机械振动 知识点总结

合集下载

机械基础振动笔记

机械基础振动笔记

机械基础振动笔记一、振动的基本概念。

1. 定义。

- 机械振动是指物体在平衡位置附近做往复运动。

例如,钟摆的摆动,汽车在不平整路面行驶时车身的上下晃动等。

2. 振动系统的组成要素。

- 质量(惯性元件)- 是振动系统中具有惯性的部分。

质量的存在使得物体在受力时不能立即改变运动状态,而是按照牛顿第二定律产生加速度。

例如,在弹簧 - 质量系统中,质量块就是提供惯性的部分。

- 弹簧(弹性元件)- 它能够储存和释放能量,提供弹性恢复力。

当弹簧被拉伸或压缩时,会产生与变形量成正比的力,遵循胡克定律 F = kx(k为弹簧刚度,x为弹簧变形量)。

- 阻尼器(阻尼元件)- 阻尼器的作用是消耗振动系统的能量。

它产生的阻尼力与物体的运动速度有关,常见的有粘性阻尼,其阻尼力F_d = c ẋ(c为阻尼系数,ẋ为速度)。

二、简谐振动。

1. 运动方程。

- 简谐振动是最简单、最基本的振动形式。

其运动方程为x = Asin(ω t+φ)。

- 其中,x表示振动体偏离平衡位置的位移;A为振幅,它表示振动的最大位移;ω为角频率,ω=√(frac{k){m}}(对于弹簧 - 质量系统,k为弹簧刚度,m为质量),单位是rad/s;t为时间;φ为初相位,它决定了振动的初始状态。

2. 速度和加速度。

- 速度。

- 对位移方程求导可得速度方程:ẋ=Aωcos(ω t +φ)。

速度的最大值为v_max=Aω。

- 加速度。

- 对速度方程求导可得加速度方程:ẍ=-Aω^2sin(ω t+φ)。

加速度的最大值为a_max=Aω^2。

三、自由振动。

1. 无阻尼自由振动。

- 对于弹簧 - 质量系统,无阻尼自由振动的运动方程为m ẍ+kx = 0。

- 其解为x = Asin(ω t+φ),其中ω=√(frac{k){m}},振动周期T=(2π)/(ω)=2π√(frac{m){k}},频率f=(1)/(T)=(1)/(2π)√(frac{k){m}}。

高二物理机械振动知识点总结

高二物理机械振动知识点总结

高二物理机械振动知识点总结高二物理“机械振动和机械波”这一章是非重点章,下面是店铺给大家带来的高二物理机械振动知识点总结,希望对你有帮助。

高二物理机械振动知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。

例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。

1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

第二章机械振动章节知识点总结(无实验)-2024-2025学年高二上学期物理人教版选择性

第二章机械振动章节知识点总结(无实验)-2024-2025学年高二上学期物理人教版选择性

简谐运动知识点汇总第一节 简谐运动一、弹簧振子1、定义:我们把小球(物块)和弹簧组成的系统统称为弹簧振子。

2、理想化条件:忽略摩擦力等各种阻力、小球看成质点、忽略弹簧质量、弹簧始终在弹性限度内3、平衡位置:振子在振动方向上合理为零的点,速度最大,振动位移、回复力、回复加速度为零4、振动位移:由平衡位置指向振子位置的有向线段。

5、振动图像(xt 图像)图像信息:① 横坐标 —— 时间(周期)② 纵坐标 —— 位移和路程③ 斜率 —— 速度④ 平衡位置 —— 位移为0,速度最大⑤ 最大位移处 —— 位移最大,速度为0二、简谐运动1、定义:如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像(xt 图像)是一条正弦曲线)sin(ϕω+=t A x ,这样的振动是一种简谐运动。

简谐运动是最基本的振动2、对称性: 关于平衡位置对称的两点位移大小相等,方向相反速度大小相等,方向可同可反时间对称第二节 简谐运动的描述一、振幅1、定义:振动物体离开平衡位置的最大距离,叫做振动的振幅,常用字母A 表示、是个标量。

