=++=∏∏== 在绘制根轨迹时,通常首先求出g K =0和g K =∞时的特征根,再根据绘制法则画出0<g K <∞时的根轨迹草图;一. 根轨迹的起点(K g =0)上式说明,当g K = 0时,系统的开环极点就是闭环极点。

绘制根轨迹时,我们通常是从g K = 0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。

起点数n 就是根轨迹曲线的条数。

二. 根轨迹的终点(K g =∞)当g K =∞时,闭环特征方程式为∏==+=mi i z s s N 1)()(这就是说,系统的开环零点就是g K =∞时的闭环极点,即根轨迹曲线的终点。

其个数为m ,另外的n -m 个根轨迹终点在无穷远。

三. 根轨迹的分支数和对称性根轨迹在s 平面上的分支数(条数)等于开环特征方程的阶数n ,即与开环极点个数相同。

此外,在一般控制系统的特征方程中,各项系数都是实数。

因此,特征根或是实数,或是共扼复数,则根轨迹一定是对称于实轴。

四. 实轴上的根轨迹当开环传递函数有实数极点、零点时,这意味着实轴上有根轨迹的起点和终点。

这时,必须确定实轴上哪一区间有根轨迹,哪一区间没有根轨迹。

五. 根轨迹的分离点和会和点在有根轨迹的实轴上,存在着两个开环极点时,必然有一个分离点a 。

同样,在有根轨迹的实轴上,存在两个开环零点(包括无穷远零点)时,必然有一个会合点b 。

当g K 为g K a (a 点的g K 值)或g K b (b 点的g K 值)时,特征方程都将出现重根。

这是两者的共性。

此外,分离点a 的g K 值,是其实轴根轨迹上的最大g K 值;会合点b 的g K 值,是其实轴根轨迹上的最小g K 值。

绘制零度根轨迹的8条法则

绘制零度根轨迹的8条法则

绘制零度根轨迹的8条法则绘制零度根轨迹的8条法则是控制系统理论中的重要概念,用于预测系统的根轨迹。

根轨迹是描述系统极点在复平面上运动的轨迹,对于开环稳定的连续时间系统,绘制根轨迹可以帮助设计者了解系统的稳定性、动态性能和调节器的参数调整等信息。

下面将详细介绍绘制零度根轨迹的八条法则。

1.根轨迹的起始点:零度根轨迹的起始点是系统零极点的交点,也就是系统传递函数的分子多项式与分母多项式的公共根。

起始点数目等于系统的零极点差异的绝对值。

如果起始点是虚数根,则起始点垂直于虚轴;如果起始点是实数根,则起始点沿着实轴移动。

2.根轨迹的末端点:根轨迹的末端点是极点的交点,也就是系统传递函数的分母多项式的根。

末端点数目等于系统的极点数目。

3.根轨迹的关于虚轴和实轴的对称性:零度根轨迹关于虚轴和实轴是对称的。

如果零度根轨迹中有一个点在复平面上,则它的共轭点也在轨迹上。

4.根轨迹的角度特征:根轨迹趋近虚轴的角度特征取决于系统的零和极点之间的差异。

如果零点在极点的左侧,则根轨迹的角度在趋近虚轴时是奇数个180度。

如果零点在极点的右侧,则根轨迹的角度在趋近虚轴时是偶数个180度。

5.根轨迹的交点:当根轨迹与实轴或虚轴相交时,可以通过零点数目和交点的位置来确定系统的稳定性。

如果实轴上的交点数目为奇数,则系统不稳定。

如果虚轴上的交点数目为奇数,则系统是无法稳定的。

6.根轨迹的穿越特征:根轨迹可以穿越实轴或虚轴。

如果根轨迹穿越实轴,则必须有一个零点或极点位于实轴上。

