2020年重庆市长寿区春招数学试卷 (解析版)
重庆市长寿区2019-2020学年中考中招适应性测试卷数学试题(5)含解析
重庆市长寿区2019-2020学年中考中招适应性测试卷数学试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在-3,12,0,-2这四个数中,最小的数是( )A.3B.12C.0 D.-22.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则().A.组成的三角形中周长最小为9 B.组成的三角形中周长最小为10C.组成的三角形中周长最大为19 D.组成的三角形中周长最大为164.2(3)-的化简结果为()A.3 B.3-C.3±D.95.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为()A.6×105B.6×106C.6×107D.6×1086.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2B.k>2 C.0<k<2 D.0≤k<27.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D .8.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形.A .3个B .4个C .5个D .6个9.下列运算正确的是( )A .2a 2+3a 2=5a 4B .(﹣12)﹣2=4C .(a+b )(﹣a ﹣b )=a 2﹣b 2D .8ab÷4ab=2ab10.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A .B .C .D .11.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×10512.已知抛物线y=ax 2+bx+c 与反比例函数y=b x的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:22 x y -=_______________.14.如图,正比例函数y=kx (k >0)与反比例函数y=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连结BC ,则△ABC 的面积等于_____.15.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不相等的实根,则实数k 的取值范围是_____. 16.如图,在△ABC 中,AB =AC ,AH ⊥BC ,垂足为点H ,如果AH =BC ,那么sin ∠BAC 的值是____.17.如果抛物线y=(m ﹣1)x 2的开口向上,那么m 的取值范围是__.18.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;20.(6分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,DG ⊥AC 于点G ,交AB 的延长线于点F .(1)求证:直线FG 是⊙O 的切线;(2)若AC=10,cosA=,求CG的长.21.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)22.(8分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.23.(8分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.25.(10分)解不等式组:12231 xx x-⎧⎨+≥-⎩<.26.(12分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.27.(12分)如图,△ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EF∥DC 交BC的延长线于F;(1)求证:DE=CF;(2)若∠B=60°,求EF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】12,0,﹣1这四个数中,﹣10<12, 故最小的数为:﹣1.故选D .【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.2.A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A 为轴对称图形.故选A .考点:轴对称图形3.D【解析】【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:其中的任意三根的组合有3、4、1;3、4、x ;3、1、x ;4、1、x 共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x <7,即x=4或5或1. ①当三边为3、4、1时,其周长为3+4+1=13;②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D .【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.4.A【解析】3==.故选A .考点:二次根式的化简5.C【解析】【分析】将一个数写成10n a ⨯的形式,其中110a ≤<,n 是正数,这种记数的方法叫做科学记数法,根据定义解答即可.【详解】解:6000万=6×1. 故选:C .【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n 为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n 为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n 的值的确定是解题的关键.6.D【解析】【详解】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,200k k -<⎧⎨≥⎩ ,解得0<k<2, 综上所述,0≤k<2。
重庆市长寿区2019-2020学年中考中招适应性测试卷数学试题(3)含解析
重庆市长寿区2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°2.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .15B .310C .13D .123.如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE= 1316,其中正确结论的个数是( )A .1B .2C .3D .44.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .5.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A.1 B.-1 C.1或-1 D.1 26.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.7.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.25B.5C.2 D.128.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m9.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是410.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a211.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将»BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A .2233π-B .2233π-C .233π-D .233π- 12.-5的相反数是( )A .5B .15C .5D .15- 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .14.若实数a 、b 在数轴上的位置如图所示,则代数式|b ﹣a|+2a 化简为_____.15.因式分解:323x y x -=_______________.16.若不等式组 的解集是x <4,则m 的取值范围是_____.17.如图,AC 、BD 为圆O 的两条垂直的直径,动点P 从圆心O 出发,沿线段线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是( )A .B .C .D . 18.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 是圆O 的直径,AC 是圆O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D ,3(1)求∠A的度数.(2)求图中阴影部分的面积.20.(6分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 43时,求»QD的长(结果保留);若△APO的外心在扇形COD的内部,求OC的取值范围.21.(6分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)22.(8分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.7323.(8分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB 求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.24.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小25.(10分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.26.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?27.(12分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.2.D【解析】【分析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=48=12.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点. 3.C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCE DF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43 PB PAEB DA==,∴BE=34,∴QE=134, ∵△QOE ∽△PAD , ∴1345QO OE QE PA AD PD === , ∴QO=135,OE=3920, ∴AO=5﹣QO=125, ∴tan ∠OAE=OE OA =1316,故④正确, 故选C .点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.4.B【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a <0,∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a->0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .5.B【解析】【分析】根据一元二次方程的解的定义把x=0代入方程()22110a x x a -++-=得到关于a 的一元二次方程,然后解此方程即可【详解】把x=0代入方程()22110a x x a -++-=得210a -=,解得a=±1. ∵原方程是一元二次方程,所以 10a -≠,所以1a ≠,故1a =-故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.6.C【解析】. 详解:49911,4<<Q 由被开方数越大算术平方根越大,<<即73,2<<故选C.的大小. 7.D【解析】【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD ,再结合图形根据正切的定义进行求解即可得.【详解】∵∠DAB=∠DEB ,∴tan ∠DEB= tan ∠DAB=12, 故选D .【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.8.C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将1.11111111134用科学记数法表示10⨯,故选C.3.410-考点:科学记数法9.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.故选D.考点:随机事件发生的可能性(概率)的计算方法10.D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】故选项A错误,故选项B错误,故选项C错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.11.B【解析】【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°3∴CD=BD ,∵CB=CD ,∴△BCD 是等边三角形,∴∠BCD=∠CBD=60°,∴,∴阴影部分的面积×2÷2−2602360π⨯23π. 故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 12.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为26=13. 故答案为13. 点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.14.2a ﹣b .【解析】【分析】直接利用数轴上a ,b 的位置进而得出b ﹣a <0,a >0,再化简得出答案.【详解】解:由数轴可得:b ﹣a <0,a >0,则|b﹣a|+2a=a﹣b+a=2a﹣b.故答案为2a﹣b.【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.15.x3(y+1)(y-1)【解析】【分析】先提取公因式x3,再利用平方差公式分解可得.【详解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1).【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.16.m≥1.【解析】∵不等式组的解集是x<1,∴m≥1,故答案为m≥1.17.C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO 上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.18.1 2【解析】【分析】根据概率的计算方法求解即可.【详解】∵第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,∴第4次正面朝上的概率为1 2 .故答案为:1 2 .【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) ∠A=30°;(2)2 233π-【解析】【分析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD为⊙O的切线∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S 阴影=. 【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.20.(1)详见解析;(2)143π;(3)4<OC<1. 【解析】【分析】(1) 连接OQ ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL 得Rt △APO ≌Rt △BQO ,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ ,从而可得P 、O 、Q 三点共线,在Rt △BOQ 中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB =⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ,∴P、O、Q三点共线,∵在Rt△BOQ中,cosB=433 QBOB==,∴∠B=30∘,∠BOQ= 60°,∴OQ=12OB=4,∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD的长=210414 1803ππ⋅⋅=,(3)解:设点M为Rt△APO的外心,则M为OA的中点,∵OA=1,∴OM=4,∴当△APO的外心在扇形COD的内部时,OM<OC,∴OC的取值范围为4<OC<1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.21.(1)38°;(2)20.4m.【解析】【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【详解】(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.22.AD 的长约为225m ,大楼AB 的高约为226m【解析】【分析】首先设大楼AB 的高度为xm ,在Rt △ABC 中利用正切函数的定义可求得 ,然后根据∠ADB 的正切表示出AD 的长,又由CD=96m ,x 961.11-= ,解此方程即可求得答案. 【详解】解:设大楼AB 的高度为xm ,在Rt △ABC 中,∵∠C=32°,∠BAC=92°,∴AB AC=tan 30==o ,在Rt △ABD 中,AB tan ADB tan48AD ∠=︒=, ∴AB x AD =tan48 1.11=︒, ∵CD=AC-AD ,CD=96m ,x 961.11-= , 解得:x≈226, ∴x 116AD 1051.11 1.11=≈≈ 答:大楼AB 的高度约为226m ,AD 的长约为225m .【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.23.(1)见解析;(2)【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD AB CD BD=,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了.(1)如下图,连接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切线.(2)如下图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD=2296-=45=35,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD AB CD BD=,∴635 CD=,∴CD=185=25.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.24.(1)∠P=50°;(2)∠P=45°.【分析】(1)连接OB ,根据切线长定理得到PA=PB ,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可; (2)连接AB 、AD ,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB ⊥PA ,根据等腰直角三角形的性质解答.【详解】解:(1)如图①,连接OB .∵PA 、PB 与⊙O 相切于A 、B 点,∴PA =PB ,∴∠PAO =∠PBO =90°∴∠PAB =∠PBA ,∵∠BAC =25°,∴∠PBA =∠PAB =90°一∠BAC =65°∴∠P =180°-∠PAB -∠PBA =50°;(2)如图②,连接AB 、AD ,∵∠ACB =90°,∴AB 是的直径,∠ADB =90·∵PD =DB ,∴PA =AB .∵PA 与⊙O 相切于A 点∴AB ⊥PA ,∴∠P =∠ABP =45°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.25.(1)1502AOD α∠=︒-;(2)7AD =(3331331+- 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒3∵B 为AC u u u r 的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD +=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x += ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1 ∴AD=31-在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+ 解得:331x 4-= ∴AE=3312AF 2-=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.26.(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.27.(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形。
