2019高中自主招生数学试题
2019年浙江省宁波市普通高中自主招生数学试卷及答案解析
(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;
(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC为等腰直角三角形,请直接写出它的腰长为.
11.(15分)如图1,P为第象限内一点,过P、O两点的⊙M交x轴正半轴于点A,交y轴正半轴于点B,∠OPA=45°.
A.23B.24C.25D.26
【解答】解:由图知“亮”记为数字1,“不亮”记为数字0,
则1=1×20,2=1×21+0×20,3=1×21+1×21,4=1×22+0×21+0×20,5=1×22+0×21+1×20,
∵●〇〇●●〇用数字表示为“011001”,
∴●〇〇●●〇表示的数为0×25+1×24+1×23+0×22+0×21+1×20=25,
6.(5分)关于x的不等式组 有且只有四个整数解,则a的取值范围是.
7.(5分)如图,矩形ABCD中分割出①②③三个等腰直角三角形,若已知EF的值,则可确定其中两个三角形的周长之差,这两个三角形的序号是.
8.(5分)如图,△ABC中,MN∥BC交AB、AC于M、N,MN与△ABC内切圆相切,若△ABC周长为12,设BC=x,MN=y,则y与x的函数解析式为(不要求写自变量x的取值范围).
D.不能确定x1、x2、x3的大小
【解答】解:∵a1>a2>a3>0,
∴二次函数y1=a1(x+1)(x﹣2),y2=a2(x+1)(x﹣2),y3=a3(x+1)(x﹣2)开口大小为:y1<y2<y3.
2019年浙江省宁波市普通高中自主招生数学试卷
2019年浙江省宁波市普通高中自主招生数学试卷一、选择题(每小题5分,共25分)1.(5分)用一排6盏灯的亮与不亮来表示数,已知如图分别表示了数1~5,则●〇〇●●〇表示的数是()A.23B.24C.25D.262.(5分)用11个相同的正方体堆积如图,在①②③④四个正方体中随机拿掉两个,结果左视图不变的概率是()A.B.C.D.3.(5分)如图入口进入,沿框内问题的正确判断方问,最后到达的是()A.甲B.乙C.丙D.丁4.(5分)三个关于x的方程:a1(x+1)(x﹣2)=1,a2(x+1)(x﹣2)=1,a3(x+1)(x ﹣2)=1,已知常数a1>a2>a3>0,若x1、x2、x3分别是按上顺序对应三个方程的正根,则下列判断正确的是()A.x1<x2<x3B.x1>x2>x3C.x1=x2=x3D.不能确定x1、x2、x3的大小5.(5分)如图正方形ABCD的顶点A在第二象限图象上,点B、点C分别在x轴、y 轴负半轴上,点D在第一象限直线y=x的图象上,若,则k的值为()A.﹣1B.C.D.﹣2二、填空题(每小题5分,共20分)6.(5分)关于x的不等式组有且只有四个整数解,则a的取值范围是.7.(5分)如图,矩形ABCD中分割出①②③三个等腰直角三角形,若已知EF的值,则可确定其中两个三角形的周长之差,这两个三角形的序号是.8.(5分)如图,△ABC中,MN∥BC交AB、AC于M、N,MN与△ABC内切圆相切,若△ABC周长为12,设BC=x,MN=y,则y与x的函数解析式为(不要求写自变量x的取值范围).9.(5分)平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH=15,CH=24,则tan∠BAC的值为.三、解答题(每小题15分,共30分)10.(15分)x、y是一个函数的两个变量,若当a≤x≤b时,有a≤y≤b(a<b),则称此函数为a≤x≤b上的闭函数.如y=﹣x+3,当x=1时y=2;当x=2时y=1,即当1≤x ≤2时,1≤y≤2,所以y=﹣x+3是1≤x≤2上的闭函数.(1)请说明是1≤x≤30上的闭函数;(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC为等腰直角三角形,请直接写出它的腰长为.11.(15分)如图1,P为第象限内一点,过P、O两点的⊙M交x轴正半轴于点A,交y 轴正半轴于点B,∠OP A=45°.(1)求证:PO平分∠APB;(2)作OH⊥P A交弦P A于H.①若AH=2,OH+PB=8,求BP的长;②若BP=m,OH=n,把△POB沿y轴翻折,得到△P′OB(如图2),求AP′的长.2019年浙江省宁波市普通高中自主招生数学试卷参考答案与试题解析一、选择题(每小题5分,共25分)1.(5分)用一排6盏灯的亮与不亮来表示数,已知如图分别表示了数1~5,则●〇〇●●〇表示的数是()A.23B.24C.25D.26【解答】解:由图知“亮”记为数字1,“不亮”记为数字0,则1=1×20,2=1×21+0×20,3=1×21+1×21,4=1×22+0×21+0×20,5=1×22+0×21+1×20,∵●〇〇●●〇用数字表示为“011001”,∴●〇〇●●〇表示的数为0×25+1×24+1×23+0×22+0×21+1×20=25,故选:C.2.(5分)用11个相同的正方体堆积如图,在①②③④四个正方体中随机拿掉两个,结果左视图不变的概率是()A.B.C.D.