2、说明:振子振动范围的大小是振幅的两倍2A;振幅的大小直接反映了振子振动能量(E=EK+EP)的高低,振子质量一定时,振幅越大,振动系统能量越大。

二、周期频率三、圆频率:是一个与周期成反比,与频率成正比的量,叫作简谐运动的“圆频率”。

它也表示简谐运动的快慢f T ππω22== 四、相位、初相第三节 简谐运动的回复力和能量一、回复力1、定义:指向平衡位置使振子回到平衡位置的力2、特点:(1)回复力是效果力,由性质力充当,可以是一个力,可以是一个力的分力,可以是几个力的合力(2)回复力一定指向平衡位置且与位移方向相反3、公式F=KX4、简谐运动定义2: 如果质点所受的力与它偏离平衡位置的位移大小成正比,即 F =k x ,质点的运动就是简谐运动.第四节 单摆一、单摆:1、定义:细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略;球的直径与线的长度相比也可以忽略,这样的装置就叫做单摆2、特点(1)摆球:体积小,质量大可视为质点;(2)摆线:细长,不可伸长,质量忽略;(3)不计一切阻力(4)单摆是理想化模型(5)摆角一般小于5°3、回复力x L mg F -=回4、周期公式gl T π2=(注意等效摆长和等效重力加速度的换算)4、说明:单摆在平衡位置合力不为零(合力等于向心力),回复力为零第六节 受迫振动 共振一、固有振动和固有频率1、定义:振动系统在没有外力干预下的振动称为固有振动,也称自由振动,其频率称为固有频率。

高中物理【机械振动】知识点、规律总结

高中物理【机械振动】知识点、规律总结
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大

机械振动知识点

机械振动知识点

机械振动知识点引言:机械振动是工程学中一个重要的研究领域,涉及到许多基础概念和技术。

在现代工程中,机械振动的理论和应用广泛存在于各个行业,为我们理解和应对振动问题提供了重要的参考。

本文将探讨机械振动的一些基本概念和相关知识点。

一、振动的定义和分类机械振动是指物体在受到外力作用后,发生周期性的来回运动。

振动可以分为自由振动和受迫振动两种形式。

自由振动是指系统在无外力作用下的振动,主要受到初始条件的影响。

受迫振动则是在外力作用下发生的振动,外力可能是周期性的或非周期性的,对物体的振动状态有影响。

二、振动的参数和描述方法了解机械振动的参数和描述方法对于研究和分析振动问题至关重要。

常见的振动参数包括振幅、周期、频率和相位等。

振幅是指物体在振动过程中达到的最大位移距离;周期是指物体完成一个完整振动周期所用的时间;频率是指单位时间内振动完成的周期数;相位表示物体当前位置相对于某一特定位置的相对位置关系。

通过这些参数的描述,我们能够更加准确地刻画振动的特征和性质。

三、单自由度系统的振动在机械振动研究中,单自由度系统是最基本的模型。

它是指一个物体在沿一个特定方向上的振动,如弹簧和质点的振动。

对于单自由度系统,可以通过求解微分方程来获得振动的解析解,进一步揭示振动的特性和规律。

其中,阻尼和劲度是单自由度振动最关键的参数,影响着振动的衰减和频率等特性。

四、多自由度系统的振动除了单自由度系统,还存在着多自由度系统的振动。

这类系统包含有多个振动部件,相互之间有耦合关系,振动会以不同的模态和频率发生。

因此,研究多自由度系统的振动需要考虑更多的因素和参数。

通过模态分析和矩阵计算等方法,我们可以得到多自由度系统的共振频率、模态形式和振动特性等信息。

五、振动控制和减振对于某些工程应用来说,振动可能是不可避免的,但我们可以采取一些措施来控制和减小振动的影响。

振动控制技术包括主动控制、被动控制和半主动控制等,通过对系统施加合适的力或刚度,可以改变振动的状态和特性。

机械振动知识点总结.

机械振动知识点总结.