重庆市长寿区2019-2020学年中考数学模拟试题(4)含解析
重庆市长寿区2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .2.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于B 、C 两点,若函数y=kx(x >0)的图象△ABC 的边有公共点,则k 的取值范围是( )A .5≤k≤20B .8≤k≤20C .5≤k≤8D .9≤k≤203.计算36÷(﹣6)的结果等于( ) A .﹣6B .﹣9C .﹣30D .64.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( ) A .12B .14C .15D .255.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10 次数 1 4 32A .8、8B .8、8.5C .8、9D .8、106.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m £7.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1 B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠09.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A .B .C .D .10.下列运算正确的是( )A .a 3+a 3=a 6B .a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 711.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα12.某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为( )A .48°B .40°C .30°D .24°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,sin ∠C 35=,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,且BC=5,则△BDE 周长的最小值为______.14.若分式15x -有意义,则实数x 的取值范围是_______. 15.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD 面积为_____.16.如图,已知直线y=x+4与双曲线y=kx(x <0)相交于A 、B 两点,与x 轴、y 轴分别相交于D 、C 两点,若AB=22,则k=_____.17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .18.如图,在△ABC 中,∠ACB=90°,∠A=45°,CD ⊥AB 于点D ,点P 在线段DB 上,若AP 2-PB 2=48,则△PCD 的面积为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D ,与的另一个交点为点,连接、,求证:.20.(6分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.21.(6分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是 度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有 人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率22.(8分)(1)如图1,在矩形ABCD 中,AB =2,BC =5,∠MPN =90°,且∠MPN 的直角顶点在BC 边上,BP =1.①特殊情形:若MP 过点A ,NP 过点D ,则PAPD= . ②类比探究:如图2,将∠MPN 绕点P 按逆时针方向旋转,使PM 交AB 边于点E ,PN 交AD 边于点F ,当点E 与点B 重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt △ABC 中,∠ABC =90°,AB =BC =2,AD ⊥AB ,⊙A 的半径为1,点E 是⊙A 上一动点,CF ⊥CE 交AD 于点F .请直接写出当△AEB 为直角三角形时ECFC的值. 23.(8分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)24.(10分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.25.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD )靠墙摆放,高AD =80cm ,宽AB =48cm ,小强身高166cm ,下半身FG =100cm ,洗漱时下半身与地面成80°(∠FGK =80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,2≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?26.(12分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?27.(12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A 、不是轴对称图形,也不是中心对称图形,故此选项错误; B 、是轴对称图形,也是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项正确; D 、不是轴对称图形,也不是中心对称图形,故此选项错误. 故选:C .点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.A 【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤. 故选A.3.A 【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1. 故选A .点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.4.C 【解析】 【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项. 【详解】∴三角形的两边长分别为5和7, ∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12, 即14<三角形的周长<24, 故选C. 【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可. 5.B 【解析】 【分析】根据众数和中位数的概念求解. 【详解】由表可知,8环出现次数最多,有4次,所以众数为8环; 这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环), 故选:B . 【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 6.C 【解析】 【详解】解:∵关于x 的一元二次方程()2220x x m +--=有实数根,∴△=24b ac -=2241[(2)]m -⨯⨯--, 解得m≥1,故选C.【点睛】本题考查一元二次方程根的判别式.7.A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.8.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.9.C【解析】试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.10.B【解析】【分析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键. 11.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.12.D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2210+. 【解析】 【分析】作BK ∥CF ,使得BK=DE=2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D',则''2D E DE ==,此时△BD'E'的周长最小,作BH CF ⊥交CF 于点F ,可知四边形''BKD E 为平行四边形及四边形BKMH 为矩形,在Rt BCH V 中,解直角三角形可知BH 长,易得GK 长,在Rt △BGK 中,可得BG 长,表示出△BD'E'的周长等量代换可得其值. 【详解】解:如图,作BK ∥CF ,使得BK=DE=2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D',则''2D E DE ==,此时△BD'E'的周长最小,作BH CF ⊥交CF 于点F.由作图知''''//D ,D BK E BK E =,∴四边形''BKD E 为平行四边形,''BE KD ∴=由对称可知'',2,KG CF GK KM KD GD ⊥==BH CF ⊥Q //BH KG ∴//CF BK Q ,即//BK HM∴四边形BKMH 为矩形,90KM BH BKM ︒∴=∠=在Rt BCH V 中, 3sin 55BH BH C BC ∠=== 3BH ∴=3KM∴=26GK KM∴==在Rt△BGK中,BK=2,GK=6,∴BG2226=+=210,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+210.故答案为:2+210.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.14.【解析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.解:∵分式15x-有意义,∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.15.1【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则2,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=2,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线16.-3【解析】设A(a,a+4),B(c,c+4),则4 y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=22∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(22,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.17.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等18.6【解析】【分析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=12AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=12AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=12CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB ,∴AD=BD=CD=12 AB,∵AP2-PB2=48 ,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48, ∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=12CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)详见解析.【解析】【分析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【详解】解:(1)如图,及为所求.(2)连接.∵是的切线,∴,∴,即,∵是直径, ∴, ∴, ∵, ∴, ∴, 又∴∽ ∴ ∴.【点睛】 本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.20.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.21.(1)72;(2)700;(3)23. 【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.试题解析:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×40200=72°; (2)估计该校2000名学生中喜爱“娱乐”的有:2000×70200=700(人), (3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P (2名学生来自不同班)=82123=. 考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.22. (1) ①特殊情形:12;②类比探究: 12PE PF = 是定值,理由见解析;(2) EC 4FC =或1 【解析】【分析】(1)证明Rt ABP Rt CDP V V ∽,即可求解;(2)点E 与点B 重合时,四边形EBFA 为矩形,即可求解;(3)分AEB 90∠︒=时、EAB 90∠︒=时,两种情况分别求解即可.【详解】解:(1)APB DPC 90DPC PDC 90Q =,=∠∠∠∠+︒+︒,APB PDC ∠∠∴=,Rt ABP Rt CDP ∴V V ∽, 21512PA AB PD CP ∴===-, 故答案为12; (2)点E 与点B 重合时,四边形EBFA 为矩形, 则PE 1PF 2=为定值; (3)①当AEB 90∠︒=时,如图3,过点E 、F 分别作直线BC 的垂线交于点G ,H ,由(1)知:ECB CFH α==∠∠,AB 2AE 1ABE 30∠︒=,=,则=, EB ABcos303︒则==,3cos 602GB EB ︒==,同理32EG =, 322cos cos 2GC EC FH AB αα+==== . 则FH 2cos cos FC αα==, 则314EC FC =+ ; ②当EAB 90∠︒=时,如图4,GB EA 1EG FH AB 2==,===,则BE 5GC 3=,=,22EG G 13EC C =+=,EG 2tan tan GC 3EGC α∠===,则cos 13α= FH 13cos FC α==,则4EC FC= ,故EC 4FC =或14+ . 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.23.-17.1【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【点睛】此题要注意正确掌握运算顺序以及符号的处理.24.77B ∠=︒,38.5C ∠=︒.【解析】【分析】根据等腰三角形的性质即可求出∠B ,再根据三角形外角定理即可求出∠C.【详解】在ABC ∆中,AB AD DC ==,∵AB AD =,在三角形ABD 中,()118026772B ADB ∠=∠=︒-︒⨯=︒, 又∵AD DC =,在三角形ADC 中, ∴117738.522C ADB ∠=∠=︒⨯=︒. 【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.25. (1) 小强的头部点E 与地面DK 的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .求出MF 、FN 的值即可解决问题; (2)求出OH 、PH 的值即可判断;试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=332≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100c os80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.26.(1)4%;(2)72°;(3)380人【解析】【分析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.【详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).27.(1)12yx=,y=2x﹣1;(2)133,42M⎛⎫⎪⎝⎭.【解析】【分析】(1)利用待定系数法即可解答;(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数a=yx得:a=3×4=12,∴12yx =.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴点B的坐标为(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y轴于点D.∵点M在一次函数y=2x﹣1上,∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=13 4∴2x﹣1=32,∴点M的坐标为133,42⎛⎫ ⎪⎝⎭.【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.。
2021年重庆市长寿区春招数学试卷(附答案详解)
2021年重庆市长寿区春招数学试卷一、选择题(本大题共12小题,共48.0分)1.−2021的相反数是()A. 2021B. −2021C. 12021D. −120212.如图,将直尺与三角尺叠放在一起,如果∠1=28°,那么∠2的度数为()A. 62°B. 56°C. 28°D. 72°3.下列各式中,计算正确的是()A. a3+a2=a5B. a3−a2=aC. (a2)3=aD. a2⋅a3=a54.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A. 64°B. 58°C. 32°D. 26°5.若m2+2m=1,则4m2+8m−3的值是()A. 4B. 3C. 2D. 16.下列尺规作图,能确定AD是△ABC的中线的是()A. B.C. D.7.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A. (a,b)B. (−a,b)C. (−a,−b)D. (a,−b)8.下列各正方形中的四个数具有相同的规律,根据规律,x的值为()A. 135B. 153C. 170D. 1899.如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是()A. ∠ABC=90°B. ∠BCD=90°C. AB=CDD. AB//CD10.若实数a使得关于x的分式方程2x+1+x−ax+1=−2的解为负数,且使得关于y的不等式组{2y−16≥−1,y−1<a.,至少有3个整数解,则符合条件的所有整数a的和为()A. 6B. 5C. 4D. 111.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A. 12B. 8C. 10D. 1312.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,的图其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx 象上,则k的值为()A. 36B. 48C. 49D. 64二、填空题(本大题共6小题,共24.0分)13.因式分解:x2y−9y=______.14.2020年6月23日,中国第55颗北斗导航卫星成功发射,标志着拥有全部知识产权的北斗导航系统全面建成.据统计:2019年,我国北斗卫星导航与位置服务产业总体产值达3450亿元,较2018年增长14.4%,其中,3450亿元用科学记数法表示为______.15.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,,则n=.若从中随机摸出一个球,摸到白球的概率是1316.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE=______.17.在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为______.3√22√3163√218.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是______ .三、解答题(本大题共8小题,共78.0分)19.(1)计算:2cos45°+(π−2020)0+|2−√2|.(2)化简:(a2a−1−a−1)÷2aa2−1.20.