【解答】解:在①②③④四个正方体中随机拿掉两个,有6种情况:①②;①③;①④;②③;②④;③④;其中左视图不变的情况有5种:①②;①③;①④;②④;③④;∴左视图不变的概率是,故选:A.3.(5分)如图入口进入,沿框内问题的正确判断方问,最后到达的是()A.甲B.乙C.丙D.丁【解答】解:有两边及第三边上的高对应相等的两个三角形全等是假命题,因为如果这两个三角形一个是锐角三角形,一个是钝角三角形时,有两边和其中一边上的高对应相等的两个三角形不全等;一组对边相等,一组对角相等的四边形是平行四边形,是假命题;,综合以上到达的是丁,故选:D.4.(5分)三个关于x的方程:a1(x+1)(x﹣2)=1,a2(x+1)(x﹣2)=1,a3(x+1)(x ﹣2)=1,已知常数a1>a2>a3>0,若x1、x2、x3分别是按上顺序对应三个方程的正根,则下列判断正确的是()A.x1<x2<x3B.x1>x2>x3C.x1=x2=x3D.不能确定x1、x2、x3的大小【解答】解:∵a1>a2>a3>0,∴二次函数y1=a1(x+1)(x﹣2),y2=a2(x+1)(x﹣2),y3=a3(x+1)(x﹣2)开口大小为:y1>y2>y3.∴其函数图象大致为:.∴x1<x2<x3.故选:A.5.(5分)如图正方形ABCD的顶点A在第二象限图象上,点B、点C分别在x轴、y 轴负半轴上,点D在第一象限直线y=x的图象上,若,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.二、填空题(每小题5分,共20分)6.(5分)关于x的不等式组有且只有四个整数解,则a的取值范围是6<a≤9.【解答】解:解不等式2x+a>5x,得:x<,解不等式,得:x≥﹣1,∵不等式组有四个整数解,∴6<a≤9,故答案为:6<a≤9.7.(5分)如图,矩形ABCD中分割出①②③三个等腰直角三角形,若已知EF的值,则可确定其中两个三角形的周长之差,这两个三角形的序号是①③.【解答】解:设①②③三个等腰直角三角形的边长分别为a,b,c,∴①②③三个等腰直角三角形的周长分别为:(2+)a,(2+)b,(2+)c,∴每两个等腰直角三角形的周长之差分别为:(2+)(a﹣c),(2+)(a﹣b),(2+)(b﹣c)∵EF=BE﹣BF=a﹣b,∴不能求①②两个等腰直角三角形之差,∵∠BFC=90°,∠GFC=45°∴∠EFG=45°∴EF=DG=a﹣c∴能求①③两个等腰直角三角形之差,∵b=c,∴b﹣c=c﹣c与EF无关,故答案为:①③8.(5分)如图,△ABC中,MN∥BC交AB、AC于M、N,MN与△ABC内切圆相切,若△ABC周长为12,设BC=x,MN=y,则y与x的函数解析式为y=(不要求写自变量x的取值范围).【解答】解:如图,设切点分别为E点,H点,F点,G点,∵BC,AB,AC,MN都与△ABC内切圆相切,∴BE=BG,GC=CF,ME=MH,NF=HN,∴BE+CF=BG+GC=BC=x,ME+NF=MH+NH=MN=y∵△ABC周长为12∴AB+AC+BC=12∴AE+AF=12﹣2x,∴△AMN的周长=AM+AN+MN=AM+MH+AN+NF=AE+AF=12﹣2x,∵MN∥BC∴△AMN∽△ABC∴∴∴y=故答案为:y=9.(5分)平面直角坐标系中,⊙O交x轴正负半轴于点A、B,点P为⊙O外y轴正半轴上一点,C为第三象限内⊙O上一点,PH⊥CB交CB延长线于点H,已知∠BPH=2∠BPO,PH=15,CH=24,则tan∠BAC的值为.【解答】解:设PB交⊙O于点N,连接P A,延长PB、AC交于点M,∵AB是直径,PH⊥CB∴∠ANP=90°=∠ACB=∠H,∴MC∥PH,由圆的对称性可得,P A=P A,∠BPO=∠APO=∠APB,∵∠BPH=2∠BPO,∴∠BPH=∠APB,∴△PHB≌△PNA(AAS),∴PN=PH=15,由MC∥PH得,∠HPB=∠M=∠APM,∴AM=AP=PB,∵AN⊥PM,∴PM=2PN=30,由△PHB∽△MBC,∴==,设MC=a,BC=b,MB=c,则HB=24﹣b,PB=30﹣C,∴==,∴==sin M=sin∠HPB,在Rt△PHB中,PH=15,∴PB==25,HB=sin∠HPB•PH=20,∴BC=24﹣20=4,MB=30﹣25=5,则MC==3,在Rt△ABC中,BC=4,AC=AM﹣MC=25﹣3=22,∴tan∠BAC===,故答案为:.三、解答题(每小题15分,共30分)10.(15分)x、y是一个函数的两个变量,若当a≤x≤b时,有a≤y≤b(a<b),则称此函数为a≤x≤b上的闭函数.如y=﹣x+3,当x=1时y=2;当x=2时y=1,即当1≤x ≤2时,1≤y≤2,所以y=﹣x+3是1≤x≤2上的闭函数.(1)请说明是1≤x≤30上的闭函数;(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC为等腰直角三角形,请直接写出它的腰长为.【解答】解:(1)∵k=30,∴当1≤x≤30时,y随x的增大而减小.∴当x=1时,y=30;当x=30时,y=1.∴1≤y≤30.∴反比例函数是1≤x≤30上的闭函数;(2)∵x=﹣=﹣2,a=1>0,∴二次函数y=x2+4x+k在闭区间[t,﹣2]上y随x的增大而减小.