精梳版复变函数留数.ppt
合集下载
高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法
0
的去心邻域内的罗朗展开式为:
sin z
1 z2
z4
L
1n z2n
L
z
3! 5!
2n 1!
故负幂次项 z1的系数 C1 0 ,即
Res
sin z
z
, 0
0
若孤立奇点z0为f (z)的可去奇点,则
Res f (z), z0 0
例1.3
函数
f
(z)
1 z(z 1)2
在
z
1 处有一个
二级极点,这个函数又有下列罗朗展开式:
n
Ñc f zdz 2πiRes f z, zk (1.3) k 1
证 把在c内的孤立奇点 zk k 1,2,L ,n
用互不包含的正向简单闭曲线 ck 围绕起来 (如图5-1)
图5-1
蜒c f zdz
c1
f
z
dz
蜒 f c2
zdz L
cn
f
z dz
以 2 i 除等式两边,得
1
Cm 0
Байду номын сангаас
g z Cm Cm1 z z0 L C1 z z0 m1
C0 z z0 m L
在点 z0 是解析的,且 g z0 Cm 0
由
f
z
gz z z0 m
,有 z
z0 m
f
z
gz
上式两端对 z 求导 m 1 次,并取极限(z z0),
得
lim
在 z 1的去心邻域
0 z 1 1
内的罗朗展开式,由于
f
z
z
1
12
z
1
1
n0
1n
z
复变函数第五章1留数
证明: 若z0是f (z)的m阶零点 即 f (z) (z z0 )m(z)
((z)在 z0 处解析, 泰勒级数:(z) a0 a1(z z0 ) )
f (z)在z0处的泰勒级数为
f (z) a0 (z z0 )m a1 (z z0 )m1 a2 (z z0 )m2
f (z0 ) f (z0 ) f (m1)(z0 ) 0, f (m)(z0 ) a0 0.
则孤立奇点z0称为 f (z)的本性奇点.
例如:f (z) sin 1 以z 1为它的本性奇点
因为sin
1
1 z
在z 1的去心邻域0 z 1 上的罗朗展式为
1
1
z
sin
(1)n ( 1 )2n1
1 z n0 (2n 1)! 1 z
1 ( 1 ) 1 ( 1 )3 (1)n ( 1 )2n1
z 1是f (z)的本性奇点.
或 z沿实轴从点1的右侧趋向于1
z沿实轴从点1 的左侧趋向于1
1
lim e z1极限不存在,且不为 z 1
z 1是f (z)的本性奇点课. 件
1
lim e z1
z1
1
lim e z1 0,
z1
9
综上所述:
定理5.1 若函数f (z)在0 z z0 R内解析,则
z 1是(z2 1)( z 2)3的一级零点
z 2是(z2 1() z 2)3的三级零点,
z 1是f (z)的二级极点,(见例7,m 1 3 n)
z 2是可去奇点, (见例7,m 3 n)
z 0,2,3, 4, 是f (z)的三级极点.