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是______.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.21.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为______人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.22.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.23.如实景图,由华菱涟钢集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效的“娄底速度”.该桥的引桥两端各由2个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面5m,从E点处测得D点俯角为30°,斜面ED长为4m,水平面DC长为2m,斜面BC的坡度为1:4,求处于同一水平面上引桥底部AB的长.(结果精确到0.1m,√2≈1.41,√3≈1.73).24.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.26.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.答案和解析1.【答案】A【解析】解:−2021的相反数是2021.故选:A.相反数的概念:只有符号不同的两个数叫做互为相反数,据此判断即可.本题考查了相反数,熟记相反数的定义是解答本题的关键.2.【答案】A【解析】【分析】本题考查了平行线的性质,两锐角互余的性质,掌握平行线的性质是本题的关键.由两锐角互余的性质可求∠DAC度数,由平行线的性质可求解.【解答】解:如图,标注字母,由题意可得:∠BAC=90°,∠DAC=∠BAC−∠1=62°,∵EF//AD,∴∠2=∠DAC=62°,故选:A.3.【答案】D【解析】解:A、a3与a2不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3与−a2不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(a2)3=a2×3=a6,原计算错误,故此选项不符合题意;D、a2⋅a3=a2+3=a5,原计算正确,故此选项符合题意;故选:D.根据合并同类项法则,幂的乘方、同底数幂的乘法的法则进行计算即可.本题考查幂的乘方、同底数幂的乘法的运算法则,合并同类项的法则,掌握运算法则是正确计算的前提.4.【答案】D【解析】解:连接AO,如图:由OC⊥AB,得AC⏜=BC⏜,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°−∠3=90°−64°=26°,故选:D.根据垂径定理,可得AC⏜=BC⏜,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.本题考查了圆周角定理,利用垂径定理得出AC⏜=BC⏜,∠OEB=90°是解题关键,又利用了圆周角定理.5.【答案】D【解析】解:∵m2+2m=1,∴4m2+8m−3=4(m2+2m)−3=4×1−3=1.故选:D.把变形为4m2+8m−3=4(m2+2m)−3,再把m2+2m=1代入计算即可求出值.此题考查了求代数式的值,以及“整体代入”思想.解题的关键是把代数式4m2+8m−3变形为4(m2+2m)−3.6.【答案】A【解析】解:根据作图方法可得A选项中D为BC中点,则AD为△ABC的中线,故选:A.要确定BC中线,首先确定BC中点,再连接AD即可.此题主要考查了基本作图,关键是掌握线段垂直平分线的作法,掌握中线定义.7.【答案】B【解析】解:∵a+b>0,ab>0,∴a>0,b>0.A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;B、(−a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;C、(−a,−b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;D、(a,−b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;故选:B.因为ab>0,所以a、b同号,又a+b>0,所以a>0,b>0,观察图形判断出小手盖住的点在第二象限,然后解答即可.本题考查了点的象限的判断,熟练判断a,b的正负是解题的关键.8.【答案】C【解析】解:分析题目可得4=2×2,6=3×2,8=4×2;2=1+1,3=2+1,4=3+1;∴18=2b,b=a+1.∴a=8,b=9.又∵9=2×4+1,20=3×6+2,35=4×8+3,∴x=18b+a=18×9+8=170.故选:C.仔细观察表格可以发现:右上角的数等于左下角的数乘以2,左上角的数是从1开始的自然数,右下角的数等于右上角与左下角的两个数的积与左上角数的和.此题考查的是数字的变化规律,猜想各个数之间的联系是解题的关键.9.【答案】C【解析】【分析】此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.【解答】解:A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;故选:C.10.【答案】B【解析】解:解分式方程得x=a−43,∵方程的解为负数,∴a−43<0且a−43≠−1,解得a<4且a≠1;解不等式组得−52≤y<a+1,∵不等式组至少有3个整数解,∴a+1>0,解得a>−1,综上,−1<a<4,且a≠1,所以整数a的值为0、2、3,则符合条件的所有整数a的和为0+2+3=5,故选:B.解分式方程得出x=a−43,由分式方程的解为负数得出关于a的不等式(注意x≠−1的隐含条件),据此可得a的一个取值范围;解不等式组得出−52≤y<a+1,根据不等式组至少有3个整数解得出关于a的不等式,解之得出a的另一个取值范围;综合以上情况得出a的最终取值范围,继而可得a的整数值,从而得出答案.本题主要考查分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.11.【答案】C【解析】解:根据图2中的抛物线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP=√132−122=5.所以AB=2AP=10.故选:C.根据图2中的抛物线可得,当点P在△ABC的顶点A处,运动到点B处时,图1中的AC= BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,可得CP=12,根据勾股定理可得AP=5,再根据等腰三角形三线合一可得AB的长.本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.12.【答案】A【解析】解:过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,∵A(0,4),B(3,0),∴OA=4,OB=3,∴AB=√32+42=5,∵△OAB的两个锐角对应的外角角平分线相交于点P,∴PE=PC,PD=PC,∴PE=PC=PD,设P(t,t),则PC=t,∵S△PAE+S△PAB+S△PBD+S△OAB=S矩形PEOD,∴12×t×(t−4)+12×5×t+12×t×(t−3)+12×3×4=t×t,解得t=6,∴P(6,6),把P(6,6)代入y=kx得k=6×6=36.故选:A.过P分别作AB、x轴、y轴的垂线,垂足分别为C、D、E,如图,利用勾股定理计算出AB=5,根据角平分线的性质得PE=PC=PD,设P(t,t),利用面积的和差得到1 2×t×(t−4)+12×5×t+12×t×(t−3)+12×3×4=t×t,求出t得到P点坐标,然后把P点坐标代入y=kx中求出k的值.本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了角平分线的性质和三角形面积公式.13.【答案】y(x+3)(x−3)【解析】【分析】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:x2y−9y,=y(x2−9),=y(x+3)(x−3).故答案为y(x+3)(x−3).14.【答案】3.45×1011【解析】解:根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,则3450亿=345000000000=3.45×1011.故答案是:3.45×1011.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.本题主要考查利用科学记数法表示较大的数的方法,掌握科学记数法的表示方法是解答本题的关键,这里还需要注意n的取值.15.【答案】8【解析】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据概率公式知:P(白球)=4n+4=13,解得:n=8,故答案为:8.根据白球的概率公式4n+4=13列出方程求解即可.此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.【答案】725【解析】【分析】本考查了翻折变换,矩形的性质,勾股定理的应用,相似三角形的判定和性质,锐角三角形函数的知识等,利用勾股定理和相似三角形的性质求线段的长度是本题的关键.根据折叠的性质结合勾股定理求得GE=5,BC=AD=8,证得Rt△EGF∽Rt△EAG,求得EA=253,再利用勾股定理得到DE的长,即可求解.【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=√GC2+CE2=√42+32=5,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG =GF =GC =4,∠AFG +∠EFG =180°,∴BC =AD =8,点A ,点F ,点E 三点共线,∵∠AGB +∠AGF +∠EGC +∠EGF =180°,∴∠AGE =90°,∴Rt △EGF∽Rt △EAG ,∴EG EA =EF EG ,即5EA =35, ∴EA =253,∴DE =√AE 2−AD 2=√(253)2−82=73,∴sin∠DAE =DE AE =73253=725, 故答案为:725. 17.【答案】6√2【解析】解:由题意可知,第一行三个数的乘积为:3√2×2×√3=6√6, 设第二行中间数为x ,则1×x ×6=6√6,解得x =√6,设第三行第一个数为y ,则y ×3×√2=6√6,解得y =2√3,∴2个空格的实数之积为xy =2√18=6√2.故答案为:6√2.先将表格中最上一行的3个数相乘得到6√6,然后中间一行的三个数相乘以及最后一行的三个数相等都是6√6,即可求解.本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.18.【答案】①②③⑤【解析】解:①∵四边形ABCD 是正方形,∴∠BAC =∠DAC =45°,∵PM ⊥AC ,∴∠AEP =∠AEM =90°,在△APE 和△AME 中,{∠BAC=∠DAC AE=AE∠AEP=∠AEM,∴△APE≌△AME(ASA),故①正确;②∵△APE≌△AME,∴PE=EM=12PM,同理,FP=FN=12NP,∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形.∴PF=OE,在△APE中,∠AEP=90°,∠PAE=45°,∴△APE为等腰直角三角形,∴AE=PE,∴PE+PF=OA,又∵PE=EM=12PM,FP=FN=12NP,OA=12AC,∴PM+PN=AC,故②正确;③∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确;④∵△APE≌△AME,∴AP=AM △BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故④错误;⑤∵△APE≌△AME,∴ME=PE,∴AE是MP是中垂线,∴MO=OP,又∵OE⊥MP,∴∠MOE=∠POE,同理可证∠POF=∠NOF,∵∠POE+∠POF=∠EOF=90°,∴∠MOE+∠POE+∠POF+∠NOF=180°,∴点M,点O,点N三点共线,故⑤正确,故答案为①②③⑤.①根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°,然后利用“角边角”证明△APE和△AME全等;②根据全等三角形对应边相等可得PE=EM=12PM,同理,FP=FN=12NP,证出四边形PEOF是矩形,得出PF=OE,证得△APE为等腰直角三角形,得出AE=PE,PE+ PF=OA,即可得到PM+PN=AC;③根据矩形的性质可得PF=OE,再利用勾股定理即可得到PE2+PF2=PO2;④判断出△POF不一定等腰直角三角形,△BNF是等腰直角三角形,从而确定出两三角形不一定相似;⑤由线段垂直平分线的性质可得MO=PO,由等腰三角形的性质可得∠MOE=∠POE,同理可证∠POF=∠NOF,即可证点M,点O,点N三点共线.本题考查了相似三角形的判定和性质,正方形的性质,矩形的判定,勾股定理的综合应用,等腰直角三角形的判定与性质等知识;熟记各性质并准确识图是解决问题的关键.19.【答案】解:(1)2cos45°+(π−2020)0+|2−√2|=2×√22+1+2−√2=√2+1+2−√2=3;(2)(a2a−1−a−1)÷2aa2−1=[a2a−1−(a+1)(a−1)a−1]⋅(a+1)(a−1)2a=a2−(a2−1)a−1⋅(a+1)(a−1)2a=a2−a2+1a−1⋅(a+1)(a−1)2a=1a−1⋅(a+1)(a−1)2a=a+12a.【解析】(1)根据特殊角的三角函数、零指数幂和绝对值可以解答本题;(2)根据分式的减法和除法可以解答本题.本题考查分式的混合运算、实数的运算、特殊角的三角函数、零指数幂和绝对值,解答本题的关键是明确它们各自的计算方法,求出所求式子的值.20.【答案】解:(1)①;(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,{OM=ON OC=OC MC=NC,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.【解析】【分析】此题主要考查了应用设计与作图,正确掌握全等三角形的判定方法是解题关键.(1)直接利用角平分线的作法得出基本依据;(2)直接利用全等三角形的判定与性质得出答案.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①;(2)见答案.21.【答案】解:(1)60;(2)60−15−18−9−6=12(人),补全条形统计图如图所示:(3)800×1560=200(人),答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;(4)用列表法表示所有可能出现的结果如下:共有12种等可能出现的结果,其中选中“园艺、编织”的有2种,∴P (园艺、编织)=212=16.【解析】【分析】本题考查条形统计图、扇形统计图的意义和制作方法、用样本估计总体的思想、列表法求随机事件发生的概率,理解数量关系和列举所有可能出现的结果情况是解决问题的关键.(1)从两个统计图中可得,选择“园艺”的有18人,占调查人数的30%,可求出调查人数;(2)求出选择“编织”的人数,即可补全条形统计图;(3)样本中,选择“厨艺”的占1560,因此估计总体800人的1560是选择“厨艺”的人数.(4)用列表法表示所有可能出现的结果,进而计算选中“园艺、编织”的概率.【解答】解:(1)18÷30%=60(人),故答案为60;(2)见答案;(3)见答案;(4)见答案.22.【答案】(1)证明:∵△ADE为等边三角形,∴∠AD=AE=DE,∠EAD=∠EDA=60°,∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠CDA=90°,∴∠EAB=∠EDC=150°,在△BAE和△CDE中{AB=DC∠EAB=∠EDC AE=DE,∴△BAE≌△CDE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,∵∠EAB=150°,∴∠ABE=12(180°−150°)=15°.【解析】(1)利用等边三角形的性质得到∠AD=AE=DE,∠EAD=∠EDA=60°,利用正方形的性质得到AB=AD=CD,∠BAD=∠CDA=90°,所以∠EAB=∠EDC=150°,然后根据“SAS”判定△BAE≌△CDE;(2)先证明AB=AE,然后根据等腰三角形的性质和三角形内角和计算∠ABE的度数.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判定与性质和等边三角形的性质.23.【答案】解:作DF⊥AE于F,DG⊥AB于G,CH⊥AB于H,如图所示:则DF=GA,DC=GH=2,AF=DG=CH,由题意得:∠EDF=30°,∴EF=12DE=12×4=2,DF=√3EF=2√3,∵AE=5,∴CH=AF=AE−EF=5−2=3,∵斜面BC的坡度为1:4=CHBH,∴BH=4CH=12,∴AB=AG+GH+BH=2√3+2+12=2√3+14≈17.5(m),答:处于同一水平面上引桥底部AB的长约为17.5m.【解析】作DF⊥AE于F,DG⊥AB于G,CH⊥AB于H,则DF=GA,DC=GH=2,AF=DG=CH,由含30°角的直角三角形的性质得出EF=12DE=2,DF=√3EF=2√3,求出CH=AF=3,由斜面BC的坡度求出BH=4CH=12,进而得出答案.本题考查的是解直角三角形的应用−仰角俯角问题以及坡度问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.【答案】解:(1)设一次性医用外科口罩的单价是x元,则N95口罩的单价是(x+10)元,依题意有1600 x =9600x+10,解得x=2,经检验,x=2是原方程的解,x+10=2+10=12.故一次性医用外科口罩的单价是2元,N95口罩的单价是12元;(2)设购进一次性医用外科口罩y只,依题意有2y+12(2000−y)≤10000,解得y≥1400.故至少购进一次性医用外科口罩1400只.【解析】(1)可设一次性医用外科口罩的单价是x元,则N95口罩的单价是(x+10)元,根据等量关系:两种口罩的只数相同,列出方程即可求解;(2)可设购进一次性医用外科口罩y只,根据购进的总费用不超过1万元,列出不等式即可求解.本题考查了分式方程的应用,一元一次不等式的应用,找准等量关系和不等关系,正确列出分式方程和不等式是解题的关键.25.【答案】解:(1)依题意得:{−b 2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3∵对称轴为x =−1,且抛物线经过A(1,0),∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{−3m +n =0n =3, 解之得:{m =1n =3, ∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2,∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t),又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2;②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4, ③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3+√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).【解析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2= 4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.26.【答案】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠BAC=∠C=∠D=90°,∵将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,∴BE=BF,∠CBE=∠ABF,∴∠EBF=∠ABC=90°,∴∠EBF+∠D=180°,∴四边形BEDF为“直等补”四边形;(2)①过C作CF⊥BF于点F,如图1,则∠CFE=90°,∵四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BF⊥AD,∴∠DEF=90°,∴四边形CDEF是矩形,∴EF=CD=1,∵∠ABE+∠A=∠CBE+∠ABE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC=5,∴△ABE≌△BCF(AAS),∴BE =CF ,设BE =CF =x ,则BF =x −1,∵CE 2+BF 2=BC 2,∴x 2+(x −1)2=52,解得,x =4,或x =−3(舍),∴BE =4;②如图2,延长CB 到F ,使得BF =BC ,延长CD 到G ,使得CD =DG ,连接FG ,分别与AB 、AD 交于点M 、N ,过G 作GH ⊥BC ,与BC 的延长线交于点H .则BC =BF =5,CD =DG =1,∵∠ABC =∠ADC =90°,∴CM =FM ,CN =GN ,∴△MNC 的周长=CM +MN +CN =FM +MN +GN =FG 的值最小,∵四边形ABCD 是“直等补”四边形,∴∠A +∠BCD =180°,∵∠BCD +∠HCG =180°,∴∠A =∠HCG ,∵∠AEB =∠CHG =90°,∴BE GH =AE CH =AB CG ∵AB =5,BE =4,∴AE =√AB 2−BE 2=3,∴4GH =3CH =52, ∴GH =85,CH =65,∴FH =FC +CH =565,∴FG =√FH 2+GH 2=8√2,∴△MNC 周长的最小值为8√2.【解析】(1)由旋转性质得BE=BF,再证明∠EBF=90°,∠EBF+∠D=180°便可;(2)①过点C作CF⊥BE于点F,证明△BCF≌△ABE得CF=BE,设BE=x,在Rt△BCF 中,则勾股定理列出x的方程解答便可;②延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,求出FG便是△MNC的最小周长.本题是四边形的一个综合题,主要考查新定义,勾股定理,全等三角形的性质与判定,正方形的性质,矩形的性质与判定,相似三角形的性质与判定,旋转的性质,轴对称的性质,第(2)①题关键在证明全等三角形,第(2)②题关键确定M、N的位置.。