机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结
机械振动是指物体在作无规则或规则周期性摆动时产生的现象。

以下是机械振动的一些知识点总结:
1. 振动的分类:机械振动可分为自由振动和受迫振动两种。

自由振动是指物体在没有外力作用下,由于初始条件引起的振动;受迫振动是指物体在外力作用下的振动。

2. 振动的标量与矢量表示:振动可以用标量表示,即描述物体在振动过程中的位置、速度和加速度等参数;也可以用矢量表示,即描述物体振动过程中的位移、速度和加速度等矢量量。

3. 振动的周期与频率:周期是指物体完成一次完整振动所需的时间;频率是指单位时间内振动次数的倒数。

两者之间满足 T = 1/f 的关系,其中 T 表示振动周期,f 表示振动频率。

4. 振动的幅度与相位:振动的幅度是指物体振动过程中,位移、速度或加速度的最大值;相位是指某一时刻物体振动状态相对于某一参考点的时间差。

5. 振动的简谐振动:简谐振动是指振动物体的加速度与其位移成正比,反向相反的振动。

在简谐振动中,振动物体的加速度与位移之间存在相位差的关系。

6. 振动的阻尼和共振:阻尼是指振动物体受到的摩擦力或阻尼力,使得振动过程中能量逐渐耗散的现象;共振是指外界周期性作用力与振动物体的固有频率相等或接近时,振动幅度会急
剧增大的现象。

7. 振动的能量:振动物体具有动能和势能两种能量形式。

在振动过程中,动能和势能会不断转换,总能量守恒。

8. 振动的叠加原理:当物体受到多个振动力的作用时,振动的总效果等于各个振动力分别作用时的效果之和。

这些是机械振动的一些基本知识点,深入研究机械振动还包括振动系统的建模与分析、振动的稳定性和控制等内容。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

机械振动总结(优秀3篇)

机械振动总结(优秀3篇)