(见例7, m 0 3 n)
k
课件
3
5.1.1 孤立奇点的定义及分类
复变函数第五章留数
第五章 留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,
•
z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,
则
z
为
0
f
z
的m
级
零
点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,
•
z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,
则
z
为
0
f
z
的m
级
零
点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级
复变函数留数习题PPT课件
VS
应用
留数定理在解决各种数学问题中有着广泛 的应用,如求解定积分、求解微分方程等 。此外,留数定理还在物理学、工程学等 领域中有着广泛的应用。
03
习题解析
简单习题解析
总结词
基础知识点
详细描述
简单习题主要涉及复变函数和留数的基本概念,包括复数、复变函数、级数、积分等。 这些题目旨在帮助学生掌握复变函数和留数的基本知识点,为后续的学习打下基础。
留数的定义与性质
留数的定义
留数是复变函数在奇点附近的行为的一种度量,它是通过计算函数沿着正反两个方向的无穷小包围区 域的积分来定义的。
留数的性质
留数具有一些重要的性质,如线性性质、可加性、奇偶性质等,这些性质在计算留数时非常有用。
留数定理及其应用
留数定理
留数定理是复变函数积分理论中的重要 定理,它表明一个复函数沿着一个封闭 曲线的积分可以用该函数在曲线内部的 奇点上的留数来计算。
复数在物理中的应用
在交流电和电信中的应用
在交流电和电信中,常常需要用到复数来表示正弦波和余弦波,以便于进行计 算和分析。
在量子力学中的应用
在量子力学中,波函数通常是复数,通过复数来表示粒子的状态和行为。
02
复变函数的积分与留数
复变函数的积分
பைடு நூலகம்
01
复数平面上的路径
复变函数在复平面上的积分依赖于所选择的路径,不同的路径可能导致
04
留数在解决实际问题中的应用
在电路分析中的应用
总结词
电路分析中,留数可以用于计算复平面上的 奇异点对应的电流和电压。
详细描述
在电路分析中,留数是一个重要的概念,它 可以用于计算复平面上的奇异点对应的电流 和电压。通过将电路模型转化为复平面上的 函数,并利用留数的性质,可以方便地求解 电路中的电流和电压,特别是在处理具有极
留数的概念及留数的求法课件
问题转化为易于处理的形式。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。
复变函数留数.ppt
i{Res[
f
(z),0]
Res[
f
( z ),1]}
2π i(1 0) 2π i.
例4 计算
I
5z 2 dz
z 2 zz 12
解:
f z 5z 2 zz 12
在圆周 z 2 的内部只有一级极点 z 0
及二级极点 z 1
而
Re s f z 5z 2
z0
z 12
z0 2
p]
lim
z p
(
z
p)
2iz
2
1 z4 (1 pz)(z
p)
1 p4 2ip 2 (1 p2 ) ,
因此
I
2π
i
1 p2 2ip 2
1 p4
2ip
2
(1
p2
)
2π 1
p2 p2
2
例2:计算积分: I
sin2
d (a b 0)
0 a b cos
解:命z ei ,则
(z2 1)2
复围线 C 所范围的区域 D 内,除
a1,a2, ,an
外解析,在闭域 D D C 上除 a1,a2, ,an 外连续,则
n
f z dz 2i Res f z
c
k 1 zak
n
Ñ 柯西留数定理: f (z) d z 2 π i Res f (z).
C
k 1 zak
a1
D
Cn an
在 a 的去心邻域 0 z a R 内解析,则称积
分
1
2i
f
zdz :z a
,
0
R
为 f z 在点 a 的留数(Residue)记为:
【PPT】【复变函数与积分变换】留数及其应用
(法P则11)5 法则Ⅲ
理由
f (z)
am (z z0 )m
a1 z z0
a0 a1(z z0 ) ,
(z z0 )m f (z) am a1(z z0 )m1 a0(z z0 )m ,
dm1 d z m 1
[(
z
z0 )m
f
(z)]
(m 1)!a1
(z
z0 ) (z),
§5.2 留数
一、留数的概念 二、留数的计算方法 三、留数定理 四、函数在无穷远点的留数
2020/8/4
复变函数
1
一、留数的概念
定义 设 z0 为函数 f (z)的孤立奇点,将 f (z) 在 z0 的去心邻域
P112 定义
内展开成洛朗级数:
5.4
f (z) an(z z0 )n
n
a1 z z0
z z0
2020/8/4
复变函数
6
解 (1) z 0 是 f1(z) 的可去奇 点, Res[ f1(z), 0] 0 .