2020年重庆市长寿区九年级春招数学试题
10.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()
A.OC∥BDB.AD⊥OCC.△CEF≌△BEDD.AF=FD
11.关于 的一元二次方程 的两个实数根的平方和为12,则 的值为( )
A. B. C. 或 D. 或
22.为了加快“智慧校园”建设,某市准备为试点学校采购一批 、 两种型号的一体机,经过市场调查发现,今年每套 型一体机的价格比每套 型一体机的价格多0.6万元,且用960万元恰好能购买500套 型一体机和200套 型一体机.
(1)求今年每套 型、 型一体机的价格各是多少万元
(2)该市明年计划采购 型、 型一体机1100套,考虑物价因素,预计明年每套 型一体机的价格比今年上涨25%,每套 型一体机的价格不变,若购买 型一体机的总费用不低于购买 型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
直接利用二次根式的性质化简得出答案.
【详解】
解:原式 .
故答案为:
【点睛】
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
14.
【解析】
【分析】
直接作出 ,再利用平行线的性质分析得出答案.
【详解】
作 ,
∵ ,
∴ ,
∴ , , ,
∴ , ,
∴ ,
故答案为: .
【点睛】
本题考查了平行线的判定与性质,正确得出 , 是解题关键.
(1)本次随机调查了多少名学生?
(2)补全条形统计图中“书画”、“戏曲”的空缺部分;
(3)若该校共有 名学生,请估计全校学生选择“戏曲”类的人数;
重庆市长寿区2019-2020学年中考数学模拟试题(2)含解析
重庆市长寿区2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位2.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax +c 的图象不经第四象限C .m (am+b )+b <a (m 是任意实数)D .3b+2c >03.如图,在射线OA ,OB 上分别截取OA 1=OB 1,连接A 1B 1,在B 1A 1,B 1B 上分别截取B 1A 2=B 1B 2,连接A 2B 2,…按此规律作下去,若∠A 1B 1O=α,则∠A 10B 10O=( )A .102αB .92αC .20αD .18α4.将抛物线y =x 2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( ) A .y =x 2+3x+6B .y =x 2+3xC .y =x 2﹣5x+10D .y =x 2﹣5x+45.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( ) A .3B .23 C 33D .2336.如图,已知AB ∥CD ,DE ⊥AC ,垂足为E ,∠A =120°,则∠D 的度数为( )A .30°B .60°C .50°D .40°7.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <.8.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19B .16C .13D .239.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( ) A .±3B .3C .5D .910.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A .100°B .80°C .50°D .20°11.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )A .B .C .D .12.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m 的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )A.2.6m2B.5.6m2C.8.25m2D.10.4m2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.14.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.15.肥皂泡的泡壁厚度大约是0.0007mm,0.0007mm用科学记数法表示为_______mm.16.图,A,B是反比例函数y=kx图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.17.分解因式:9x3﹣18x2+9x= .18.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2. ①求BCAE的值;②若点G为AE上一点,求OG+12EG 最小值. 20.(6分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?21.(6分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y 1(米)、y 2(米),两人离家后步行的时间为x (分),y 1与x 的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_____米/分,a=_____;并在图中画出y 2与x 的函数图象 (2)求小新路过小华家后,y 1与x 之间的函数关系式. (3)直接写出两人离小华家的距离相等时x 的值.22.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?23.(8分)如图,在ABC V 中,A 90∠=o ,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90o ,得到线段AE ,连结EC .()1依题意补全图形; ()2求ECD ∠的度数;()3若CAE 7.5∠=o ,AD 1=,将射线DA 绕点D 顺时针旋转60o 交EC 的延长线于点F ,请写出求AF长的思路.24.(10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.25.(10分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a= %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?26.(12分) (1)计算:)1201631(1)2384π-⎛⎫---+ ⎪⎝⎭(2)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解. 27.(12分)如图,圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点. 求证:PE ⊥PF .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D. 2.D 【解析】解:A .由二次函数的图象开口向上可得a >0,由抛物线与y 轴交于x 轴下方可得c <0,由x=﹣1,得出2ba=﹣1,故b >0,b=2a ,则b >a >c ,故此选项错误; B .∵a >0,c <0,∴一次函数y=ax+c 的图象经一、三、四象限,故此选项错误;C .当x=﹣1时,y 最小,即a ﹣b ﹣c 最小,故a ﹣b ﹣c <am 2+bm+c ,即m (am+b )+b >a ,故此选项错误;D .由图象可知x=1,a+b+c >0①,∵对称轴x=﹣1,当x=1,y >0,∴当x=﹣3时,y >0,即9a ﹣3b+c >0②①+②得10a ﹣2b+2c >0,∵b=2a ,∴得出3b+2c >0,故选项正确; 故选D .点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c ,然后根据图象判断其值.3.B 【解析】 【分析】根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论. 【详解】∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O =12α, 同理∠A 3B 3O =12×12α=212α,∠A 4B 4O =312α,∴∠A n B n O =n 112 α,∴∠A 10B 10O =9a2,故选B . 【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 4.A 【解析】 【分析】先将抛物线解析式化为顶点式,左加右减的原则即可. 【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A . 【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行; 5.C 【解析】 【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°33故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.6.A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.7.B【解析】【分析】分式的分母不为零,即x-2≠1.【详解】∵分式12x-有意义...,∴x-2≠1,∴2x≠.考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 8.C 【解析】分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C , 列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为31=93.故选:C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 9.B 【解析】 【分析】由已知可得:2,(11m n mn +==+-=-【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选:B 【点睛】考核知识点:二次根式运算.配方是关键. 10.B解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键. 11.B 【解析】 【分析】根据左视图的定义,从左侧会发现两个正方形摞在一起. 【详解】从左边看上下各一个小正方形,如图故选B . 12.D 【解析】 【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可. 【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近, ∴小石子落在不规则区域的概率为0.65, ∵正方形的边长为4m , ∴面积为16 m 2设不规则部分的面积为s m 2 则16s=0.65 解得:s=10.4故答案为:D.【点睛】利用频率估计概率.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 10【解析】【分析】让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是3 10.故答案为:3 10.【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.14.15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为15π.考点:圆锥的计算.15.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16.1.【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k 的值.解:设点D 坐标为(a ,b ),∵点D 为OB 的中点,∴点B 的坐标为(2a ,2b ),∴k=4ab ,又∵AC ⊥y 轴,A 在反比例函数图象上,∴A 的坐标为(4a ,b ),∴AD=4a ﹣a=3a ,∵△AOD 的面积为3, ∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k 的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD 的面积为1列出关系式是解题的关键.17.9x 2(1)x -【解析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解18.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB=8cm ,CD=2cm .连接OC ,交AB 于D 点.连接OA .∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)①23②3【解析】【分析】(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以23 BC CEAE DE==;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM =3.故OG+12EG最小值是3. 【详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO ∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB ∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴23 BC CEAE DE==②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC ∴BC CE AC BC=∴22 322xx x=+解得:x1=2,21 2x=-(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=43BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+12EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.20.(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】【分析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【详解】解:(1)本次调查共抽取的学生有36%50÷=(名)选择“友善”的人数有5030%15⨯=(名)∴条形统计图如图所示:(2)∵选择“爱国”主题所对应的百分比为205040%÷=,∴选择“爱国”主题所对应的圆心角是40%360144⨯︒=︒;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有120030%360⨯=名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);(3)两人离小华家的距离相等时,x的值为2.4或12.【分析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y 2与x 的函数图象;(2)设所求函数关系式为y 1=kx+b ,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x 的值即可.【详解】(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分, 小新按此速度再走16分钟到达书店,则a=16×60=960米, 小华到书店的时间为960÷40=24分钟, 则y 2与x 的函数图象为:故小新的速度为60米/分,a=960;(2)当4≤x≤20时,设所求函数关系式为y 1=kx+b (k≠0),将点(4,0),(20,960)代入得:0496020k b k b =+⎧⎨=+⎩, 解得:60240k b =⎧⎨=-⎩, ∴y 1=60x ﹣240(4≤x≤20时)(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x ,①当两人分别在小华家两侧时,若两人到小华家距离相同,则240﹣6x=40x ,解得:x=2.4;②当小新经过小华家并追上小华时,两人到小华家距离相同,则60x ﹣240=40x ,解得:x=12;故两人离小华家的距离相等时,x 的值为2.4或12.22.10,1.试题分析:可以设矩形猪舍垂直于住房墙一边长为m ,可以得出平行于墙的一边的长为m ,由题意得出方程求出边长的值. 试题解析:设矩形猪舍垂直于住房墙一边长为m ,可以得出平行于墙的 一边的长为m ,由题意得化简,得,解得: 当时,(舍去), 当时,, 答:所围矩形猪舍的长为10m 、宽为1m .考点:一元二次方程的应用题.23.(1)见解析;(2)90°;(3)解题思路见解析.【解析】【分析】(1)将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC .(2)先判定△ABD ≌△ACE ,即可得到B ACE ∠=∠,再根据45B ACB ACE ∠=∠=∠=︒,即可得出90ECD ACB ACE ∠=∠+∠=︒;(3)连接DE ,由于△ADE 为等腰直角三角形,所以可求2DE =;由60ADF ∠=︒,7.5CAE ∠=︒ ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长;过点A 作AH DF ⊥于点H ,在Rt △ADH 中,由60ADF ∠=︒,AD=1可求AH 、DH 的长;由DF 、DH 的长可求HF 的长;在Rt △AHF 中,由AH 和HF ,利用勾股定理可求AF 的长.【详解】解:()1如图,()2Q 线段AD 绕点A 逆时针方向旋转90o ,得到线段AE .DAE 90∠∴=o ,AD AE =,DAC CAE 90∠∠∴+=o .BAC 90∠=o Q ,BAD DAC 90o ∠∠∴+=.BAD CAE ∠∠∴=,在ABD V 和ACE V 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V. B ACE ∠∠∴=,ABC QV 中,A 90∠=o ,AB AC =,B ACB ACE 45∠∠∠∴===o .ECD ACB ACE 90∠∠∠∴=+=o ;()3Ⅰ.连接DE ,由于ADE V为等腰直角三角形,所以可求DE =Ⅱ.由ADF 60o ∠=,CAE 7.5∠=o ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长; Ⅲ.过点A 作AH DF ⊥于点H ,在Rt ADH V 中,由ADF 60o ∠=,AD 1=可求AH 、DH 的长; Ⅳ.由DF 、DH 的长可求HF 的长;Ⅴ.在Rt AHF V 中,由AH 和HF ,利用勾股定理可求AF 的长.故答案为(1)见解析;(2)90°;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.24.(1)4AB =;(2)47=m 或1. 【解析】【分析】(1)把m=2代入两个方程,解方程即可求出AC 、BC 的长,由C 为线段AB 上一点即可得AB 的长;(2)分别解两个方程可得m BC 2=,AC 2m 1=-,根据C 为线段AB 的三等分点分别讨论C 为线段AB 靠近点A 的三等分点和C 为线段AB 靠近点B 的三等分点两种情况,列关于m 的方程即可求出m 的值.【详解】(1)当m 2=时,有()1x 122+=,()2x 223+=, 由方程()1x 122+=,解得x 3=,即AC 3=. 由方程()2x 223+=,解得x 1=,即BC 1=. 因为C 为线段AB 上一点,所以AB AC BC 4=+=.(2)解方程()1x 1m 2+=,得x 2m 1=-, 即AC 2m 1=-.解方程()2x m m 3+=,得m x 2=, 即m BC 2=. ①当C 为线段AB 靠近点A 的三等分点时,则BC 2AC =,即()m 22m 12=-,解得4m 7=. ②当C 为线段AB 靠近点B 的三等分点时, 则AC 2BC =,即m 2m 12?2-=,解得m 1=. 综上可得,4m 7=或1. 【点睛】本题考查一元一次方程的几何应用,注意讨论C 点的位置,避免漏解是解题关键.25.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)5;(2)2x x-,3. 【解析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x 的值,代入计算即可.试题解析:(1)原式=1-2+1×2+4=5; (2)原式=()()()()2212x x x x x x +----×()224x x --=2x x -, 当3x +7>1,即 x >-2时的负整数时,(x =-1)时,原式=121---=3.. 27.证明见解析.【解析】【分析】由圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点,继而可得EM=EN ,即可证得:PE ⊥PF .【详解】∵四边形ABCD 内接于圆,∴BCF A ∠∠=,∵FM 平分BFC ∠,∴BFN CFN ∠∠=,∵EMP A BFN ∠∠∠=+,PNE BCF CFN ∠∠∠=+,∴EMP PNE ∠∠=,∴EM EN =,∵PE 平分MEN ∠,∴PE PF ⊥.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用.。