∵二次函数y=x2+4x+k是闭区间[t,﹣2]上的“闭函数”,∴当x=﹣2时,y=k﹣4;当x=t时,y=t2+4t+k.,解得,.∵t<﹣2,∴,舍去,∴k=1,t=﹣3.(3)由(2)知,抛物线解析式为:y=x2+4x+1,或y=(x+2)2﹣3由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得A(﹣2,﹣3),C(0,1).设B(﹣3,a),由勾股定理,得AC2=22+(﹣3﹣1)2=20,AB2=(﹣2+3)2+(﹣3﹣a)2=10+6a+a2,BC2=32+(1﹣a)2=10﹣2a+a2①当∠ABC=90°时,AC2=AB2+BC2,即20=10+6a+a2+10﹣2a+a2,则a=0.此时AB2=BC2=10,故AB=BC=;②当∠ACB=90°时,AB2=AC2+BC2,此时a=,而AC≠BC,不满足条件,舍去.③同理,当∠BAC=90°时也不满足条件.综上所述,△ABC的腰长为.故答案是:.11.(15分)如图1,P为第象限内一点,过P、O两点的⊙M交x轴正半轴于点A,交y 轴正半轴于点B,∠OP A=45°.(1)求证:PO平分∠APB;(2)作OH⊥P A交弦P A于H.①若AH=2,OH+PB=8,求BP的长;②若BP=m,OH=n,把△POB沿y轴翻折,得到△P′OB(如图2),求AP′的长.【解答】证明:(1)如图1,连接AB,∵∠AOB=90°∴AB是直径,∴∠APB=90°∵∠OP A=45°∴∠OPB=∠APB﹣∠OP A=90°﹣45°=45°∴∠OP A=∠OPB∴PO平分∠APB;(2)①∵∠OAB=∠OPB=45°,∠OBA=∠OP A=45°∴∠OBA=∠OAB∴OA=OB如图2,将△AOH绕点O逆时针旋转90°,得到△BOC,∴AH=BC=2,∠AHO=∠C=90°,∠OAH=∠OBC∵四边形APBO是圆内接四边形∴∠OAH+∠PBO=180°∴∠OBC+∠PBO=180°∴点C,点B,点P共线∵∠AHO=∠C=90°=∠APB∴四边形OCPH是矩形∴CP=OH,∴AH=OH﹣BP=2,且BP+OH=8∴BP=3,OH=5②BP=m,OH=n,如图3,将△AOP'绕点O逆时针旋转90°得到△BOQ,连接BQ,P'Q,∵OH⊥AP,∠OP A=45°,∴∠POH=∠OP A=45°,∴PH=OH=n,OP=n,∵OA=OB,∴,∴∠BPO=∠OP A=45°,∵把△POB沿y轴翻折,得到△P′OB∴OP=OP'=n,BP=BP'=m,∠BPO=BP'O=45°,∵将△AOP'绕点O逆时针旋转90°得到△BOQ,∴OQ=OP'=n,∠QOP'=90°,∴P'Q=2n,∠QP'O=45°,∴∠QP'B=90°,∴BQ==,∴AP'=.。
2019年四川省成都九中自主招生数学试卷含答案
2019年四川省成都九中自主招生数学试卷一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)当a<1时,化简的结果是()A.a B.﹣a C.a D.﹣a2.(5分)满足的所有实数x的和为()A.3B.4C.5D.63.(5分)五张如图所示的长为a,宽为b(a>b)的小长方形纸片,按如图的方式不重叠地放在矩形ABCD 中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足的关系式为()A.a=2b B.a=3b C.3a=2b D.2a=3b+14.(5分)如图△ABC为圆O的内接三角形,D为BC中点,E为OA中点,∠ABC=40°,∠BCA=80°,则∠OED的大小为()A.15°B.18°C.20°D.22°5.(5分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.6.(5分)如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP2=y,则表示y与x 的函数关系的图象大致为()A.B.C.D.7.(5分)某校初三年级有四个班,每班挑选乒乓球男女运动员各一人,组成年级混合双打代表队.那么,四对混合双打中,没有一对选手是同班同学的概率是()A.B.C.D.8.(5分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.9.(5分)设a、b、c为实数,且a≠0,抛物线y=ax2+bx+c,顶点在y=﹣2上,与x轴交于点A,B,与y轴交于点C,当△ABC为直角三角形时,S△ABC的最大值是()A.1B.C.3D.410.(5分)设,则的整数部分是()A.61B.62C.63D.64二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)已知x,y都是非负数,且满足x2+2xy+y2+x+y﹣12=0,则x(1﹣y)的最大值为.12.(5分)已知实数a满足a2﹣a﹣1=0.则a8+7a﹣4的值为.13.(5分)如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为.14.(5分)已知a、b是实数,且a2+ab+b2=5.若a2﹣ab+b2的最大值是m,最小值是n,则m+n的值是.15.