(2) z 0和 z 1均为 f2(z) 的一阶极点,
Res[
f2(z),
0
]
lim[
z0
z
f1(z)
]
lim
z0
1 z1
1,
Res[
f
2
(
z
)
,
1
]
lim[
z1
(
a0 a1(z z0 ) ,
(两边积分)
称 a1 为 f (z) 在 z0 处的留数,记作:
Res[
f (z),
z0 ] a1
1 2πi
f (z)dz ,
C
其中,C 是 z0 的去心邻域内绕 z0 的一条简单闭曲线。
理由
f (z)
am (z z0 )m
a1 z z0
a0 a1(z z0 ) ,
(z z0 )m f (z) am a1(z z0 )m1 a0(z z0 )m ,
dm1 d z m 1
[(
z
z0 )m
f
(z)]
(m 1)!a1
(z
z0 ) (z),
§5.2 留数
一、留数的概念 二、留数的计算方法 三、留数定理 四、函数在无穷远点的留数
2020/8/4
复变函数
1
一、留数的概念
定义 设 z0 为函数 f (z)的孤立奇点,将 f (z) 在 z0 的去心邻域
P112 定义
内展开成洛朗级数:
5.4
f (z) an(z z0 )n
n
a1 z z0
z z0
2020/8/4
复变函数
6
解 (1) z 0 是 f1(z) 的可去奇 点, Res[ f1(z), 0] 0 .
(2) z 0和 z 1均为 f2(z) 的一阶极点,
Res[
f2(z),
0
]
lim[
z0
z
f1(z)
]
lim
z0
1 z1
1,
Res[
f
2
(
z
)
,
1
]
lim[
z1
(
a0 a1(z z0 ) ,
(两边积分)
称 a1 为 f (z) 在 z0 处的留数,记作:
Res[
f (z),
z0 ] a1
1 2πi
f (z)dz ,
C
其中,C 是 z0 的去心邻域内绕 z0 的一条简单闭曲线。
复变函数留数PPT课件
1
1 z2
1 1 2! z4
Res[ f (z),0] 0
I0
工程数学---------复变函数
目录 上页 下页 返回 结束
4. 无穷远点的留数 定义:设 f (z)在H : R z 内解析,C为H内绕原点的 任何一条简单正向闭曲线,则积分
2i
k 1
Res[
f
(z), zk ]
工程数学---------复变函数
目录 上页 下页 返回 结束
以 (z z0 )m 乘上式的两端,得 (z z0 )m f (z) cm cm1(z z0 ) c1(z z0 )m1
c0 (z z0 )m c1(z z0 )m1
两边求 m 1阶导数,并乘以 1 , 得 (m 1)!
{ z
1 }
z2
(1)m1
(m 1)! (z z2)m
1 Res[ f (z), z1] (z2 z1)m
工程数学---------复变函数
目录 上页 下页 返回 结束
z2为f (z)的一级极点,
Res[
f
( z ),
z2 ]
lim ( z
zz2
z2 )
f
(z)
1
lim
zz2
(z
z1 ) m
(z z2 z3 )3
z2 z3
1 z2 z4 ) 3! 5!
(1 z z2 )3
2! 3!
2! 3!
1(z)
z
工程数学---------复变函数
目录 上页 下页 返回 结束
1 z2 z4 )
其中(z)
(1
3! z
5! z2
)3
,
且(0) 1,(z)在z 0
复变函数第五章留数教学课件
1 z (z
z5 1)2(z 1)3
s in z z
1 z
g( z ),
所以 z 0 是单极点; z 1 是二级极点;
z 1 是三级极点.
26
例3
证明 z
0
是
f
(z)
1 z 3 (e z3
的六级极点. 1)
证
1 f (z)
z 3 (e z3
1)
z31
z3
(z3 )2 2!
1,
n
f (z)dz 2π i Res[ f (z), zk ]
C
k 1
留数定理将沿封闭曲线C积分转化为求被积函数 在C内各孤立奇点处的留数.
11
2)留数的计算方法
(1) 如果 z0 为 f (z) 的可去奇点, 则
Res[ f (z), z0] 0.
(2) 如果 z0 为 f (z)的本性奇点, 则需将 f (z) 展开
解 (1)在 0 z 1 内,
sin z
1
1
z
1
1
1 3!(z
1)3
,
所以 Ressin(1z 1) ,1 C1 1.
28
(2) z2 sin1 z
解 因为sinz z z3 z5 , 3! 5!