2024年重庆市长寿区春招数学试卷
2024年重庆市长寿区春招数学试卷一、选择题(10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数﹣1,,,3.14中,无理数是()A.﹣1B.C.D.3.142.如图是由6个完全相同的小正方体搭成的几何体,其箭头所指方向为主视方向,则这个几何体的俯视图是()A.B.C.D.3.如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°4.如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.85.反比例函数(k为常数,k≠0)的图象位于()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限6.已知,则与k最接近的整数为()A.2B.3C.4D.57.如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC=70°,则∠ADC=()A.70°B.60°C.50°D.40°8.如图,四边形OABC1是正方形,曲线C1C2C3C4C5...叫作“正方形的渐开线”,其中,,,…的圆心依次按O,A,B,C1循环,当OA=1时,点C2023的坐标是()A.(﹣1,﹣2022)B.(﹣2023,1)C.(﹣1,﹣2023)D.(2022,0)9.如图,正方形ABCD中,AB=3,点E在BC的延长线上,且CE=2.连接AE,∠DCE的平分线与AE 相交于点F,连接DF,则DF的长为()A.B.C.D.10.新定义:若一个点的横纵坐标之和为6,则称这个点为“和谐点”.若二次函数y=x2﹣2x+c(c为常数)在﹣1<x<3的图象上存在两个“和谐点”,则c的取值范围是()A.B.C.﹣1<c<1D.二、填空题(本大题8个小题,每小题4分,共32分),请将每小题的答案直接填在答题卡中对应的横线上.11.计算:=.12.一个布袋中放着3个红球和9个黑球,这两种球除了颜色以外没有任何其他区别.布袋中的球已经搅匀,从布袋中任取1个球,取出红球的概率是.13.正九边形一个内角的度数为.14.如图,在平面直角坐标系中,点A,B的坐标分别为(3,0)和(0,4),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是.15.某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x元,则x满足的分式方程为.16.如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为.17.若关于y的不等式组有解,且关于x的方程的解为非负数,则所有满足条件的整数m的值之和是.18.我们把不超过有理数x的最大整数称为x的整数部分,记作[x],又把x﹣[x]称为x的小数部分,记作{x},则有x=[x]+{x}.如:[1.3]=1,{1.3}=0.3,1.3=[1.3]+{1.3}.下列说法中正确的有个.①[2.8]=2;②[﹣5.3]=﹣5;③若1<|x|<2,且{x}=0.4,则x=1.4或x=﹣1.4;④方程4[x]+1={x}+3x的解为x=0.25或x=2.75.三、解答题(19题8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.19.(1)先化简,再求值:,其中x是1、2、3中的一个合适的数.(2)计算:(12x4+6x2)÷3x﹣(﹣2x)2(x+1).四、解答题(共7题,每题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.20.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.21.某校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A、B、C、D、E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1中缺失的数据,图形补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.22.某移动公司推出A,B两种电话计费方式.计费方式月使用费/元主叫限定时间/min主叫超时费/(元/min)被叫A782000.25免费B1085000.19免费(1)设一个月内用移动电话主叫时间为t min,根据如表,分别写出在不同时间范围内,方式A,方式B 的计费金额y1,y2关于t的函数解析式;(2)若你预计每月主叫时间为350min,你将选择A,B哪种计费方式,并说明理由;(3)请你根据月主叫时间t的不同范围,直接写出最省钱的计费方式.23.某中学数学兴趣小组的同学们,对函数y=a|x﹣b|+c(a,b,c是常数,a≠0)的性质进行了初步探究,部分过程如下,请你将其补充完整.(1)当a=1,b=c=0时,即y=|x|.当x≥0时,函数化简为y=x;当x<0时,函数化简为y=.(2)当a=2,b=1,c=0时,即y=2|x﹣1|.①该函数自变量x和函数值y的若干组对应值如表:x…﹣2﹣101234…y…6m20246…其中m=.②在图1所示的平面直角坐标系内画出函数y=2|x﹣1|的图象.(3)当a=﹣2,b=1,c=2时,即y=﹣2|x﹣1|+2.①当x≥1时,函数化简为y=.②在图2所示的平面直角坐标系内画出函数y=﹣2|x﹣1|+2的图象.(4)请写出函数y=a|x﹣b|+c(a,b,c是常数,a≠0)的一条性质:.(若所列性质多于一条,则仅以第一条为准)24.图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备厢,车后盖ABC落在AB′C处,AB′与水平面的夹角∠B′AD=27°.(1)求打开后备厢后,车后盖最高点B′到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C′处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)25.如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为x=的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若0<m<,当m为何值时,四边形CDNP是平行四边形?(3)若m<,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME,若存在,求出此时m的值;若不存在,请说明理由.26.在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sin B=.(1)如图1,求AB边上的高CH的长;(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C′,D′,①如图2,当C′落在射线CA上时,求BP的长;②当△AC′D′是直角三角形时,求BP的长.。
2020年重庆市长寿区春招数学试卷 (解析版)
2020年重庆市长寿区春招数学试卷一、选择题(共12小题).1.﹣2的绝对值是()A.2B.C.﹣D.﹣22.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.3.下列运算中,正确的是()A.a•a2=a2B.(a2)2=a4C.a2•a3=a6D.(a2b)3=a2•b34.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿5.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.6.若一组数据2,4,x,5,7的平均数为5,则这组数据中的x和中位数分别为()A.5,7B.5,5C.7,5D.7,77.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.8.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.39.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72020的结果的个位数字是()A.0B.1C.7D.810.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD11.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 12.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1=有正数解,那么这五个数中所有满足条件的m的值之和是()A.1B.2C.﹣1D.﹣2二、填空题(本大题6小题,每小题4分,满分24分:请将正确答案填在答题卡相应位置)13.计算()2+1的结果是.14.如图,AD∥CE,∠ABC=100°,则∠2﹣∠1的度数是.15.如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC =米.(可以用根号表示)16.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFD=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题8个小题,第26题8分,其余每小题10分,共78分,解答每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上)。
重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷含解析
重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.18C.38D.111222++2.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.3.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.108.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1B.0<x0<1且x0≠1 2C.x0<0或x0>1 D.0<x0<19.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.10.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50°B.60°C.70°D.80°11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(a-b)+3b=___________.14.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.15.分解因式:a2b+4ab+4b=______.16.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.17.如图,A 、B 是双曲线y=kx上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若D 为OB 的中点,△ADO 的面积为3,则k 的值为_____.18.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是线段BO 上的一个动点,点F 为射线DC 上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF 可能的整数值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简:224424242x x x x x x -+-⎛⎫÷-+ ⎪-+⎝⎭,然后从67x -<<的范围内选取一个合适的整数作为x 的值代入求值.20.(6分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.21.(6分)如图,在△ABC 中,BC =12,tanA =34,∠B =30°;求AC 和AB 的长.22.(8分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的中点,O e 的半径为2,求AB 的长.23.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米). (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,3 1.732≈,2 1.414≈)24.(10分)如图,⊙O 的直径AD 长为6,AB 是弦,CD ∥AB ,∠A=30°,且CD=3. (1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.25.(10分)在平面直角坐标系xOy 中,已知两点A (0,3),B (1,0),现将线段AB 绕点B 按顺时针方向旋转90°得到线段BC ,抛物线y=ax 2+bx+c 经过点C . (1)如图1,若抛物线经过点A 和D (﹣2,0). ①求点C 的坐标及该抛物线解析式;②在抛物线上是否存在点P ,使得∠POB=∠BAO ,若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax 2+bx+c (a <0)经过点E (2,1),点Q 在抛物线上,且满足∠QOB=∠BAO ,若符合条件的Q 点恰好有2个,请直接写出a 的取值范围.26.(12分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.27.(12分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1 8 .故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.2.A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.C【解析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.4.A【解析】【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.C【解析】【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.6.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C . 【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键. 7.C 【解析】 【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案. 【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E , ∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12, 即△PCD 的周长为12, 故选:C . 【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 8.D 【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12 当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1.综上所述:m <n ,所求x 0的取值范围0<x 0<1. 故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏. 9.C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .不是轴对称图形,也不是中心对称图形.故错误;B .不是轴对称图形,也不是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D .不是轴对称图形,是中心对称图形.故错误. 故选C . 【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合; 中心对称图形是要寻找对称中心,旋转180°后与原图重合. 10.C 【解析】 【分析】连接BC ,根据题意PA ,PB 是圆的切线以及P 40∠=︒可得AOB ∠的度数,然后根据OA OB =,可得CAB ∠的度数,因为AC 是圆的直径,所以ABC 90∠=︒,根据三角形内角和即可求出ACB ∠的度数。
重庆长寿区数学七年级统考试题(含答案)
重庆长寿区数学七年级统考试题(含答案)第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能2.﹣23÷(﹣4)的值为()A.1 B.﹣1 C.2 D.﹣23.A为数轴上表示-1的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为()A.3 B.2 C.-4 D.2或-44、在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是()A.-1B.-6C.-2或-6D.无法确定5.如图,数轴上的点A和点B分别表示数a与数b,下列结论中正确的是……………………………()(第5题)A.a>b B.|a|>|b|C.-a<b D. a+b<06.对有理数a、b,规定运算如下:a ※b=a+ab,则-2 ※ 3的值为………………()A.-8 B.-6 C.-4 D.-27.若|a|=7,|b|=5,a+b>0,那么a-b的值是( ) A.2或12 B.2或-12 C.-2或-12 D.-2或128.已知m≥2,n≥2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么下列四个叙述中正确的有………………………………()①在25的“分解”中,最大的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个9.下列各方程中,是一元一次方程的是()A.B.C.D.10.下列说法正确的是()A. 正数和负数统称有理数B. 正整数和负整数统称为整数C. 小数3.14不是分数D. 整数和分数统称为有理数第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃。
2020年重庆市南岸区春招数学试卷(附答案详解)