机械振动总结(优秀3篇)机械振动总结篇1机械振动概述机械振动是指物体在空气中或液体中由于物理力学原因导致的周期性振动。

这种振动可以产生噪音、震源,甚至可能导致机械部件的损坏。

因此,对机械振动的研究和控制是保证机械系统稳定运行的重要环节。

振动原因机械振动的主要原因包括:1.机械部件的松动:如螺丝钉的松动、螺帽的松动等。

2.机器的启动和停止:如马达的启动和停止、泵的启动和停止等。

3.气流的冲击:如风扇、鼓风机等在运行过程中产生的气流冲击。

4.电磁振动:如电机的运行、电磁阀的电磁力等。

振动测量对机械振动进行测量可以有效地掌握机械系统的振动状况,从而进行故障排查和修复。

常用的振动测量仪器包括:1.振动速度传感器:用于测量物体表面的振动速度。

2.频率分析仪:用于分析振动信号的频率。

3.振动记录仪:用于记录振动信号的波形和幅度。

振动控制对机械振动进行控制的主要方法包括:1.紧固件:如螺丝钉、螺帽等,用于紧固机械部件,防止松动引起的振动。

2.阻尼:通过增加阻尼材料或改变机械系统的结构,减少振动能量。

3.减震:通过改变机械系统的运动状态,减少振动产生。

4.滤波:通过滤波器过滤掉不需要的振动信号,减少对机械系统的影响。

总结机械振动是机械系统运行中常见的物理现象。

通过对机械振动的研究和控制,可以有效地减少机械部件的松动、磨损和损坏,提高机械系统的稳定性和使用寿命。

因此,对机械振动进行深入的了解和掌握,对于机械工程师和相关技术人员来说,具有重要的实践意义。

机械振动总结篇2机械振动是指物体或质点在某一特定平面上,周期性、规则地往复运动的过程。

这种运动可以是在弹性介质中的自由振动,也可以是在机械、电气、流体等非弹性介质中的弹性振动。

机械振动对于机械工程和设备设计具有重要意义,包括确定设备的设计、选择材料、优化结构、提高效率、减少噪声等方面。

在机械振动领域,常见的振动类型包括自由振动、强迫振动、受迫振动和共振。

自由振动是指物体在没有外力作用下的振动,其频率和振幅取决于物体的质量和弹性。

机械振动学总结全

机械振动学总结全

机械振动学总结 第一章 机械振动学基础第二节 机械振动的运动学概念第三节机械振动是种特殊形式的运动。

在这运动过程中,机械振动系统将围绕其平衡位置作往复运动。

从运动学的观点看,机械振动式研究机械系统的某些物理量在某一数值近旁随时间t 变化的规律。

用函数关系式来描述其运动。

如果运动的函数值,对于相差常数T 的不同时间有相同的数值,亦即可以用周期函数来表示,则这一个运动时周期运动。

其中T 的最小值叫做振动的周期,Tf 1=定义为振动的频率。

简谐振动式最简单的振动,也是最简单的周期运动。

一、简谐振动物体作简谐振动时,位移x 和时间t 的关系可用三角函数的表示为式中:A 为振幅,T 为周期,ϕ和ψ称为初相角。

如图所示的正弦波形表示了上式所描述的运动,角速度ω称为简谐振动的角频率简谐振动的速度和加速度就是位移表达式关于时间t 的一阶和二阶导数,即可见,若位移为简谐函数,其速度和加速度也是简谐函数,且具有相同的频率。

因此在物体运动前加速度是最早出现的量。

可以看出,简谐振动的加速度,其大小与位移成正比,而方向与位移相反,始终指向平衡位置。

这是简谐振动的重要特征。

在振动分析中,有时我们用旋转矢量来表示简谐振动。

图P6旋转矢量的模为振幅A ,角速度为角频率ω若用复数来表示,则有)sin()cos()(ψωψωψω+++==+t jA t A z Ae z t j用复指数形式描述简谐振动,给计算带来了很多方便。

因为复指数t j e ω对时间求导一次相当于在其前乘以ωj ,而每乘一次j ,相当于有初相角2π。

二.周期振动满足以下条件:1)函数在一个周期内连续或只有有限个间断点,且间断点上函数左右极限存在;2)在一个周期内,只有有限个极大和极小值。

则都可展成Fourier 级数的形式,若周期为T 的周期振动函数,则有式中22n n n b a A += nn n b a =ψt a n 三、简谐振动的合成一、同方向振动的合成1.俩个同频率的简谐振动)sin(222ψω+=t A x ,)sin(2222ψω+=t A x它们的合成运动也是该频率的简谐振动2.俩个不同频率振动的合成若21ωω≤,则合成运动为若21ωω≥ ,对于A A A ==21 ,则有上式可表示为二、两垂直方向振动的合成1.同频率振动的合成如果沿x 方向的运动为沿y 方向的运动为2不同频率振动的合成对于俩个不等的简谐运动它们的合成运动也能在矩形中画出各种曲线。

高中物理机械振动知识点总结

高中物理机械振动知识点总结

高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。

2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。

3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。

4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。

5. 振动的能量:机械振动存在动能和势能的相互转换。

在简谐振动中,能量以振幅的平方的形式表示。

6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。

简谐振动的特点包括周期性、频率、振幅、相位等。

7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。

8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。

阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。

9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。

10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。

以上是高中物理机械振动的主要知识点总结,希望对你有帮助。

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结机械振动考点⼀简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复⼒是指振动物体所受的总是指向平衡位置的合外⼒。

回复⼒是产⽣振动的条件,它使物体总是在平衡位置附近振动。

它属于效果⼒,其效果是使物体再次回到平衡位置。

回复⼒可以是某⼀个⼒,也可以是⼏个⼒的合⼒或某个⼒的分⼒。

平衡位置是指物体所受回复⼒为零的位置!2.简谐运动: 物体在跟位移⼤⼩成正⽐并且总是指向平衡位置的回复⼒作⽤下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是⼀种周期性的往复运动。