(5分)如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过45次这样的操作菱形中心O所经过的路径总长为.(结果保留π)16.(5分)如图,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,作DH⊥CE于H,则DG:DH=.三、解答题(本大题共6小题,共70分)17.(10分)(1)已知a2+4a+1=0,且,求m的值.(2)解方程:.18.(10分)一条笔直的公路L穿过草原,公路边有一卫生站A距公路30km的地方有一居民点B,A、B 之间的距离为90km.一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60km/h,在草地上行驶的最快速度是30km/h.问司机应在公路上行驶多少千米?全部所用的行车时间最短?最短时间为多少?19.(12分)已知m,n,p为正整数,m<n.设A(﹣m,0),B(n,0),C(0,p),O为坐标原点.若∠ACB=90°,且OA2+OB2+OC2=3(OA+OB+OC).(1)求图象经过A,B,C三段的二次函数的解析式;(2)点D是抛物线上的一动点,直线AD交线段BC于点Q,若△ACQ,△ABQ的面积S△ACQ,S△ABQ 满足S△ACQ:S△ABQ=1:3,求此时点D的坐标.20.(12分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.(1)当四边形ODEC的面积S最大时,求EF;(2)求CE+2DE的最小值.21.(12分)阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对偶式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB=.反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范围;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.22.(14分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”,例如:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C=115°.(1)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3,求对角线AC的长;(2)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣),点D在y轴上,抛物线过点A、C,点P在抛物线上,满足∠APC=∠ADC的点至少有3个时,总有不等式2n﹣成立,求n的取值范围.2019年四川省成都九中自主招生数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)当a<1时,化简的结果是()A.a B.﹣a C.a D.﹣a【解答】解:∵a<1,∴1﹣a>0,∵﹣a3(1﹣a)≥0,∴a≤0,∴=|a|=﹣a,故选:B.2.(5分)满足的所有实数x的和为()A.3B.4C.5D.6【解答】解:当2﹣x=1,即x=1时,满足题意.当2﹣x=﹣l,即x=3时,由于,所以满足题意.当2﹣x≠±1且2﹣x≠0,即x≠1 且x≠3 且x≠2时,令x2﹣x﹣2=0,得x=﹣1.因此,所求和为1+3+(﹣l)=3.故选:A.3.(5分)五张如图所示的长为a,宽为b(a>b)的小长方形纸片,按如图的方式不重叠地放在矩形ABCD 中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足的关系式为()A.a=2b B.a=3b C.3a=2b D.2a=3b+1【解答】解:左上角阴影部分的长为AE,宽为AF=2b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=3b+PC,∴AE+a=3b+PC,即AE﹣PC=3b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=2b×AE﹣a×PC=2b(PC+3b﹣a)﹣aPC=(2b﹣a)PC+6b2﹣2ab,则2b﹣a=0,即a=2b,故选:A.4.(5分)如图△ABC为圆O的内接三角形,D为BC中点,E为OA中点,∠ABC=40°,∠BCA=80°,则∠OED的大小为()A.15°B.18°C.20°D.22°【解答】解:如图,连接OC,取OC中点F,连接EF、DF,∴∠AOC=2∠ABC=80°,OE=OF,∴∠OEF=∠OFE=(180°﹣80°)=50°,连接OB,∵D为BC中点,∴BD=CD,OD⊥BC,∴∠DOC=,∵∠BAC=BOC,∴∠DOC=∠BAC,∴∠DOC=∠BAC=180°﹣40°﹣80°=60°,∵F为OC中点,∴OF=FD,∴△OFD为等边三角形,∴OD=OF=OE,∴点O是△EFD外接圆的圆心,∴,∴∠OED=50°﹣30°=20°.故选:C.5.