2020年重庆市南岸区春招数学试卷一、选择题(本大题共12小题,共48.0分)1.(2021·广东省深圳市·模拟题)在下列各数中,比−1小的数是()A. 0B. 1C. 2D. −22.(2020·重庆市市辖区·历年真题)计算(2x)3的结果是()A. 8x3B. 8xC. 6x3D. 2x33.(2020·重庆市市辖区·历年真题)下列命题是真命题的是()A. 等边三角形是中心对称图形B. 等腰三角形是轴对称图形C. 等腰直角三角形是中心对称图形D. 直角三角形是轴对称图形4.(2020·山东省济南市·期中考试)如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A. 3mB. 4mC. 4.5mD. 5m5.(2020·重庆市市辖区·历年真题)下列整数中,与9−√17最接近的是()A. 4B. 5C. 6D. 76.(2020·重庆市市辖区·历年真题)在Rt△ABC中,∠ACB=90°,∠B=30°,AB与⊙C相切于点D,若AB=6,则CD的长为()A. 32B. 3√32C. 3D. 3√37.(2020·重庆市市辖区·历年真题)按照如图所示的流程,若输出的M=3,则输入的m为()A. −1B. 0C. 1D. 38.(2020·浙江省宁波市·期末考试)2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x人,根据题意,可列方程为()A. 600x =500x−15×(1−10%) B. 600x×(1−10%)=500x−15C. 600x−15=500x×(1−10%) D. 600x−15×(1−10%)=500x9.(2021·浙江省·单元测试)在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A. B.C. D.10.(2021·全国·模拟题)如图,某校教学楼AB后方有一斜坡,斜坡与教学楼剖面在同一平面内,已知斜坡CD的长为6m,坡度i=1:0.75,教学楼底部到斜坡底部的水平距离AC=8m,在教学楼顶部B点测得斜坡顶部D点的俯角为46°,则教学楼的高度约为()(参考数据:sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)A. 12.1mB. 13.3mC. 16.9mD. 18.1m11.(2020·重庆市市辖区·历年真题)如图,把△ABC纸片沿DE,EF,DG折叠后,A,B,C三点都与BC边上的点M重合,得到矩形DEFG,连接DF,若△DGM和△DMF均是等腰三角形,DG=1,则△ABC的周长为()A. 4+2√2+2√3B. 2+4√2+2√3C. 2+2√2+4√3D. 4+2√212.(2020·重庆市·单元测试)如图,点A与点B关于原点对称,点C在第四象限,∠ACB=(k> 90°.点D是x轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数y=kx0)的图象经过点A,E.若△ACE的面积为6,则k的值为()A. 4B. 6C. 8D. 12二、填空题(本大题共6小题,共24.0分)13.(2020·重庆市市辖区·历年真题)不等式组{x>1x−2≤3的解集是______.14.(2020·重庆市市辖区·历年真题)据了解,重庆市为确保2020年完成3万个5G基站建设目标的顺利完成,3月1日已经建设开通5G基站数超过10100个.请把数10100用科学记数法表示为______.15.(2020·重庆市市辖区·历年真题)在如图所示的电路图中,当随机闭合开关K1,K2,K3中的两个时,能够让灯泡发光的概率为______.16.(2020·重庆市市辖区·历年真题)在Rt△ABC中,∠ACB=90°,AC=4,BC=2.分别以点B,A为圆心,以BC长为半径画弧,交AB于点D,E,交AC于点F,则图中的阴影部分的面积为______.(用含π的代数式表示)17.(2020·重庆市市辖区·历年真题)在一段长为1000m的笔直道路AB上,甲、乙两名运动员分别从A,B两地出发进行往返跑训练.已知甲比乙先出发30秒钟,甲距A点的距离y/m与其出发的时间x/分钟的函数图象如图所示.乙的速度是200m/分钟,当乙到达A点后立即按原速返回B点.当两人第二次相遇时,乙跑的总路程是______m.18.(2020·重庆市市辖区·历年真题)滴滴快车是一种便捷的出行工具,某地的计价规则如表:计费项目 里程费 时长费 远途费 单价2元/公里0.3元/分钟1元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收1元.小李与小张分别从不同地点,各自同时乘坐滴滴快车,到同一地点相见,已知到达约定地点时他们的实际行车里程分别为7公里与9公里,两人付给滴滴快车的乘车费相同.其中一人先到达约定地点,他等候另一人的时间等于他自己实际乘车时间,且恰好是另一人实际乘车时间的一半,则小李的乘车费为______元. 三、解答题(本大题共8小题,共78.0分) 19. (2020·重庆市市辖区·历年真题)计算:(1)(2x +y)(x +y)+(x −y)2; (2)(a −3a−4a−1)÷a 2−4a−1.20. (2020·福建省泉州市·单元测试)如图,AB//CD ,AD 与BC 相交于点E ,AF 平分∠BAD ,交BC 于点F ,交CD 的延长线于点G . (1)若∠G =29°,求∠ADC 的度数;(2)若点F 是BC 的中点,求证:AB =AD +CD .21.(2020·重庆市市辖区·历年真题)经历疫情复学后,学校开展了多种形式的防疫知识讲座,并举行了全员参加的“防疫”知识竞赛,试卷题目共10题,每题10分.现分别从七年级1,2,3班中各随机抽取10名同学的成绩(单位:分).收集整理数据如下:分析数据:平均数中位数众数1班83a802班83b c3班d8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(一条理由即可);(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级学生共120人,试估计需要准备多少张奖状?22.(2020·重庆市市辖区·月考试卷)已知函数y=k|x+2|+b的图象经过点(−2,4)和(−6,−2),完成下面问题:(1)求函数y=k|x+2|+b的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质;x+1的图象如图所示,结合你所画出y=k|x+2|+b的图象,(3)已知函数y=12x+1的解集.直接写出k|x+2|+b>1223.(2020·广东省广州市·单元测试)在疫情期间,某地推出线上名师公益大课堂,为广大师生、其他社会人士提供线上专业知识学习、心理健康疏导.参与学习第一批公益课的人数达到2万人,因该公益课社会反响良好,参与学习第三批公益课的人数达到2.42万人.参与学习第二批、第三批公益课的人数的增长率相同.(1)求这个增长率;(2)据大数据统计,参与学习第三批公益课的人数中,师生人数在参与学习第二批公益课的师生人数的基础上增加了80%;但因为已经部分复工,其他社会人士的人数在参与学习第二批公益课的其他社会人士人数的基础上减少了60%.求参与学习第三批公益课的师生人数.24. (2021·浙江省金华市·月考试卷)对于任意一个四位数,我们可以记为abcd −,即abcd −=1000a +100b +10c +d.若规定:对四位正整数abcd −进行F 运算,得到整数F(abcd −)=a 4+b 3+c 2+d 1.例如,F(1249)=14+23+42+91=34;F(2020)=24+03+22+01=20. (1)计算:F(2137);(2)当c =e +2时,证明:F(abcd −)−F(abed −)的结果一定是4的倍数; (3)求出满足F(32xy −)=98的所有四位数.25. (2020·重庆市市辖区·历年真题)如图,在平面直角坐标系内,点A ,B 的坐标分别为(1,0),(0,2),AC ⊥AB ,且AB =AC ,直线BC 交x 轴于点D ,抛物线y =ax 2+bx +2经过点A ,B ,D .(1)求直线BC 和抛物线y =ax 2+bx +2的函数表达式;(2)点P 是直线BD 下方的抛物线上一点,求△PCD 面积的最大值,以及△PCD 面积取得最大值时,点P 的坐标;(3)若点P 的坐标为(2)小题中,△PCD 的面积取得最大值时对应的坐标.平面内存在直线l,使点B,D,P到该直线的距离都相等,请直接写出所有满足条件的直线l的函数表达式.26.(2020·重庆市市辖区·历年真题)如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=√2NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.答案和解析1.【答案】D【知识点】有理数大小比较【解析】解:A、0>−1,故本选项不符合题意;B、1>−1,故本选项不符合题意;C、2>−1,故本选项不符合题意;D、−2<−1,故本选项符合题意;故选:D.根据有理数的大小比较法则逐个判断即可.本题考查了有理数的大小比较,能熟记有理数的大小比较的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.【答案】A【知识点】幂的乘方与积的乘方【解析】解:(2x)3=23⋅x3=8x3.故选:A.根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.本题主要考查了积的乘方,熟记幂的运算法则是解答本题的关键.3.【答案】B【知识点】证明与定理、定义与命题【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,原命题是假命题;B、等腰三角形是轴对称图形,是真命题;C、等腰直角三角形是轴对称图形,不是中心对称图形,原命题是假命题;D、直角三角形不是轴对称图形,原命题是假命题;故选:B.根据中心对称图形和轴对称图形判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.【答案】D【知识点】中心投影及其相关概念【解析】【分析】本题考查中心投影,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.利用相似三角形的性质求解即可.【解答】解:∵AB//OP,∴△CAB∽△COP,∴CBCP =ABOP,∴37.5=2OP,∴OP=5(m),故选:D.5.【答案】B【知识点】估算无理数的大小【解析】解:∵16<17<25,∴4<√17<5,∴√17最接近的整数为4,∴9−√17最接近的整数为5.故选:B.利用16<17<25可判断√17最接近的整数为4,从而得到9−√17最接近的整数.本题考查了估算无理数:利用完全平方数去估算无理数大小.6.【答案】B【知识点】含30°角的直角三角形、切线的性质【解析】【分析】本题考查的是切线的性质、含30°的直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.根据直角三角形的性质得到AC=12AB=3,根据切线的性质得到∠ADC=90°,利用含30°的直角三角形边的关系即可得到答案.【解答】解:在Rt△ABC中,∠ACB=90°,∠B=30°,∴AC=12AB=3,∠A=60°,∵AB与⊙C相切,∴CD⊥AB,∴∠ADC=90°,∴CD=√32AC=√32×3=3√32,故选:B.7.【答案】D【知识点】有理数的混合运算、代数式求值【解析】解:当m2−2m≥0时,6m−1=3,解得m=3,经检验,m=3是原方程的解,并且满足m2−2m≥0;当m2−2m<0时,m−3=3,解得m=6,不满足m2−2m<0,舍去.故输入的m为3.故选:D.根据题目中的程序,利用分类讨论的方法可以分别求得m的值,从而可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.【答案】A【知识点】由实际问题抽象出分式方程【解析】解:由题意可得,600 x =500x−15×(1−10%),故选:A.根据题意,可以列出相应的分式方程,从而可以解答本题.本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程.9.【答案】C【知识点】已知底边及底边上的高线作等腰三角形【解析】解:∵∠ADC=∠B+∠BCD,∠ADC=2∠B,∴∠B=∠BCD,∴DB=DC,∴点D为BC的垂直平分线与AB的交点.故选:C.利用三角形外角性质得到∠B=∠BCD,利用等腰三角形的判定得到DB=DC,然后根据线段垂直平分线的作法对各选项进行判断.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.10.【答案】C【知识点】解直角三角形的应用【解析】解:如图,过点D作DE⊥AC,DF⊥AB于点E,F,根据题意可知:BA⊥AC,∴四边形FAED是矩形,∴FA=DE,DF=AE,∵斜坡CD的长为6m,坡度i=DE:CE=1:0.75,∴DE=4.8,CE=3.6,∴DF=AE=AC+CE=11.6,在Rt△BFD中,∠BDF=46°,∴BF=DF⋅tan46°≈11.6×1.04≈12.064,∴BA=BF+FA=12.064+4.8≈16.9(m).所以教学楼的高度约为16.9米.故选:C.过点D作DE⊥AC,DF⊥AB于点E,F,根据题意可得,四边形FAED是矩形,再根据锐角三角函数即可求出教学楼的高度.本题考查了解直角三角形的应用−仰角俯角问题、坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.11.【答案】B【知识点】翻折变换(折叠问题)、矩形的性质、等腰三角形的性质【解析】解:∵四边形DEFG是矩形,∴DG=EF=1,∠DGM=90°=∠EFM,∵△DGM是等腰三角形,DG=1,∴DG=EF=1=GM,∴DM=√2DG=√2,∵△DMF均是等腰三角形,∴DM=FM=√2,∴ME=√MF2+EF2=√2+1=√3,∵把△ABC纸片沿DE,EF,DG折叠后,A,B,C三点都与BC边上的点M重合,∴BG=GM=1,AD=DM=DB=√2,AE=ME=EC=√3,MF=FC=√2,∴△ABC的周长=AB+AC+BC=AD+BD+AE+EC+BG+GM+MF+FC=4√2+2+2√3,故选:B.由矩形的性质可得DG=EF=1,∠DGM=90°=∠EFM,由等腰三角形的性质和勾股定理可求DM=FM=√2,ME=√3,由折叠的性质可得BG=GM=1,AD=DM= DB=√2,AE=ME=EC=√3,MF=FC=√2,即可求解.本题考查了翻折变换,等腰三角形的性质,矩形的性质,熟练运用折叠的性质是本题的关键.12.【答案】C【知识点】反比例函数图象上点的坐标特征、反比例函数系数k的几何意义、中心对称中的坐标变化【解析】解:连接OC,在Rt△ABC中,点O是AB的中点,∴OC=12AB=OA,∴∠OAC=∠OCA,∵AC是∠BAD的角平分线,∴∠OAC=∠EAC,∴∠OCA=∠EAC,∴AE//OC∴S△AEC=S△AOE,过A作AM⊥x轴于M,过E作EN⊥x轴于N,∵A、E都在反比例函数y=kx的图象上,∴S△AOM=S△EON,∴S梯形AMNE=S△AOE,∵AM//EN,∴△DAM∽△DEN,∵AE=DE,S梯形AMNE=S△AOE=S△AEC=6,∴S△AOD=12,延长DA交y轴于P,易得△DAM∽△DPO,设EN=a,则AM=2a,∴ON=ka ,OM=k2a,∴MN=k2a ,DN=k2a,∴DM:OM=2:1,∴S△DAM:S△AOM=2:1,∴S△AOM=4,∴k=8.故选:C.AB=OA,根据角平分线的连接OC,在Rt△ABC中,点O是AB的中点,得到OC=12定义得到∠OAC=∠EAC,得到∠OCA=∠EAC,过A作AM⊥x轴于M,过D作DN⊥x 轴于N,易得S梯形AMNC=S△AOC,△DAM∽△DEN,得到S梯形AMNC=S△AOC=S△AEC=6,求得S△AOD=9,延长DA交y轴于P,易得△DAM∽△DPO,设EN=a,则AM=2a,推出S△DAM:S△AOM=2:1,于是得到结论.本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.13.【答案】1<x≤5【知识点】一元一次不等式组的解法【解析】解:解不等式x−2≤3,得:x≤5,又x>1,∴1<x≤5,故答案为:1<x≤5.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.【答案】1.01×104【知识点】科学记数法-绝对值较大的数【解析】解:将10100用科学记数法表示为:1.01×104.故答案为:1.01×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】23【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图得:∵共有6种等可能的结果,能够让灯泡发光的是闭合(K1,K3),(K1,K2),(K3,K1),(K2,K1),∴能够让灯泡发光的概率为:46=23,故答案为:23.根据题意画出树状图,然后由树状图求得所有等可能的结果与能够让灯泡发光的情况,然后利用概率公式求解即可求得答案.此题考查了列表法与树状图法求概率的知识.注意概率=所求情况数与总情况数之比.16.【答案】4−π【知识点】扇形面积的计算、勾股定理【解析】解:∵∠ACB=90°,∴∠A+∠B=90°,∴S扇形EAF +S△DBC=90×π×22360=π,∴图中的阴影部分的面积=S△ABC−(S扇形EAF+S△DBC)=12×4×2−π=4−π.故答案为4−π.先利用扇形的面积公式计算S扇形EAF +S△DBC=90×π×22360=π,然后利用图中的阴影部分的面积=S△ABC−(S扇形EAF+S△DBC)计算计算.本题考查了扇形面积的计算:扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=n360πR2或S扇形=12lR(其中l为扇形的弧长).求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.【答案】125009【知识点】一次函数的应用【解析】解:甲的速度为:1000÷4=250(米/分钟),两人第一次相遇时处于两人都未跑完一个1000m时,由图象可知时间处于4分钟以内;∵甲比乙先出发30秒钟,∴当x=5分钟时,乙跑了4.5分钟,此时乙跑了200×4.5=900<1000(m);设甲出发x分钟后两人第二次相遇时,根据题意得:(250+200)(x−5)=(1000−900+1000),解得:x=679,当两人第二次相遇时,乙跑的总路程是200×(679−12)=125009(m).故答案为:125009.据函数图象中的数据求出甲的速度,进而求出两人第二次相遇时甲出发的时间,从而得出当两人第二次相遇时,乙跑的总路程.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.【答案】26【知识点】一元一次方程的应用【解析】解:设先到达约定地点的实际乘车时间为x分钟,则后到达约定地点的实际乘车时间为2x分钟,依题意,得:2×7+0.3×2x=2×9+0.3x+1×(9−7),解得:x=20,∴2×7+0.3×2x=26.故答案为:26.设先到达约定地点的实际乘车时间为x分钟,则后到达约定地点的实际乘车时间为2x 分钟,根据两人的乘车费用相同,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入(2×7+0.3×2x)中即可求出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【答案】解:(1)(2x+y)(x+y)+(x−y)2=2x2+2xy+xy+y2+x2−2xy+y2=3x2+xy+2y2;(2)(a−3a−4a−1)÷a2−4a−1=a(a−1)−(3a−4)a−1⋅a−1(a+2)(a−2)=a2−a−3a+4 (a+2)(a−2)=(a−2)2 (a+2)(a−2)=a−2a+2.【知识点】多项式乘多项式、完全平方公式、分式的混合运算【解析】(1)根据分多项式乘多项式和完全平方公式可以解答本题;(2)根据分式的减法和除法可以解答本题.本题考查分式的混合运算、多项式乘多项式和完全平方公式,解答本题的关键是明确分式混合运算的计算方法.20.【答案】证明:(1)∵AB//CD,∴∠BAG=∠G,∠BAD=∠ADC.∵AF平分∠BAD,∴∠BAD=2∠BAG=2∠G.∴∠ADC=∠BAD=2∠G.∵∠G=29°,∴∠ADC=58°;(2)∵AF平分∠BAD,∴∠BAG=∠DAG.∵∠BAG=∠G,∴∠DAG=∠G.∴AD=GD.∵点F是BC的中点,∴BF=CF.在△ABF和△GCF中,∵{∠BAF=∠G,∠AFB=∠GFC, FB=FC.∴△ABF≌△GCF(AAS),∴AB =GC .∴AB =GD +CD =AD +CD .【知识点】全等三角形的判定与性质【解析】(1)根据平等线的性质得∠BAG =∠G ,∠BAD =∠ADC.进而证由角平分线的性质得∠ADC =∠BAD =2∠G.便可求得结果;(2)先由角平分线条件证明AD =DG ,再证明△ABF≌△GCF ,便可得结论.本题主要考查了全等三角形的性质与判定,平行线的性质,等腰三角形的性质与判定,关键是证明三角形全等.21.【答案】解:(1)一班10个数据的中第5、第6个数据都是80分,所以a =80; 二班10个数据的中第5、第6个数据分部是80分、90分,所以b =85;二班10个数据的中90分出现的次数最短,所以c =90;三班的平均数d =110(60+70+80×4+90×2+100×2)=83;(2)我认为七年级2班的成绩比较好,随机抽取的样本中,三个班样本成绩的平均数都为83,2班成绩的中位数为85,大于1班和3班成绩的中位数80;2班成绩的众数90大于1班和3班成绩的众数80;(3)因为所抽取的样本中,样本总量是30,而其中满分人数是1+1+2=4. 所以430×120=16答:估计需要准备的奖状是16张.【知识点】算术平均数、用样本估计总体、中位数、折线统计图、条形统计图、众数【解析】(1)利用折线统计图得到一班和二班的成绩,然后利用中位数的定义确定a 、b 值,利用众数的定义确定c 的值;利用平均数的计算方法确定d 的值;(2)利用中位数和众数的意义进行判断;(3)求出样本中满分的同学所占的百分比,然后120乘以这个百分比可估计该校七年级学生的满分人数.本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了中位数、众数和平均数. 22.【答案】解:(1)根据题意,得{b =4k ⋅|−6+2|+b =−2,解方程组,得{k=−32b=4,所求函数表达式为y=−32|x+2|+4;(2)函数的图象如图所示,性质为:①当x<−2时,y随x增大而增大;当x>−2时,y随x增大而减少.②当x=−2时,该函数取得最大值,函数的最大值为4.(3)由图象可知:k|x+2|+b>12x+1的解集为:−6<x<0.【知识点】待定系数法求一次函数解析式、一次函数的性质、一次函数与一元一次不等式的关系、一次函数的图象【解析】(1)根据待定系数法求得即可;(2)画出函数的图象,根据图象得出性质;(3)根据图象求得即可.本题考查了一次函数的图象和性质,一次函数与一元一次不等式,待定系数法求一次函数的解析式,数形结合是解题的关键.23.【答案】解:(1)设参与学习第二批、第三批公益课的人数的增长率为x,根据题意,得2(1+x)2=2.42,解得x1=−2.1(舍去),x2=0.1=10%.答:参与学习第二批、第三批公益课的人数的增长率为10%.(2)设参与学习第二批公益课的人数中,师生有a万人,其他人士有b万人.根据题意,得{a +b =2×(1+10%)a ×(1+80%)+b ×(1−60%)=2.42. 