如果根轨迹穿越虚轴,则必须有一个零点或极点位于虚轴上。

7.根轨迹的极点规律:根轨迹的极点位置取决于系统的极点位置。

当系统的极点靠近时,根轨迹的极点会趋向于其中一个极点。

当系统的极点远离时,根轨迹的极点会趋向于无穷远。

8.根轨迹的环绕特征:当根轨迹环绕其中一极点的次数等于该极点的倍数时,被环绕的极点是系统的稳定极点。

根轨迹环绕的次数与稳定电路发生变号的次数相同。

绘制根轨迹的基本法则

绘制根轨迹的基本法则
时,
【例5.6】计算开环传递函数
的根轨迹在实轴上的分离点 解:1.由系统特征方程:
2.求
,即
得:
不在实轴上的根轨迹段内, 舍去。
在实轴上的根轨迹段内, 继续判断;位于两开环极 点间,是分离点。
3. 求对应的根轨迹增益:

代入K式:
4. 分离角: 5. 根轨迹:
Im
3
2
K 3.0789
1
0
-1
-2
-3
-6
-5
-4
-3
-2
-1
0
1
Re
三、根轨迹与虚轴的交点
根轨迹可能跨过虚轴进入S右半平面;系统 从稳定变为不稳定;
根轨迹在虚轴上的交点,对应闭环系统的 临界稳定;
交点处是一对纯虚根,利用劳斯判据第二 种特例的原理计算。
3
2
1
Im
0
-1
-2
-3
-6
-5
-4
-3
-2
-1
0
1
Re
【例5.8】计算开环传递函数
一、根轨迹的渐近线
渐近线的数量:系统有n个开环极点,m个 开环零点时,需要n-m条渐近线。 渐近线和根轨迹一样,关于实轴对称。 渐近线在实轴上有一个共同的交点:
所有开环极点的和 - 所有开环零点的和 n-m
渐近线的发散角度: 小窍门:
【例5.5】已知3阶系统的开环传递函数,
请绘制根轨迹的起点和终点、根轨迹在实轴上 的段落、根轨迹的渐近线。 解:1. 根轨迹的起点,对应开环极点,n=3:
1.分离点:根轨迹相遇后离开实轴的点 如a点,对应根轨迹增益局部最大值;
2.会合点:根轨迹相遇后回到实轴的点 如b点,对应根轨迹增益的局部最小值

绘制根轨迹的一般规则

绘制根轨迹的一般规则

n

s

p
j


2h

1180所规定
i 1
j 1
相角条件的,即开环传递函数的共轭复数极点和零点,
对实轴上根轨迹的位置没有影响.实轴上的根轨迹仅
取决于实轴上的开环极点和零点。
第三节 绘制根轨迹的一般规则
2如果实数开环零点z3位于s1的左方,则向量
s1 z3 0,这说明左侧实数零点的存在并不影响
第三节 绘制根轨迹的一般规则
渐近线与实轴交点

p 1

p 2

p n
z 1

z 2
z m


0
1
2

1
a
nm
3
渐近线与实倾角 2h 1 2h 1 h 0,1,2
a nm
3
h 0时, 180 180 60
1 nm 3

N
s
Ds
N s
Ds

0
显然解方程可求出根轨迹的分离点和会合点。
这个方程怕记混淆,为便于记忆,dGsH s 0 1
ds
对特征方程1 GsH s 0求导,
第三节 绘制根轨迹的一般规则
d1 GsH s dGsH s kNsDs NsDs
当n>m时,有n-m条根轨迹随着k的增大 而趋向无穷,这些趋向无穷远处的根轨迹, 将随着k的无限增大而接近于n-m条直线, 这些直线称为根轨迹的渐近线。渐近线的位 置由以下两个参数确定,即渐近线倾角和渐 近线与实轴的交点。
第三节 绘制根轨迹的一般规则
1.渐近线倾角 a
a