(5分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则+++…+的值为()A.B.C.D.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=+++…+=×(1﹣+﹣+﹣+…+﹣)=×(1+﹣﹣)=×=,故选:D.6.(5分)如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP2=y,则表示y与x 的函数关系的图象大致为()A.B.C.D.【解答】解:(1)当0≤x≤时,如图1,过M作ME⊥BC与E,∵M为AB的中点,AB=2,∴BM=1,∵∠B=60°,∴BE=,ME=,PE=﹣x,在Rt△BME中,由勾股定理得:MP2=ME2+PE2,∴y==x2﹣x+1;(2)当<x≤2时如图2,过M作ME⊥BC与E,由(1)知BM=1,∠B=60°,∴BE=,ME=,PE=x﹣,∴MP2=ME2+PE2,∴y==x2﹣x+1;(3)当2<x≤4时,如图3,连接MC,∵BM=1,BC=AB=2,∠B=60°,∴∠BMC=90°,MC==,∵AB∥DC,∴∠MCD=∠BMC=90°,∴MP2=MC2+PC2,∴y==x2﹣4x+7;综合(1)(2)(3),只有B选项符合题意.故选:B.7.(5分)某校初三年级有四个班,每班挑选乒乓球男女运动员各一人,组成年级混合双打代表队.那么,四对混合双打中,没有一对选手是同班同学的概率是()A.B.C.D.【解答】解:∵先把四个女运动员任意排列,设为ABCD,和A配合的男运动员有4个选择;和B配合的男运动员剩下3种选择;和C配合的男运动员剩下2种选择;最后一个和D配合.所以总共有24种.∴4男4女组成四队混合双打的情况共有:4×3×2=24种,设一、二、三、四班的男、女选手分别为A1、B1、A2、B2、A3、B3、A4、B4,则四队混合双打中,没有一对选手是同班同学的情景如下:由上得共有9种情形.故四对混合双打中,没有一对选手是同班同学的概率是:=.故选:C.8.(5分)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.【解答】解:连接AC,AG,∵GO⊥AB,∴O为AB的中点,即AO=BO=AB,∵G(0,1),即OG=1,∴在Rt△AOG中,根据勾股定理得:AO==,∴AB=2AO=2,又CO=CG+GO=2+1=3,∴在Rt△AOC中,根据勾股定理得:AC==2,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D时,CA⊥AE,此时F与A重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACO中,tan∠ACO==,∴∠ACO=30°,∴度数为60°,∵直径AC=2,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长π.故选:B.9.(5分)设a、b、c为实数,且a≠0,抛物线y=ax2+bx+c,顶点在y=﹣2上,与x轴交于点A,B,与y轴交于点C,当△ABC为直角三角形时,S△ABC的最大值是()A.1B.C.3D.4【解答】解:设y=ax2+bx+c交y轴于点C(0,c),c≠0,交x轴于点A(x1,0)、B(x2,0),且x1<0<x2,由△ABC是直角三角形知,点C必为直角顶点,且c2=(﹣x1)x2=﹣x1x2(射影定理的逆定理),由根与系数的关系得,,,∴,,又=﹣2,即8a=4+b2≥4,∴,∴,=,==,当且仅当,b=0,c=﹣2时等号成立,因此,Rt△ABC的最大面积是4.故选:D.10.(5分)设,则的整数部分是()A.61B.62C.63D.64【解答】解:∵,2050﹣2018+1=33,∴M>且M<,∴<M<,∴<<,即61<<62,∵>>>…>,∴M>,∴<=61,∴61<<61,∴的整数部分为61,故选:A.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)已知x,y都是非负数,且满足x2+2xy+y2+x+y﹣12=0,则x(1﹣y)的最大值为3.【解答】解:x2+2xy+y2+x+y﹣12=0(x+y)2+(x+y)﹣12=0,(x+y+4)(x+y﹣3)=0∵x、y为非负数,∴x+y+4>0,∴x+y=3,即x=3﹣y,∴0≤x≤3,0≤y≤3,∴x(1﹣y)=(3﹣y)(1﹣y)=(y﹣2)2﹣1≤3,故答案为:3.12.(5分)已知实数a满足a2﹣a﹣1=0.则a8+7a﹣4的值为48.【解答】解:∵a2﹣a﹣1=0,∴两边都除以a得,a﹣a﹣1=1,∴a2+a﹣2=3,a4+a﹣4=7,∴a8+7a﹣4,=a4•a4+a4•a﹣4﹣1+7a﹣4,=a4(a4+a﹣4)+7a﹣4﹣1,=7a4+7a﹣4﹣1,=7×7﹣1,=48.故答案为:48.13.(5分)如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为.