解方程组,得{a =1.1b =1.1a ×(1+80%)=1.1×1.8=1.98.答:参与第三批公益课的师生人数为1.98万人.【知识点】二元一次方程组的应用、一元二次方程的应用【解析】(1)设参与学习第二批、第三批公益课的人数的增长率为x ,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解.(2)设参与学习第二批公益课的人数中,师生有a 万人,其他人士有b 万人.根据“第三批公益课的人数=第二批公益课的师生人数×(1+80%)”、“其他社会人士的人数在参与学习第二批公益课的其他社会人士人数的基础上减少了60%”列出方程组并解答.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.【答案】解:(1)F(2137)=24+13+32+71=16+1+9+7=33;(2)∴F(abcd −)−F(abed −)=(a 4+b 3+c 2+d)−(a 4+b 3+e 2+d)=c 2−e 2, ∵c =e +2,原式=(e +2)2−e 2=4e +4=4(e +1).∵e ≥0,且e 是整数,∴4(e +1)是4的倍数.所以,当c =e +2时,F(abcd −)−F(abed −)的结果一定是4的倍数.(3)∵F(32xy −)=34+23+x 2+y ,∴34+23+x 2+y =98,即x 2+y =9.∵0≤y ≤9,∴0≤x 2≤9.∴0≤x ≤3,且x 为整数.∴{x =0y =9或{x =1y =8或{x =2y =5或{x =3y =0. 所以,满足条件的四位数有3209,3218,3225,3230.【解析】(1)根据F(abcd −)=a 4+b 3+c 2+d 1代入数据计算即可求解;(2)根据F(abcd −)=a 4+b 3+c 2+d 1得到F(abcd −)−F(abed −)=c 2−e 2,再根据已知条件c =e +2,可得原式=4(e +1),依此即可求解;(3)首先得到x 2+y =9,再根据整数的性质确定0≤x ≤3,且x 为整数,可求对应的y 值,从而求解.考查了数的十进制,因式分解的应用,理解题意,从题目中获取信息,由数的特点求解是解题的关键. 25.【答案】解:(1)过点C 作CE ⊥x 轴,垂足为E .∵AB =AC ,∠AOB =∠CEA =90°,∠ABO =∠CAE ,∴△ABO≌△CAE(AAS).∴AO =CE ,BO =AE .∵A(1,0),B(0,2),∴CE =AO =1,AE =BO =2.∴C(3,1).设直线BC 的函数表达式为y =kx +s(k ≠0).把点B(0,2),C(3,1)代入,得{s =23k +s =1,解得{k =−13s =2, 所以,直线BC 的函数表达式为y =−13x +2.令y =0,得x =6,则D(6,0).∵抛物线y =ax 2+bx +2经过点A(1,0),D (6,0),则{a +b +c =036a +6b +2=0.解得{a =13b =−73, ∴抛物线的函数表达式为y =13x 2−73x +2.(2)过点P 作x 轴的垂线,垂足为H ,交BD 于点F.令P 的横坐标为t .∵点P在BD直线下方的抛物线上移动,∴PF=−13t+2−(13t2−73t+2)=−13t2+2t.过点C作CG⊥PF,垂足为G.∴S△PCD=S△PCF+S△PDF=12PF⋅CG+12PF⋅DH=12PF(CG+DH),即S△PCD=12×(−13t2+2t)[(6−t)+(t−3)]=−12(t−3)2+92.所以,当t=3时,△PCD的面积取得最大值,最大值为92.此时点P坐标为(3,−2).(3)满足条件的直线有三条,是△PDB三条中位线所在的直线.由点P、D、B的坐标可得,PD、BD、PB的中点分别为:(92,−1)、(3,1)、(32,0),设过(92,−1)、(3,1)的直线表达式为y=mx+n,则{3m+n=192m+n=−1,解得{m=−43n=5,故直线的表达式为:y=−43x+5,同理其它两条直线的表达式为:y=−13x+12或y=23x−1.三条直线的函数表达式分别为y=−13x+12,y=−43x+5,y=23x−1.【知识点】二次函数综合【解析】(1)证明△ABO≌△CAE(AAS),求出点C的坐标,进而求解;(2)利用S△PCD=S△PCF+S△PDF=12PF⋅CG+12PF⋅DH=12PF(CG+DH),即可求解;(3)满足条件的直线有三条,是△PDB三条中位线所在的直线,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等、三角形中位线的性质、面积的计算等,综合性强,有一定的难度.26.【答案】(1)证明:如图1,过点N作NK⊥NE,交AE于点K.∵MN⊥AB,∴∠MNA=90°.∴∠ANK=∠MNE.∵ME⊥AE,∴∠AEM=∠ANM=90°.∴∠NAK=∠NME.∵四边形ABCD是正方形,∠ANM=90°.∴∠MAN=∠NMA=45°.∴AN=MN.在△ANK和△MNE中,∵{∠NAK=∠NME AN=MN∠ANK=∠MNE,∴△ANK≌△MNE(ASA).∴AK=ME,NK=NE.∴KE=√2NE.∴AE=AK+KE=ME+√2NE.(2)解:CH=FH.如图2,过点F作FP⊥BC,交BC的延长线于点P.∴∠P=90°.∵∠BAE+∠AEB=∠FEP+∠AEB=90°,∴∠BAE=∠FEP.∵四边形ABCD是正方形,∴∠B=∠BCD=∠PCD=90°,AB=BC.∵FH⊥CD,∴∠P=∠PCH=∠CHF=90°.∴四边形PCHF是矩形.在△ABE和△EPF中,∵{∠B=∠P∠BAE=∠PEF AE=EF,∴△ABE≌△EPF(AAS).∴BE=PF,AB=EP.∵AB=BC,∴EP=BC.∴CP=BE=PF.∴矩形PCHF是正方形.∴FH=CH.(3)AC=(2+√2)GH.如图3,延长FH交AC于点Q,在正方形ABCD中,∠ACD=45°,∵∠FHC=90°,∴∠HQC=∠HCQ=45°,∴CH=HQ,CQ=√2CH,∵CH=FH,∴HQ=FH,∵G是AF的中点,∴GH=12AQ,又∵GH=CH,∴CQ=√2GH,∴AC=AQ+CQ=2GH+√2GH=(2+√2)GH.【知识点】四边形综合【解析】(1)证明△ANK≌△MNE(ASA).得出AK=ME,NK=NE.则结论得证;(2)得出∠P=∠PCH=∠CHF=90°.则四边形PCHF是矩形.证明△ABE≌△EPF(AAS).得出BE=PF,AB=EP.可证得CP=BE=PF.得出矩形PCHF是正方形,则结论得证;(3)延长FH交AC于点Q,由中位线定理可得出AQ=2GH,由等腰直角三角形的性质可得出CQ=√2GH,则可得出结论.本题是四边形综合题,考查了正方形的判定与性质,全等三角形的判定与性质,等腰直角三角形的性质,中位线定理等知识,解答时运用等腰直角三角形的性质和证明三角形的全等是关键.。
重庆市2020年初中毕业生学业水平暨高中招生考试数学试卷(含答案)
重庆市2020年初中毕业生学业水平暨高中招生考试数学参考试卷(考试时间120分钟,满分150分)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴公式为2b x a =-. 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内.1.已知实数a ,b 在数轴上的对应点的位置如图所示,则下列判断正确的是( ).A .1a <B .a b <C .10b +<D .0b >2.下列电视台的台标,是中心对称图形的是( ).A .B .C .D .3.下列式子计算正确的是( ).A .236a a a ⋅=B .2222a a a +=C .222()a b a b +=+D .221()a a --=- 4.下列命题中真命题是( ).A .两边和一角分别对应相等的两个三角形全等B .三角形的一个外角大于任何一个内角C .矩形的对角线平分每一组对角D .两组对角分别相等的四边形是平行四边形5.计算2262⎛⎫⨯- ⎪ ⎪⎝⎭的值在( ). A .0到1-之间B .1-到2-之间C .2-到3-之间D .3-到4-之间 6.按如图的运算程序,能使输出k 的值为1的是( ).A .1x =,2y =B .2x =,1y =C .2x =,0y =D .1x =,3y =7.在平面直角坐标系中,已知点(4,2)E -,(2,2)F --,以原点O 为位似中心,相似比为12,把EFO △缩小,则点E 对应的E '的坐标是( ).A .(2,1)-B .(8,4)-C .(8,4)-或(8,4)-D .(2,1)-或(2,1)- 8.如图,AB 是O 的直径,点C 在O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,过点O 作OD AC ⊥交O 于点D ,连接CD ,若30P ∠=︒,15AP =,则CD 的长为( ).A .33B .4C .53D .59.我校数学兴趣小组的同学要测量建筑物CD 的高度,如图,建筑物CD 前有一段坡度为1:2i =的斜坡BE ,小明同学站在斜坡上的B 点处,用测角仪测得建筑物屋顶C 的仰角为37︒,接着小明又向下走了45米,刚好到达坡底E 处,这时测到建筑物屋顶C 的仰角为45︒,A 、B 、C 、D 、E 、F 在同一平面内.若测角仪的高度 1.4AB EF ==米,则建筑物CD 的高度约为( ).(精确到0.1米,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)A .38.6B .39.0C .40.0D .41.410.如图,点A ,B 是双曲线18y x =图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线y k x =在第二象限的分支上一点,当ABC △满足AC BC =且:13:24AC AB =时,k 的值为( ).A .2516-B .258-C .254-D .25-11.若整数a 使得关于x 的方程3222a x x -=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25 12.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x… 2- 1- 0 1 2 … 2y ax bx c =++… t m 2- 2- n … 且当12x =-时,与其对应的函数值0y >,有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<.其中,正确结论的个数是( ). A .0B .1C .2D .3 二、填空题(本大题共6个小题,每小题4分,共24分)请将每小題的答案直接填在答题卡中对应的横线上.13.计算13127|13|2-⎛⎫-+-= ⎪⎝⎭ . 14.代数式1x x-有意义,则x 的取值范围是 . 15.如图,在矩形ABCD 中,23AB =,4AD =,以点A 为圆心,AD 长为半径在矩形内画弧,交BC 边于点E ,连接BD 交AE 于点F ,则图中阴影部分面积为 .16.不透明的袋子里装有除标号外完全一样的三个小球,小球上分别标有1-,2,3三个数,从袋子中随机抽取一个小球,记标号为k ,放回后将袋子摇匀,再随机抽取一个小球,记标号为b .两次抽取完毕后,直线y kx =与反比例函数b y x =的图象经过的象限相同的概率为 . 17.如图,把三角形纸片ABC 折叠,使C 的对应点E 在AB 上,点B 的对应点D 在BC 上,折痕分别为AD ,FG ,若30CAB ∠=︒,135C ∠=︒,63DF =,则BC 的长为 .18.问题背景:如图①所示,将ABC △绕点A 逆时针旋转60︒得到ADE △,DE 与BC 交于点P ,可推出结论:PA PC PE +=.问题解决:如图②,在MNG △中,6MN =,75M ∠=︒,42MG =.点O 是MNG △内一点,则点O 到MNG △三个顶点的距离和的最小值是 .三、解答题(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(1)解方程组:2353214x y x y -=⎧⎨+=⎩;(2)计算:2544332x x x x x -+⎛⎫++÷ ⎪--⎝⎭. 20.如图所示,在ABCD 中,点E ,F 在对角线BD 上,BE DF =.连接AE ,AF ,CE ,CF .求证:(1)ABE CDF △≌△;(2)四边形AECF 是平行四边形.21.《中国诗词大会》以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵,自开播以来深受广大师生的喜爱.某学校为了提高学生的诗词水平,倡导全校3000名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的条形和扇形统计图如图所示.【整理、描述数据】:大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”:大赛结束后部分学生“一周诗词诵背数量”的统计表 一周诗词背数量3首 4首 5首 6首 7首 8首 人数 16 24 32 78 a 35 【分析数据】:平均数 中位数 众数 大赛之前5 b c 大赛之后6 6 6请根据调查的信息分析:(1)补全条形统计图;(2)计算a = 首,b = 首,c = 首,并估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)根据调査的相关数据,选择适当的统计量评价该校经典诗词诵背系列活动的效果.22.小明对函数21(1)1(1)|1|x bx c x y x x ⎧-++≥⎪=⎨<⎪-⎩的图象和性质进行了探究.已知当自变量x 的值为1时,函数值为4;当自变量x 的值为2时,函数值为3;探究过程如下,请补充完整:(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: ;(3)进一步探究函数图象并解决问题:已知函数231y x =+的图象如图所示,结合你所画的函数图象,写出不等式21y y ≤的解集: .23.某语文备课组为了增强学生写作兴趣创办刊物《辰》,得到了全校师生的欢迎.他们将刊物以适当的价格销售后所得利润资助贫困学生.已知印制100本《星辰》的成本比印制40本的2倍还多440元.(1)每本《星辰》的成本是多少元?(2)经销售调查发现:每本《星辰》售价定为33元,可售出120本,若每本降价1元,可多售出20本.为尽量增加销量让更多的人读到这本刊物,当每本降价多少元时,可获得1400元的利润资助贫困学生?24.阅读下列材料:材料一:一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数,否则称为合数. 其中,1和0既不是质数也不是合数.材料二:一个较大自然数是质数还是合数通常用“N 法”来判断,主要分为三个步骤:第一步,找出大于N 且最接近N 的平方数2k ;第二步,用小于k 的所有质数去除N ;第三步,如果这些质数都不能整除N ,那么N 是质数;如果这些质数中至少有一个能整除N ,那么N 就是合数.如何判断239是质数还是合数?第一步,223925616<=;第二步,小于16的质数有:2、3、5、7、11、13,用2、3、5、7、11、13依次去除239;第三步,发现没有质数能整除239,所以239是质数.材料三:分解质因数就是把一个合数分解成若干个质数的乘积的形式,通过分解质因数可以确定该合数的约数的个数.若m n p N a b c =⨯⨯…(a ,b ,c …是不相等的质数,m ,n ,p …是正整数),则合数N 共有(1)(1)(1)m n p +++…个约数.如382=,314+=,则8共有4个约数;又如211223=⨯,(21)(11)6++=,则12共有6个约数.请用以上方法解决下列问题:(1)请用“N 法”判断163是质数还是合数;(2)求有12个约数的最小自然数.25.已知抛物线21:(1)4C y x =--和22:C y x =.(1)如何将抛物线1C 平移得到抛物线2C ?(2)如图①所示,抛物线1C 与x 轴正半轴交于点A ,直线43y x b =-+经过点A ,交抛物线1C 于另一点B .请你在线段AB 上取点P ,过点P 作直线PQ y ∥轴交抛物线1C 于点Q ,连接AQ .①若AP AQ =,求点P 的横坐标;②若PA PQ =,直接写出点P 的横坐标.(3)如图②所示,MNE △的顶点M 、N 在抛物线2C 上,点M 在点N 右边,两条直线ME 、NE 与抛物线2C 均有唯一公共点,ME 、NE 均与y 轴不平行.若MNE △的面积为2,设M 、N 两点的横坐标分别为m 、n ,求m 与n 的数量关系.四、解答题 26.四边形ABCD 为矩形,连接AC ,2AD CD =,点E 在AD 边上.(1)如图①,若30ECD ∠=︒,4CE =,求AEC △的面积;(2)如图②,延长BA 至点F ,使得2AF CD =,连接FE 并延长交CD 于点G ,过点D 作DH EG ⊥于点H ,连接AH ,求证:2FH AH DH =+;(3)如图③,将线段AE 绕点A 旋转一定的角度α(0360α︒<<︒)得到线段AE ',连接CE ',点N 始终为CE '的中点,连接DN .已知4CD AE ==,直接写出DN 的取值范围.参考试卷答案一、选择题CABD CBDD DBCC二、填空题1314.0x > 15.83π-16.5917. 18.三、解答题 19.(1)41x y =⎧⎨=⎩(2)23x x +-- 20.(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =.∴ABE CDF ∠=∠.在ABE △和CDF △中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE CDF SAS △≌△(2)∵ABE CDF △≌△,∴AE CF =,AEB CFD ∠=∠.∴AEF CFE ∠=∠.∴AEF CFE ∠=∠.∴AE CF ∥.∴四边形AECF 是平行四边形.21.(1)如图.55a = 4.5b = 4c =大赛后该校学生一周诗词诵背6首(含6首)以上的有:78553530002100240++⨯=(人). (3)由比赛前后的平均数,中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想(用数据进行比较).22.图象(1)2123(1)1(1)1x x x y x x ⎧-++≥⎪=⎨-<⎪-⎩. (2)当1x <时,y 随x 的增大而增大;当1x ≥时,y 随x 的增大而减小.(3)1x ≥或203x ≤≤23.成本为22元(1)设每本降价x 元,依题意得(3322)(12020)1400x x --+= 2540x x -+=,∴14x =,21x =∵要尽量的多,∴4x =答:每本降价4元.由条件.24.解:(1)∵216316913<=∴小于13的质数为2,3,5,7,11共5个显然,用2,3,5,7,11分别除163,它们都不能整除163 ∴163是质数.(2)121212634223==⨯=⨯=⨯⨯另四种情形:①当2m N =,112m +=,11m =,∴112N =②当23m n N =⨯,1612m n +=⎧⎨+=⎩时,5m =,1n = ∴512396N =⨯=③当23m n N =⨯,1412m n +=⎧⎨+=⎩时,3m =,2n = ∴322372N =⨯= ④当235m n p N =⨯⨯,161212m n p +=⎧⎪+=⎨⎪+=⎩时,5m =,1n =,1p =∴21123560N =⨯⨯=显然,116072962<<<∴有12个约数的最小自然数为60.25.解:(1)先向左平移1个单位,再向上平移4个单位长度(2)①设4,43P m m ⎛⎫-+ ⎪⎝⎭,()2,23Q m m m --, 又∵AP AQ =,∴22AP AQ = ∴22224(3)4(3)(3)(1)3m m m m ⎛⎫-+-+=-+-+ ⎪⎝⎭, ∴44(3)(1)3m m m -+=-+或443m -+ (3)(1)m m =--+ ∴244233m m m -+=--或244233m m m -+=-++, 解得:13m =(舍),273m =-(舍);113m =,23m =(舍) ∴13p x =. ②222273PQ m m ⎛⎫=-- ⎪⎝⎭, 222242(3)4733m m m m ⎛⎫⎛⎫-+-+=-- ⎪ ⎪⎝⎭⎝⎭, 211(3)(3)(1)(3)3m m m m m ⎛⎫-=-+-+ ⎪⎝⎭, 又∵3m ≠,∴11(1)13m m ⎛⎫++= ⎪⎝⎭,∴2(4)03m m ⎛⎫++= ⎪⎝⎭,∴123m =-,24m =-(舍),∴P 点的横坐标为23-, (3)设()2,M m m ,()2,N n n ,2:()ME l y y k x m m ==-+, 联立22y kx km m y x⎧=-+⎨=⎩,∴220x kx km m -+-=, ∴()2240k km m ∆=--=,∴2(2)0k m -=,∴2k m =,∴2:2ME l y mx m =-,同理:∴2:2NE l y nx n =-,1()2MNE S EK m n =⋅⋅-△, 又∵2222y mx m y nx n ⎧=-⎨=-⎩,2()()()0m n x m n n m -++-=, ∵m n ≠,∴2m n x +=,又∵,2m n E mn +⎛⎫ ⎪⎝⎭, ∴222:()MN n m l y x m m n m-=-+-, ∴2()()y n m x m m =+-+,∴22,22m n m n K ⎛⎫++ ⎪⎝⎭, ∴223()2()224MNE m n mn m n S m n +--=⋅-==△, 解得:2m n -=.四、解答题26.(1)∵四边形ABCD 是矩形,∴90D ∠=︒.∵30ECD ∠=︒,∴cos304CD CE =⋅︒==,2AD CD ==, 又∵1sin30422DE CE =⋅︒=⨯=,∴2AE AD DE =-=-.∴AEC △的面积为:12)122⨯⨯=- (2)证明:如图,在HF 上取点M ,使MF DH =,连接AM .∵AF DC ∥,∴F DGH ∠=∠.∵DH FG ⊥,∴90DHG EDG ∠=∠=︒, ∴ADH DGH F ∠=∠=∠.∵2AF CD =,2AD CD =,∴AF AD =. 在AMF △和AHD △中,MF HDF ADH AF AD=⎧⎪∠=∠⎨⎪=⎩,∴()AMF AHD SAS △≌△,∴AM AH =,FAM DAH ∠=∠. ∵90FAM MAE ∠+∠=︒,∴90MAE DAH ∠+∠=︒,即90MAH ∠=︒, ∴222MH AH =,∴2MH AH =, ∴2FH FM MH DH AH =+=+, 即2FH DH =+.(3)解:252252DN -≤≤+.。