例如弹簧振⼦、单摆。

注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是⽮量.②振幅A :振动物体离开平衡位置的最⼤距离,是标量,它表⽰振动的强弱.③周期T 和频率f :物体完成⼀次全振动所需的时间叫做周期,⽽频率则等于单位时间内完成全振动的次数.它们是表⽰振动快慢的物理量,⼆者互为倒数关系:T =1/f. (2)简谐运动的表达式①动⼒学表达式:F =-kx ,其中“-”表⽰回复⼒与位移的⽅向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表⽰简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在⽔平⽅向的投影理解)(3)简谐运动的运动规律①变化规律:位移增⼤时?????回复⼒、加速度增⼤???速度、动能减⼩势能增⼤机械能守恒振幅、周期、频率保持不变注意:这⾥所说的周期、频率为固有周期与固有频率,由振动系统本⾝构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复⼒、位移、加速度具有等⼤反向的关系,另外速度的⼤⼩、动能具有对称性,速度的⽅向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同⼀位置且振动状态相同.注意:做简谐运动的物体在⼀个周期内的路程⼤⼩⼀定为4A ,半个周期内路程⼤⼩⼀定为2A ,四分之⼀个周期内路程⼤⼩不⼀定为A 。

机械振动知识点

机械振动知识点

机械振动知识点机械振动是指任何机械系统中由于外部或内部的激励产生的不规则运动或波动现象。

机械振动的发生会对机械系统的正常运行造成影响,从而导致机械系统的损坏甚至是失效。

因此,掌握机械振动的相关知识对于机械工程师来说非常重要。

1.机械振动的产生原因机械振动的产生原因有很多,其中一些常见的原因包括:1.1.强制激励:机械系统受到外部的激励,例如电机和泵等设备的运转会产生强制激励,从而引起机械振动。

1.2.自然频率:当机械系统的运动频率等于其自然频率时,会产生自由振动,这种振动是由系统自身的特性决定的。

1.3.非线性效应:当机械系统中存在非线性效应时,例如分段的弹簧和摩擦等,会引起机械振动。

2.机械振动的影响机械振动对机械系统的影响非常大,会导致许多问题,例如:2.1.噪音:机械振动会产生噪音,对于需要安静环境的生产或办公场所来说,这种噪音会带来不必要的干扰和影响。

2.2.机械损坏:当机械振动达到一定程度时,会导致机械系统的部件出现疲劳、断裂甚至是失效,严重时会造成设备损坏。

2.3.安全问题:机械振动会导致设备意外停机或部件松动等问题,这也会引起一定的安全问题。

3.机械振动的评价指标机械振动的评价指标主要有振动幅值、振动速度、振动加速度和频率等。

其中,振动幅值、振动速度和振动加速度是描述不同类型振动特性的量度。

3.1.振动幅值:振动幅值是指在某一时刻,振动系统的振动位移的最大值。

对于机械系统来说,振动幅值越大,系统的损坏和失效风险也就越高。

3.2.振动速度:振动速度是运动的速率,即在某一时刻机械系统的振动速度的值。

振动速度常常用于描述与轴承、齿轮等部件相关的振动。

3.4.频率:频率是指机械振动中振动周期的数量,通常以赫兹(Hz)为单位表示。

频率可以帮助我们分析机械振动的原因,例如分析自然频率和强制频率等。

4.机械振动的控制和减少掌握机械振动的控制和减少方法可以有效地保护机械系统,延长机器的寿命,节约成本。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结1. 振动的基本概念振动是物体围绕某一平衡位置做周期性的往复运动。