【解答】解:∵正方形ABCD,∴∠ABC=90°,∵OB为半径,∴BC是⊙O的切线,连接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵正方形ABCD,∴∠A=90°,AB=AD=6,∵EF是⊙O的切线,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴AE=AD=2,设OB=OE=x.则AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案为.14.(5分)已知a、b是实数,且a2+ab+b2=5.若a2﹣ab+b2的最大值是m,最小值是n,则m+n的值是.【解答】解:设a2﹣ab+b2=k,∵a2+ab+b2=5,∴a2+b2=,ab=,∵a2+b2≥2|ab|,∴≥2||,即≥|5﹣k|,∴﹣≤5﹣k≤,解得,≤k≤15,∴m=15,n=,∴m+n=,故答案为:.15.(5分)如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过45次这样的操作菱形中心O所经过的路径总长为10π+5π.(结果保留π)【解答】解:菱形ABCD中,AB=2,∠C=60°,所以第一、二次旋转形成弧的半径是,圆心角是60°,所以第一、二次旋转的弧长和=,因为第三次旋转形成弧的半径是1,圆心角是60°,所以第三次旋转的弧长=,因为一个周期为3,所以45÷3=15,所以菱形中心O所经过的路径总长为:.故答案为:10π+5π.16.(5分)如图,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,作DH⊥CE于H,则DG:DH=:14.【解答】解:设BC=21a,则BF=14a,FC=7a,AB=28a,∴AE=EB=14a,∵∠ABC=120°,∴,∴CE=7a,∵S△ADF=S△DEC,∴,∴.三、解答题(本大题共6小题,共70分)17.(10分)(1)已知a2+4a+1=0,且,求m的值.(2)解方程:.【解答】解:(1)由已知可得a2+1=﹣4a,∴a4+1=(a2+1)2﹣2a2=14a2,∴由原式可得,∴m+14=5(m﹣12)=5m﹣60,∴4m=74,∴.(2)令∴x2﹣3x=t2﹣3,∴原方程化为:x2+(x2﹣3x)+2xt=1,∴x2+t2﹣3+2xt=1,∴(x+t)2=4,∴x+t=±2,∴若x+t=﹣2,则t2=x2+4x+4=x2﹣3x+3,解得:,经检验,x=﹣是增根,若x+t=2,则t2=x2+4﹣4x=x2﹣3x+3,解得x=1,经检验,x=1是方程的解,∴综上所述,x=1是原方程的解.答:(1)m的值为;(2)方程的解为x=1.18.(10分)一条笔直的公路L穿过草原,公路边有一卫生站A距公路30km的地方有一居民点B,A、B 之间的距离为90km.一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60km/h,在草地上行驶的最快速度是30km/h.问司机应在公路上行驶多少千米?全部所用的行车时间最短?最短时间为多少?【解答】解:如图,作射线AM交BC的延长线于M,使得∠MAC=30°,作DH⊥AM.∵时间t==(AD+BD),DH=AD,∴时间t=(DH+BD),∴当D,H,B共线,且BH⊥AM时,时间t最小,作BH′⊥AM于H′交AC于D′,此时时间最小值=•BH′,∵AB=90km,BC=30km,∴AC=60(km),∴CM=AC•tan30°=20(km),在Rt△BMH′中,BH′=BM•cos30°=(20+30)×=(30+15)(km),∴t的最小值=+.此时AD′=.19.(12分)已知m,n,p为正整数,m<n.设A(﹣m,0),B(n,0),C(0,p),O为坐标原点.若∠ACB=90°,且OA2+OB2+OC2=3(OA+OB+OC).(1)求图象经过A,B,C三段的二次函数的解析式;(2)点D是抛物线上的一动点,直线AD交线段BC于点Q,若△ACQ,△ABQ的面积S△ACQ,S△ABQ 满足S△ACQ:S△ABQ=1:3,求此时点D的坐标.【解答】解:(1)∵∠ACB=90°,OC⊥AB,∴OA•OB=OC2,即mn=p2.∵OA2+OB2+OC2=3(OA+OB+OC),∴m2+n2+p2=3(m+n+p).又∵m2+n2+p2=(m+n+p)2﹣2(mn+np+mp)=(m+n+p)2﹣2(p2+np+mp)=(m+n+p)2﹣2p(m+n+p)=(m+n+p)(m+n﹣p),∴m+n﹣p=3,即m+n=p+3.∵mn=p2,m+n=p+3,∴m,n是关于x的一元二次方程x2﹣(p+3)x+p2=0①的两个不相等的正整数根,∴△=[﹣(p+3)]2﹣4p2>0,解得﹣1<p<3.又∵p为正整数,故p=1或p=2.当p=1时,方程①为x2﹣4x+1=0,没有整数解.当p=2时,方程①为x2﹣5x+4=0,两根为m=1,n=4.综合知:m=1,n=4,p=2.设图象经过A,B,C三点的二次函数的解析式为y=k(x+1)(x﹣4),将点C(0,2)的坐标代入得2=k×1×(﹣4),解得.∴图象经过A,B,C三点的二次函数的解析式为.∴图象经过A,B,C三段的二次函数的解析式为y=﹣x2+x+2.(2)如图,直线AD交线段BC于点Q,由S△ACQ:S△ABQ=1:3,得CQ:QB=1:3,∴,,∴,∵A(﹣1,0),∴,联立,消去y整理可得,2x2﹣3x﹣5=0,由韦达定理:,而x A=﹣1,∴,∴,∴D点坐标为:.20.