所以在0 z 内,
z2
sin1 z
z 2
1 z
1 3! z 3
1 5! z 5
z6 z9 z12 2! 3!
因为 z 0是 1 z3(ez3 1)的六级零点, f (z)
所以
z
0是
f
(z)
1 z 3 (e z3
的六级极点. 1)
27
例4 求下列各函数在有限奇点处的留数.
复变函数3留数在定积分计算上的应用.ppt
R
|z|1
z2 1, 2z
z2 1
2iz
dz iz
|z|1
f
(z)d
z
其中f (z)是z的有理函数, 且在单位圆周|z|=1上分母不为零, 根据留数定理有
n
f (z) d z 2π i Res[ f (z), zk ]
|z|1
k 1
其中zk (k=1,2,...,n)为单位圆 |z|=1内的 f (z)的孤立奇点.
q e d 2 aR(2q / )
0
0
0
M
aR 2q
e
2
M
aR
aR
eaR 1
M
aR
(1
eaR )
R 0,
0
因此得
R(x) eaixd x 2 π i
Res[R(z) eaiz , zk ] .
也可写为 R(x)cos ax d x i R(x)sin ax d x
2 π i Res[R(z)eaiz , zk ].
2n
zi
(n
1)(n 2) n! 22n1
2n (2n 1)!!
2 (2n)!!
3. 形如 R(x) eaixd x (a 0) 的积分 当R(x)是x的有理函数而分母的次数至少比分子的次
数高一次, 且R(x)在实数轴上没有奇点时, 积分是存在的.
象2中处理的一样, 由于mn1, 故对充分大的|z|有
例 4
计算
x2
x4
x2
dx 1
z 4 z 2 1 (z 2 1)2 z 2 (z 2 z 1)(z 2 z 1) 0
f (z) z 2 的四个一阶极点为: z4 z2 1
1 z1,2 2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e1 2
.
因此
C
z ez z2 1d
z
2π
i(
e 2
e1 2)
2π
i ch1
演示课件
我们也可以用规则III来求留数:
| Res[ f (z),1] z ez e ; 2z z1 2
| Res[ f (z),1] z ez
e1 .
2z z1 2
这比用规则1要简单些.
演示课件
z
例 2
计算积分
a)
L
令两端za, 右端的极限是(m-1)!c-1, 两端除以 (m-1)!就是Res[f(z),a], 因此即得(5.2), 当m=1时 就是(5.1)
演示课件
规则 III
设
f
(z)
P(z) Q(z)
,
P(z)及
Q(z)在
a
都解析,
如果 P(a)0, Q(a)=0, Q'(a)0, 则 a 为 f(z)的一级极点, 而
f (z)dz ...cm (z a)m dz ... c1 (z a)1dz ...
2 ic1
其它项的积分均为零,只是剩下c1
这是由于
f (z) 2 i n 1
(z a)n dz= 0
n 1
对于这样的积分留下来的只有数c1,我们将其称为留数(残数)。
演示课件
定义5.1 设 f z以 a 为孤立奇点,即
Res[ f (z), a] P(a) Q(a)
因为
( 5.3)
(z
a)
f
(z)
P(z) Q(z) Q(a)
za 令 za 即得(5.3)
演示课件
ze z
例1
计算积分
C
z
2
1
d
z
,
C
为正向圆周|z|=2.
[解]
由于
f (z)
z ez z2 1 有两个一级极点+1,1,
而这两个极点都在圆周|z|=2 内, 所以
P(z) Q(z)
z 4z3
1 4z2
,故
C
z
z 4
1
d
z
2π
i(
1 4
1 4
1 4
1 4
)
0
演示课件
ez
例3
计算积分
C
z(z
1)2
d
z
,
C
为正向圆周|z|=2.