振动可以分为自由振动和受迫振动两种。

•自由振动指的是没有外界强制作用下的振动,物体的振动频率和振幅由其固有的性质决定。

•受迫振动指的是在外力的驱动下,物体做的振动。

2. 振动的参数在分析振动时,常用以下参数描述振动的特性:•振幅(Amplitude):振动物体从平衡位置偏离的最大距离。

•周期(Period):振动物体完成一个完整周期所需的时间。

•频率(Frequency):振动物体单位时间内完成的周期数。

频率的倒数称为周期。

•相位(Phase):描述振动物体在某一时刻的位置与特定参考点的关系。

3. 简谐振动简谐振动是一种特殊的振动,其运动方程可以用正弦函数或余弦函数表示。

简谐振动满足以下条件:•振动物体受到的恢复力与其偏离平衡位置的距离成正比。

•振动物体的加速度与其位移成正比,且加速度与位移的方向相反。

简谐振动的特点是振动频率恒定,振幅随时间变化。

4. 阻尼振动阻尼振动是考虑振动系统存在阻力的情况下的振动。

阻尼振动可以分为三种情况:•无阻尼振动:振动系统不存在阻力,振动将持续进行。

•临界阻尼振动:振动系统阻尼恰好等于临界阻尼,振动将在最短时间内回到平衡位置,不发生超调。

•过阻尼振动:振动系统的阻力大于临界阻尼,振动将缓慢回到平衡位置,没有超调。

5. 谐波振动谐波振动是指振动物体的位移与外力的驱动频率成正比的振动。

在受迫振动中,外力的频率与振动系统的固有频率相等时,将出现谐波振动。

谐波振动的特点是振动频率与外力频率相等。

6. 两个简谐振动的合成当两个简谐振动在时间和空间上同时发生时,将产生合成振动。

合成振动的特点与两个振动的振幅、频率和相位差相关。

•两个振幅相等、频率相同且相位差为0的简谐振动合成,得到幅值加倍的简谐振动。

•两个振幅相等、频率相同且相位差为π的简谐振动合成,得到幅值减小为0的简谐振动。

7. 能量和功率在振动中,能量和功率是重要的参数。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结机械振动的研究旨在分析和控制系统的振动特性,以提高系统的性能、减少系统的动态负荷、延长系统的使用寿命,并确保系统在工作过程中的稳定性和安全性。

本文将对机械振动的基本知识点进行总结,包括机械振动的分类、振动系统的建模分析、振动的控制和减振、以及振动的监测与诊断等内容。

一、机械振动的分类1. 根据振动形式的不同,机械振动可分为以下几类:(1)自由振动:系统在没有外部激励的情况下发生的振动,系统内部能量交换导致振幅逐渐减小直至停止,如钟摆的摆动。

(2)受迫振动:系统受到外部激励作用而发生的振动,外部激励可以是周期性的或非周期性的,如机械系统受到周期性力的作用而发生的振动。

(3)共振:当受迫振动的频率与系统的固有频率相近或一致时,系统的振幅将迅速增大,甚至造成系统破坏的现象。

2. 根据振动的传播方式,机械振动可分为以下几类:(1)固体振动:振动是在固体介质中传播的,如机械结构的振动。

(2)流体振动:振动是通过流体介质(如液体或气体)传播的,如管道中的水波振动。

(3)弹性振动:振动是由于材料的弹性变形而产生的,如弹簧振子的振动。

二、振动系统的建模分析1. 振动系统的建模方法(1)单自由度振动系统的建模:利用牛顿第二定律,可以建立单自由度振动系统的等效质点模型,然后通过能量方法或拉氏方程等方法,可以求解系统的振动特性。

(2)多自由度振动系统的建模:对于多自由度振动系统,可以利用连续系统的离散化方法,将系统离散化为多个质点的集合,并建立相应的动力学模型,然后求解系统的振动特性。

2. 振动系统的分析方法(1)频域分析:通过对系统的动力学方程进行傅里叶变换,可以将系统的运动响应转换到频域中进行分析,得到系统的频率响应特性。

(2)时域分析:通过对系统的动力学方程进行积分,可以得到系统的时域响应,包括系统的位移、速度、加速度等随时间的变化规律。

(3)模态分析:通过对系统的模态方程进行求解,可以得到系统的固有频率和振型,以及相应的阻尼比和阻尼比比例。

机械振动和机械波知识点的归纳

机械振动和机械波知识点的归纳

机械振动和机械波知识点的归纳一、简谐运动1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动,又称简谐振动。

2、简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

(2)特点:简谐运动的图像是正弦(或余弦)曲线(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。

3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。

(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

机械振动知识点汇总

机械振动知识点汇总

机械振动知识点汇总(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动。

这个中心位置叫平衡位置。

物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 简振模型——弹簧振子将一个有孔小球体与一个弹簧连在一起,将一个极为光滑的水平杆穿入小球体,使球体可以在水平杆上左右滑动,而球体与水平杆的摩擦力小得可以忽略不计。