2h 1 h
jw

绘制根轨迹图的规则

绘制根轨迹图的规则

K *的表达式为
K*
j 1 m
(s zi )
iห้องสมุดไป่ตู้1
则在分离点处有
dK* 0 ds
分离点坐标d是以下方程的解。
m 1
n1
i1 d zi j1 d p j
在一般情况下,绘制多回路系统的根轨迹时,首先根据内反馈回路的开环传递 函数,绘制内反馈回路的根轨迹,并确定内反馈回路的极点分布;然后由内反馈回 路的零、极点和内反馈回路外的零、极点构成整个多回路系统的开环零、极点;再 按照单回路根轨迹的基本规则,绘制出系统总的根轨迹。但这样绘制出来的根轨迹 只能确定多回路系统极点的分布,而多回路系统的零点还需要根据系统的闭环传递 函数来确定。
(z j
zi )
l 1
( zi
pl
)
,为开环零点(除
zi 外)和开环极
(i j)
点往零点 引zi 出向量的相角净值。
规则9 根轨迹的分离点。两条或两条以上的根轨迹分支,在s平 面上某处相遇后又分开的点,称为根轨迹的分离点(或会合点)。 可见,分离点就是特征方程出现重根之处。重根的重数就是会合到 (或离开)该分离点的根轨迹分支的数目。
坐标及相应的 K值* 可由劳斯判据求得,也可在特征方程中令 s j,然
后使特征方程的实部和虚部分别等于零而求得。根轨迹与虚轴相交,表明系 统在相应 K值* 下处于临界稳定状态。此处的根轨迹增益 K*称为临界根轨 迹增益。
【例 3-2】
设系统的开环传递函数为
Gk
(s)
s(s
K* 1)(s
2)
,求根轨迹与
时的根轨迹方程则有
m
K* (s zi )
i 1

K*
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根轨迹的连续性和对称性
一、根轨迹绘图的基本规则
用解析法或试探法绘制根轨迹很烦琐。下面讨论的内容通 过研究根轨迹和开环零极点的关系,根轨迹的特殊点,渐近线 和其他性质将有助于减少绘图工作量,能够较迅速地画出根轨
迹的大致形状和变化趋势。以下的讨论是针对参数Kg的180度根
轨迹的性质。
1、根轨迹的连续性:
Kg (s zi )
i 1 n
1
(s pj)