2020年春湘教版九年级数学下册 2019年重庆市长寿区中考数学模拟试卷(含答案解析)
2019年重庆市长寿区中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是( )A.﹣1B.0C.2D.2.下列航空公司的标志中,是中心对称图形的是( )A.B.C.D.3.计算(﹣ab2)3的结果是( )A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是( )A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为( )A.﹣3B.3C.﹣5D.3或﹣56.在函数中,自变量x的取值范围是( )A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是( )8.已知m=,则以下对m的值估算正确的( )A.2<m<3B.3<m<4C.4<m<5D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒( )A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为( )A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为( )(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是( )二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是 .14.计算: +(π﹣3)0﹣(﹣)﹣2= .15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为 .16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是 分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y(米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点 米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN ⊥HG交AB于N点,交AE于M点,则S△MNF= .三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K 的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选:B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE∽△ABC,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=2,DB=3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD=60°,然后求出阴影部分的面积=S△ABD,计算即可得解.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴AB=AD,∵∠A=60°,∴△ABD是等边三角形,∴∠ABD=60°,又∵菱形的对边AD∥BC,∴∠ABC=180°﹣60°=120°,∴∠CBD=120°﹣60°=60°,∴S阴影=S扇形BDC﹣(S扇形ABD﹣S△ABD),=S△ABD,=×4×=4cm2.故选:B.【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CDJ中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C到B的速度为a米/秒,,解得,a=1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t秒,4t=1.5t+(800﹣500),解得,t=120,∴牛牛和峰峰第一次相遇时他们距A点的距离是:4×120=480米,故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B作BP⊥AE于P,根据勾股定理计算BE=BC=2,AE==10,得B,F,G共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ=,BQ=,分别计算FS、GS、DG、DH、AH、AN的长,利用面积差S△MNF=S△ANF﹣S△AMN求值【解答】解:过B作BP⊥AE于P,∵正方形ABCD中,AB=4,E为BC中点,∴BE=BC=2,∴AE==10,∴BP===4,∴PE===2,∴EF=EP,∴F与P重合,∴B,F,G共线,过F作OS⊥DC,交AB于O,DC于S,则OS⊥AB,过F作FQ⊥BC于Q,sin∠FBE==,=,∴FQ=,∴BQ=,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR=6﹣2,∴S△MNF=S△ANF﹣S△AMN=AN•FO﹣AN•MR=AN(FO﹣MR)=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度.三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论.【解答】证明:∵∠2=60°∠ABC=45°,∴∠3=75°,∵∠1=75°,∴∠3=∠1,∴l1∥l2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB=S△AOC+S△BOC=.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.26.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD =90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t 的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2021年重庆市长寿区九年级春招数学试题
8.用三个不等式 , , 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()
A.0B.1C.2D.3
9.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72020的结果的个位数字是( )
三、解答题
19.(1)计算:( )﹣3+| ﹣2|+tan60°﹣(﹣2020)0;
(2)( ﹣1)( +1)+x﹣1﹣x,并求当x= +1时的值.
20.如图,AB∥CD,∠1=∠2,求证:AM∥CN
21.某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:
(1)反比例函数的表达式;(2) 所在直线的函数表达式.
25.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
26.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.
2.D
(1)本次随机调查了多少名学生?
(2)补全条形统计图中“书画”、“戏曲”的空缺部分;
(3)若该校共有 名学生,请估计全校学生选择“戏曲”类的人数;
(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕 表示)
:重庆市长寿区2020-2021学年九年级上学期期末数学试题(解析版)
【解析】
【详解】试题分析:(1)、根据根 判别式判断即可;(2)、将x=3代入方程,解方程即可得m的值,继而可得方程的另一个根.
试题解析:(1)、∵a=1,b=2m,c=m2﹣1,∴△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,
即方程有两个不相等的实数根;
【答案】④
【解析】
【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定①是错误的;又由对称轴为x=﹣ ,即可求得a=b>0,即可判定②是错误的;由当x=1时,a+b+c<0,即可判定③错误;然后由抛物线与x轴交点坐标的特点,判定④正确.
【详解】解:①∵开口向上,∴a>0,
∵抛物线与y轴交于负半轴,∴c<0,
∵对称轴在y轴左侧,∴x=﹣ <0,∴b>0,
∴abc<0,故①错误;
②∵对称轴:x=﹣ =﹣ ,∴a=b>0,
∴a+b>0,故②错误;
③当x=1时,a+b+c=2b+c<0,故③错误;
④∵对称轴为x=﹣ ,与x轴的一个交点的取值范围为x1>1,
∴与x轴的另一个交点的取值范围为x2<﹣2 ,
∴当x=﹣2时,4a﹣2b+c<0,
∴遇到绿灯的概率为1﹣ ﹣ = ;
故选D.
【点睛】此题考查了概率的意义,用到的知识点是概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 .
7.如图,△ABC是⊙O的内接三角形,∠OAB=35°,则∠ACB的度数为()
A. 35°B. 55°C. 60°D. 70°
又因为 为整数,
故选:
【点睛】本题考查的是分式方程的解及解分式方程,一元二次方程的定义及根的判别式,掌握以上知识是解题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年重庆市长寿区春招数学试卷一、选择题(共12小题).1.﹣2的绝对值是()A.2B.C.﹣D.﹣22.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.3.下列运算中,正确的是()A.a•a2=a2B.(a2)2=a4C.a2•a3=a6D.(a2b)3=a2•b34.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿5.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.6.若一组数据2,4,x,5,7的平均数为5,则这组数据中的x和中位数分别为()A.5,7B.5,5C.7,5D.7,77.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.8.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.39.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72020的结果的个位数字是()A.0B.1C.7D.810.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD11.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 12.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1=有正数解,那么这五个数中所有满足条件的m的值之和是()A.1B.2C.﹣1D.﹣2二、填空题(本大题6小题,每小题4分,满分24分:请将正确答案填在答题卡相应位置)13.计算()2+1的结果是.14.如图,AD∥CE,∠ABC=100°,则∠2﹣∠1的度数是.15.如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC =米.(可以用根号表示)16.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFD=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题8个小题,第26题8分,其余每小题10分,共78分,解答每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上)。
19.(1)计算:()﹣3+|﹣2|+tan60°﹣(﹣2020)0;(2)(x﹣1)(x+1)+x﹣1﹣x,并求当x=+1时的值.20.如图,AB∥CD,∠1=∠2.求证:AM∥CN.21.2020年3月我国因“新冠病毒”的疫情,都不能如期开学,我市某校网上开设了“书画、器乐、戏曲、棋类”四大类兴趣课程,要求学生在家选择一项网上学习.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分.(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数.(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求出恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字母A,B,C,D表示)22.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.24.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C 的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.25.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.26.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一、选择题(共12小题,每小题4分,满分48分)在每个小题的下面,都给出了A、B、C、D四个答案,其中只有一个是正确的,请将正确的答案的代号填涂在答题卡的置上)1.﹣2的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.解:﹣2的绝对值是2.故选:A.2.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.【分析】找到从几何体的上面看所得到的图形即可.解:俯视图有3列,从左往右小正方形的个数是1,1,1,故选:C.3.下列运算中,正确的是()A.a•a2=a2B.(a2)2=a4C.a2•a3=a6D.(a2b)3=a2•b3【分析】根据同底数幂的乘法,幂的乘方与积的乘方的计算法则计算即可求解.解:A、a•a2=a3,故A错误;B、(a2)2=a4,故B正确;C、a2•a3=a5,故C错误;D、(a2b)3=a6•b3,故D错误.故选:B.4.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿【分析】利用科学记数法的表示形式展开即可解:1.002×1011=1 002 000 000 00=1002亿故选:C.5.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.【分析】利用待定系数法即可求解.解:设函数的解析式是y=kx.根据题意得:2k=﹣3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.6.若一组数据2,4,x,5,7的平均数为5,则这组数据中的x和中位数分别为()A.5,7B.5,5C.7,5D.7,7【分析】根据平均数的计算公式先求出x的值,然后将数据按照从小到大依次排列即可求出中位数.解:∵数据2,4,x,5,7的平均数是5,∴x=5×5﹣2﹣4﹣5﹣7=7,这组数据为2,4,5,7,7,则中位数为5.故选:C.7.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.8.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.解:①若a>b,ab>0,则<;真命题:理由:∵a>b,ab>0,∴a>b>0,或b<a<0,∴<;②若ab>0,<,则a>b,真命题;理由:∵ab>0,∴a、b同号,∵<,∴a>b;③若a>b,<,则ab>0,真命题;理由:∵a>b,<,∴a、b同号,∴ab>0∴组成真命题的个数为3个;故选:D.9.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72020的结果的个位数字是()A.0B.1C.7D.8【分析】观察等式,发现尾数分别为:1,7,9,3,1,7,9,3…每4个数一组进行循环,所以2020÷4=505,进而可得得70+71+72+…+72020的结果的个位数字.解:观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,发现尾数分别为:1,7,9,3,1,7,…,每4个数一组进行循环,所以2020÷4=505,而1+7+9+3=20,505×20=10100,所以70+71+72+…+72020的结果的个位数字是0.故选:A.10.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【分析】由圆周角定理和角平分线得出∠ADB=90°,∠OBC=∠DBC,由等腰三角形的性质得出∠OCB=∠OBC,得出∠DBC=∠OCB,证出OC∥BD,选项A成立;由平行线的性质得出AD⊥OC,选项B成立;由垂径定理得出AF=FD,选项D成立;△CEF和△BED中,没有相等的边,△CEF与△BED不全等,选项C不成立,即可得出答案.解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.11.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2【分析】设x1,x2是x2+2mx+m2+m=0的两个实数根,由根与系数的关系得x1+x2=﹣2m,x1•x2=m2+m,再由x12+x22=(x1+x2)2﹣2x1•x2代入即可;解:设x1,x2是x2+2mx+m2+m=0的两个实数根,∴△=﹣4m≥0,∴m≤0,∴x1+x2=﹣2m,x1•x2=m2+m,∴x12+x22=(x1+x2)2﹣2x1•x2=4m2﹣2m2﹣2m=2m2﹣2m=12,∴m=3或m=﹣2;∴m=﹣2;故选:A.12.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1=有正数解,那么这五个数中所有满足条件的m的值之和是()A.1B.2C.﹣1D.﹣2【分析】分别解出二元一次方程组、分式方程,根据题意得到满足条件的m的值,计算即可.解:解方程组,得,当方程组有解时,m≠﹣4,解分式方程﹣1=,得x=4﹣m,当x=1,即m=3时,分式方程无解,∴m≠3,由题意得,m=﹣3,1,4,∴满足条件的m的值之和=﹣3+1+4=2,故选:B.二、填空题(本大题6小题,每小题4分,满分24分:请将正确答案填在答题卡相应位置)13.计算()2+1的结果是4.【分析】直接利用二次根式的性质化简得出答案.解:原式=3+1=4.故答案为:4.14.如图,AD∥CE,∠ABC=100°,则∠2﹣∠1的度数是80°.【分析】直接作出BF∥AD,再利用平行线的性质分析得出答案.解:作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=100°,∴∠1+∠4=100°,∠2+∠4=180°,∴∠2﹣∠1=80°.故答案为:80°.15.如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC =米.(可以用根号表示)【分析】由坡度易得AC与BC的比为1:5,设出相应未知数,利用勾股定理可得AC 的长度.解:∵坡度i=1:5,∴AC与BC的比为1:5,设AC为x,则BC为5x,∴x2+(5x)2=262,∵x>0,∴x=.故答案为:.16.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=(20﹣20)米.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFD=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是①③④(填写所有正确结论的序号).【分析】先根据已知条件证明△AEF≌△ABC,从中找出对应角或对应边.然后根据角之间的关系找相似,即可解答.解:在△ABC与△AEF中,∵AB=AE,BC=EF,∠B=∠E,∴△ABC≌△AEF,∴∠AFD=∠C(①正确);由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB(②正确);∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FDB可得∠EAD=∠BFD,∴∠BFD=∠CAF(④正确).综上可知:①③④正确.故答案为:①③④.三、解答题(本大题8个小题,第26题8分,其余每小题10分,共78分,解答每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上)。