将弹簧的一端固定住,弹簧的整体质量要比球体质量小得多,这样弹簧本身质量也可以忽略不计。

这个系统便是一个弹簧振子。

2.简谐振动定义物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

3.简谐振动的条件物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的复力作用。

4.简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率:周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

高中物理选修3-4机械振动_机械波_光学知识点(好全)

高中物理选修3-4机械振动_机械波_光学知识点(好全)

机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。

(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。

物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。

4.位移x:相对平衡位置的位移。

它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。

5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。

(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。

故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。

(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。

(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。

机械振动基础李晓蕾知识点总结

机械振动基础李晓蕾知识点总结

机械振动基础李晓蕾知识点总结
一、机械振动基础概念
机械振动是指机械系统在运动过程中发生的振动现象。

机械振动基础是研究机械系统振动的基本理论和方法,包括自由振动、强迫振动、阻尼振动等内容。

二、自由振动
自由振动是指机械系统在无外力作用下,由于初始位移或初始速度而引起的周期性运动。

自由振动的特点是周期性、渐减、共振等。

三、阻尼振动
阻尼是指机械系统受到摩擦力或空气阻力等因素的影响而逐渐减少能量。

阻尼对于机械系统的运行稳定性有重要影响,可以分为线性阻尼和非线性阻尼。

四、强迫振动
强迫振动是指机械系统受到外部周期性力作用时发生的周期性运动。

强迫振动可以分为共鸣和非共鸣两种情况,共鸣时会增加能量并导致损坏。

五、模态分析
模态分析是指对于复杂结构进行分解,将其分解为一系列简单的振动模态,以便于进行分析和计算。

模态分析可以用于机械系统的优化设计和故障诊断等方面。

六、振动测量
振动测量是指对机械系统振动参数进行实时监测和记录,以便于进行
故障诊断和预防性维护。

振动测量可以通过加速度计、速度计、位移
传感器等设备进行。

七、常见故障及处理方法
机械系统常见的故障包括不平衡、失衡、松动等问题。

处理方法包括
平衡校正、紧固螺栓、更换零部件等措施。

八、结论
机械振动基础是研究机械系统运行稳定性和故障诊断的重要基础理论。

了解自由振动、阻尼振动、强迫振动等内容,掌握模态分析和振动测
量技术,能够有效地预防和解决机械系统故障问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械振动
1、判断简谐振动的方法
简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.
要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点
简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:
如果弄清了上述关系,就很容易判断各物理量的变化情况
3、简谐运动的对称性
简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性
5、简谐运动图象
简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振
(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x
回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K
2
(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

○2产生共振的条件:驱动力频率等于物体固有频率。

○3共振的应用:转速计、共振筛。

(3)理解共振曲线的意义
单摆
考点分析:
周期公式的理解
1、周期与质量、振幅无关
2、等效摆长
3、等效重力加速度
摆钟快慢问题
利用周期公式求重力加速度,进而求高度
单摆与其他力学知识的综合
机械波
二、考点分析:
①.波的波速、波长、频率、周期和介质的关系:
②.判定波的传播方向与质点的振动方向
方法一:同侧原理
波的传播方向与质点的振动方向均位于波形的同侧。

方法二:逆描波形法
用笔沿波形逆着波的传播方向描,笔势向上该处质点振动方向即向
③、已知波的图象,求某质点的坐标,波速,振动图象等
④已知波速V和波形,作出再经Δt时间后的波形图
方法一、平移法:先算出经Δt时间波传播的距离Δx=VΔt,再把波形沿波的传播方向平移Δx即可。

因为波动图象的重复性,若已知波长λ,则波形平移n个λ时波形不变,当Δx=n λ+x时,可采取去nλ留零x的方法,只需平移x即可。

方法二、特殊点法:在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的
方法,分别作出两特殊点经t后的位置,然后按正弦规律画出新波形。

⑤已知某质点的振动图象和某时刻的波动图象进行分析计算
⑥已知某两质点的振动图象进行分析计算
⑦已知某两时刻的波动图象进行分析计算。

相关文档
最新文档