[解] z=0 为被积函数的一级极点, z=1 为二级
极点, 而
Res[
f
(z),0]
lim
z 0
z
ez z(z 1)2
lim
z0
ez (z 1)2
C
z4
d 1
z
,
C
为正向圆周|z|=2.
z [解] 被积函数 f (z) z4 1 有四个一级极点
1,i 都在圆周|z|=2 内, 所以
. C
z
4
z
1
d
z
2π
i{Res[
f
(z),1]
Res[
f
( z ),1]
Res[ f (z),i] Res[ f (z),i]}
演示课件
由规则 III,
第五章 留数
§1 留数的概念与计算 §2 用留数定理计算实积分 §3 辐角原理与儒歇定理
演示课件
§1留数的概念与计算
1、留数的定义与留数定理
设函数f (z)在0 z a R上解析,则
f (z) ...cm (z a)m ... c1(z a)1 ...c0 c1(z a) (z a)n ...
演示课件
2、留数的求法
求函数在奇点a处的留数即求它在以z0为中 心的圆环域内洛朗级数中c-1(z-a)-1项的系数 即可. 如果a是f(z)的可去奇点, 则Res[f(z),a]=0, 如 果a是本性奇点, 则没有太好的办法, 只好将 其按洛朗级数展开。 如果a是极点, 则有一些对求c-1有用的规则.
C1
a3 C3
a2 C2
C
演示课件
证:作圆周 k : z ak k k 1,2, n 使全含于 D 内且两两不相交,则由柯西积分
定理
n
f z
c
i1 k
f zdz
n
2 i Re s f z k 1 z ak
注:留数定理:求积分转化为求留数;将积分 问题转化为代数问题,即求洛朗展式的负一次 幂的系数问题
1.
演示课件
Res[
f
( z ),1]
(2
1
1)!
lim
z 1
d dz
(z
1)2
ez z(z 1)2
所以
事实上, 由于
f(z)=c-m(z-a)-m+...+c-2(z-a)-2+c-1(z-a)-1 +c0+c1(z-a)+...,
(z-a)mf(z)=c-m+c-m+1(z-a)+... +c-1(z-a)m-1+c0(z-a)m+...,
dm1 d zm1
{(z
a)m
f
(z)}
(m
1)!c1
a(z
演示课件
留数的计算规则 规则1 如果a为f(z)的一级极点, 则
Res f (z) lim(z a) f (z) (5.1)
za
zz0
规则2 如果a为f(z)的m级极点, 则
Res[
f
(z), a]
1 lim
(m 1)! za
d m 1 d zm1
{( z
a)m
f
( z )}
(5.2)
演示课件
其中:cn
1
2 i
(z
f (z) a)n1
dz
n N, : 绕着a的围线(在0 z a R中),
取n -1,
c1
1
2 i
f
(z)dz.
即:f (z)的洛朗展开式中(z a)1的系数c1为积分:21 i f (z)dz.
或者说:
f (z)dz=2 ic1
演示课件
另一方面,取上述的,对级数 f (z) ...cm (z a)m ... c1(z a)1 ...c0 c1(z a) (z a)n ... 两端积分,得
在 a 的去心邻域 0 z a R 内解析,则称积
分
1
2i
f
zdz :z a
,
0
R
为 f z 在点 a 的留数(Residue)记为:
Res f (z) Res[f (z);a] 1 f z dz
za
2 i
Re s za
f z c1
演示课件
定理6.1 (柯西留数定理) f z 在围线或
C
ze z z2 1d
z
2π
i{Res[
f
(z),1]
Res[
f
(z),1]}.
演示课件
由规则1, 得
Res[
f
( z ),1]
lim (z
z 1
1)
z ez z2 1
lim
z 1
z ez z 1
e 2
Res[
f
( z ),1]
lim (z
z 1
1)
z ez z2 1
lim
z 1
z ez z 1
复围线 C 所范围的区域 D 内,除
a1,a2, ,an
外解析,在闭域 D D C 上除 a1,a2, ,an 外连续,则
n
f z dz 2i Res f z
c
k 1 zak
演示课件
n
Ñ 柯西留数定理: f (z) d z 2 π i Res f (z).
C
k 1 zak
a1
D
Cn an