(12分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.(1)当四边形ODEC的面积S最大时,求EF;(2)求CE+2DE的最小值.【解答】解:(1)分别过O、E作ON⊥CD于N,EM⊥CD于M,∵CD=10,∴四边形ODEC=S△OCD+S△CDE=≤CD•OE==60,此时OM、EN、OE重合,∵ON•CD=OC•OD,∴10×ON=6×8,∴ON=,∴;(2)延长OB至点G,使BG=OB,连接GE、GC、DE,则,∵点D为OB的中点,OB=OE,∴,∴,又∠DOE=∠EOG,∴△DOE∽△EOG,,∴EG=2DE,∴CE+2DE=CE+EG,当C、E、G三点在同一直线上上时,CE+EG最小,CO=OA﹣AC=12﹣4=8,OG=OB+BG=12+12=24,此时,故CE+2DE有最小值为.21.(12分)阅读下列两则材料,回答问题材料一:我们将(+)与(﹣)称为一对“对偶式”因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对偶式”相乘可以有效地将(+)和(﹣)中的“”去掉例如:已知﹣=2,求+的值.解:(﹣)×(+)=(25﹣x)﹣(15﹣x)=10∵﹣=2,∴+=5材料二:如图,点A(x1,y1),点B(x2,y2),以AB为斜边作Rt△ABC,则C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,所以AB=.反之,可将代数式的值看作点(x1,y1)到点(x2,y2)的距离.例如===.所以可将代数式的值看作点(x,y)到点(1,﹣1)的距离.(1)利用材料一,解关于x的方程:﹣=2,其中x≤4;(2)①利用材料二,求代数式的最小值,并求出此时y与x的函数关系式,写出x的取值范围;②将①所得的y与x的函数关系式和x的取值范围代入y=+中解出x,直接写出x的值.【解答】解:(1)根据材料一;∵(﹣)×(+)=(20﹣x)﹣(4﹣x)=16∵﹣=2,∴+=8,∴=5=3∴解得:x=﹣5∴y=2x+6(﹣2≤x≤1)(2)①解:由材料二知:=====.∴可将的值看作点(x,y)到点(1,8)的距离的值看作点(x,y)到点(﹣2,2)的距离∴=+.∴当代数式取最小值即点(x,y)与点(1,8),(﹣2,2)在同一条直线上,并且点(x,y)位点(1,8)(﹣2,2)的中间∴的最小值===3且﹣2≤x≤1设过(x,y),(1,8),(﹣2,2)的直线解析式为:y=kx+b∴解得:∴y=2x+6(﹣2≤x≤1)②:∵y=+中∵y=2x+6∴+=2x+6 ①又∵(+)(﹣)=2x2+5x+12﹣(2x2+3x+6)=2x+6∴﹣=1 ②由①+②式得:=x+解得:x1=>1(舍)x2=∴x的值为1﹣22.(14分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”,例如:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C=115°.(1)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3,求对角线AC的长;(2)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣),点D在y轴上,抛物线过点A、C,点P在抛物线上,满足∠APC=∠ADC的点至少有3个时,总有不等式2n﹣成立,求n的取值范围.【解答】(1)①如图1,∠B=∠D=90°时延长AD,BC交于点E,∵∠DAB=60°,∴∠E=30°,又∵AB=4,AD=3∴BE=4,AE=8,DE=5,∴CE==,BC=4﹣=,∴AC==;②如图,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,∵∠DAB=∠BCD=60°,又∵AB=4,AD=3,∴AE=,DE=BF=,∴BE=DF=,∴CF=,BC=+=,∴AC==;综上,AC=或;(2)∵A(﹣2,0)、C(2,0)、B(﹣1,﹣),∴AB=2,BC=2,AC=4,∴AB2+BC2=AC2,∴∠ABC=90°,∵AD=CD,AB≠BC,∴∠BAD≠∠BCD,∵四边形ABCD是“等对角四边形”,∴∠ADC=∠ABC=90°,∴D(0,2),∵抛物线y=ax2+bx+c过点A、C,∴y=a(x+2)(x﹣2)=ax2﹣4a,即:a=﹣c,令t=2c2+16a﹣8,则t=2c2﹣4c﹣8,以D(0,2)为圆心,AD长为半径作⊙D,以D'(0,﹣2)为圆心,AD长为半径作⊙D',如图所示,⊙D交y轴正半轴于点E,⊙D'交y轴负半轴于点F.当点P在优弧AEC和优弧AFC上时,∠APC=∠ADC,当抛物线过E点时满足题意的P点有3个,此时,c=OE=OD+ED=2+2,当满足∠APC=∠ADC的P点至少有3个时,c≥2+2,当c≥2+2时,t=2c2﹣4c﹣8≥16,∵总有不等式2n﹣≤2c2+16a﹣8成立,∴2n﹣≤16,∴n≤.。
四川绵阳中学2019自主招生数学试卷
A. 变大
B.