(s zi )
i 1
n
(s pj)
1 Kg
j 1
j 1
当Kg= ∞时,① s = -zi (i = 1~m) ,上式成立。 -zi是开环传递函
数有限值的零点,有m个。故n阶系统有m支根轨迹的终点在m个
有限零点处。②若n>m,那么剩余的n-m个终点在无穷远处。
23-Apr-20
90
90 0 nm2
180 60
0
n m 3 60
180
45
45 0
nm4
7
[例4-2]系统开环传递函数为:Gk (s)
s(s
Kg 1)( s
5)
,试确定根
轨迹支数,起点和终点。若终点在无穷远处,求渐近线与实轴
的交点和倾角。
[解]:根轨迹有3支。起点为开环极点 p1 0, p2 1, p3 5, 无有限值零点,所以三支根轨迹都趋向无穷远。
Kg
i 1
n
ቤተ መጻሕፍቲ ባይዱ
m
式中 an1 p j ,bm1 zi
j 1
i 1
23-Apr-20
4
根轨迹的渐近线
snm (an1 bm1)snm1 Kg
当Kg→∞,由于m<n,故s→∞满足根轨迹方程,上式近似为
snm (an1 bm1)snm1 Kg
snm
(1
an1
s
bm1
)
Kg
两边开n-m次方
若开环零点数m小于开环极点数n,则当系统的开环增益 Kg→∞时趋向无穷远处的根轨迹共有n-m条。这n-m条根轨迹 趋向无穷远的方位可由渐近线决定。
由根轨迹方程可得: n
(s p j )
j 1 m
Kg
(s zi )
n
i 1
(s p j )
j 1
m
(s zi )
sn an1sn1 a1s a0 sm bm1sm1 b1s b0
由根轨迹方程知:当s→∞时
m
根轨迹方程左边
lim s
(s zi )
i 1 n
(s pj)
lim
s
sm sn
lim
s
1 snm
0
j 1
根轨迹方程右边 lim 1 0
Kg K g
我们称系统有n-m个无限远零点。有限值零点加无穷远零
点的个数等于极点数。
23-Apr-20
3
根轨迹的渐近线
5.根轨迹的渐近线:
3、根轨迹的支数:
n阶特征方程有n个根。当Kg 从0到无穷大变化时, n个根在复平
面内连续变化组成n支根轨迹。即根轨迹的支数等于系统阶数。
4、根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点。
Kg= 0时为起点, Kg= ∞时为终点。
由根轨迹方程
m
Kg (s zi )
i 1 n
1 得
(s pj)
[证明]:例如在实轴上有两个开环极点p1、 p2,复平面上有一对共轭极点p3、 p4和一对 共轭零点z1、 z2 。
先看试验点s1点:
①成对出现的共轭极点p3、 p4对实轴上任意 试探点构成的两个向量的相角之和为0°;
z1
p3
q3
q1
p2
s2
s1
p1 s3
q4
z2
q 2
p4
②成对出现的共轭零点z1、 z2对实轴上任意试探点构成的两个向量的 相角之和为0°;
闭环系统特征方程的某些系数是增益Kg的函数。当Kg从0到
无穷变化时,这些系数是连续变化的。故特征方程的根是连续
变化的,即根轨迹曲线是连续曲线。
2、根轨迹的对称性:
一般物理系统特征方程的系数是实数,其根必为实根或共轭 复根。即特征根位于复平面的实轴上或对称于实轴。
23-Apr-20
1
根轨迹的支数和起始点
渐近线与实轴的交点: pi zi 1 5 2
nm
30
渐近线与实轴的倾角: q (2k 1) 60,180
nm
零极点分布和渐近线(红线) 如图所示。
5
180 60
2
1
0
60
23-Apr-20
11
实轴上的根轨迹
6、实轴上的根轨迹:
实轴上具有根轨迹的区间是:其右方开
环系统的零点数和极点数的总和为奇数。
③试探点左边的极点p2对试探点构成的向量的相角为0°; ④试探点右边的极点p1对试探点构成的向量的相角为180°;
所以s1点满足根轨迹相角条件,于是[-p2 ,-p1]为实轴上的根轨迹。
j 1
n
(s pj)
j 1 m
Kg
(s zi )
i 1
当Kg= 0时,只有s = -pj (j = 1~n) 时,上式才能成立。而-pj是 开环传递函数的极点,所以根轨迹起始于开环极点。n阶系统有
n个开环极点,分别是n支根轨迹的起点。
23-Apr-20
2
根轨迹的起点和终点
m
m
由根轨迹方程
bm1
)
(K g
1
) nm
23-Apr-20
5
根轨迹的渐近线
s
an1 bm1 nm
1
(K g ) nm
设s=x+jy, 利用-1=cos(2k+1)π+jsin(2k+1)π,并根据德莫弗(De
Moive)代数定理(cosq +jsinq )n= cos(nq )+jsin(nq ),上式可写为
s(1
an1
bm1
1
) nm
s
1
(Kg ) nm
利用二项式定理
(1 x)K 1 Kx K (K 1) x2 K (K 1) (K I 1) xI
(1 x 1)
2!
I!
当 x 1时,(1 x)K 1 Kx ,令 x an1 bm1 , K 1
s
nm
s(1
n
1 m
an1
s
nm
nm
nm
n
m
n
m
an1 bm1
p j zi
j 1
i1
p j zi
j 1
i1
nm
nm
nm
这是与实轴交点为-,斜率为 tg (2k 1) 的直线方程。也就
nm
是渐近线方程。渐近线与实轴的夹角(称为渐近线的倾斜角为
q (2k 1)
nm
k 0, 1, 2L
180
0
n m 1
x
jy an1 bm1 nm
K
1 nm g
cos
(2k n
1)
m
j sin (2k 1)
nm
x
an1 bm1 nm
1
K
nm g
cos (2k 1)
nm
y
1
K
nm g
sin
(2k 1)
nm
y
tg (2k 1)
x an1 bm1
nm
nm
23-Apr-20
6
根轨迹的渐近线
y tg (2k 1) x an1 bm1 tg (2k 1) x
相关文档
最新文档