8. 已知二次函数 y
变小 C. 不变
D.
不确定
a( x h) 2 k, (a 0) 图像经过 A(0,4)、 B(8,6) 两点。若 0
h 8 , h 的值在下列数字
中可能为(
)
A. 2
B.
3
C.
4
D.
5
9. 如图, ⊙ A 、⊙ B 的半径分别为 2、1,且 AB 8 ,若作⊙ C 使得三圆的圆心在同一直线上,
伴随点为 A2 ,点 A2 的伴随点为 A3 ,点 A3 的伴随点为 A4 ,…,这样依次得到点 A1 , A2 , A3 ,…, An ,… .
若点 A1 的坐标为 (a ,b) ,对于任意的正整数 n ,点 An 均在 x 轴上方,则 a, b 应满足的条件为
.
(第 14 题) 三.解答题(本大题共 8 小题,共计 90 分) 19. (本小题共 12 分)
且⊙ C 与⊙ A
外切,与⊙ B 相交,则⊙ C 的半径在下列数字中可能是 (
)
A. 2.5 B. 3 C. 3.5 D. 4
10. 若多项式 x2 px 12 可以因式分解为 (x m)( x n) 的形式,且 p、m、 n 均为整数,则满足条件的整
数 p 共有(
)
A. 2个
B.
4个
C.
6个
D.
8个
(第 15 题)
( 1)计算:: (
1 )
3
(8
2)
1 (
cos 45 )2
2(1
)0
3
2
(第 17 题)
(2)若关于 x 的分式方程 3
m 0 无解,求 m 的值。
2019高中自主招生数学试题
2019 数学试题考试时间 100 分钟满分 100 分说明:( 1)请各位同学注意,本试卷题目有一定的难度,你要根据自己的情况量力而行,争取用最短的时间获得最多的分数,提高自己的考试效率!考试,比的不仅是知识和能力,更重要的是要有良好的心态和适合自己的期望值,争取把会做的题目都做对,祝你取得好成绩!(2)请在背面的答题纸上作答。
另外,答完题后注意保护好自己的答案,防止他人的不劳而获,要做到公平竞争!一、选择题(共8 个小题,每小题 4 分,共 32 分)。
每小题均给出了代号为 A ,B, C,D的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入试卷背面的表格里,不填、多填或错填都得0 分。
1.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中 A 点表示十月的平均最高气温约为15 C , B 点表示四月的平均最低气温约为 5 C .下面叙述不正确的是A .各月的平均最低气温都在0 C 以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同 D .平均气温高于20 C 的月份有 5 个十二月一月二月20 C十一月15 C三月10C5Cy十月A B四月九月五月八月六月七月平均最低气温平均最高气温O 2 5x 第2 题2.上图是二次函数y ax2 bx c 的部分图象,由图象可知不等式 ax2b x c 0 的解集为A . x 1 或 x 5B . x 5 C. 1 x 5 D.无法确定3.小敏打开计算机时,忘记了开机密码的前两位,只记得密码第一位是 M , I , N中的一个字母,第二位是1,2, 3, 4,5 中的一个数字,则小敏输入一次密码能够成功开 机的概率是A . 1B . 8C . 1D . 115 15 8 304.在 ABC 中,内角A 、B 、C 的对边分别为 a 、 b 、 c .若 b 2c 2 2b 4c 5 且 a 2 b 2 c 2bc ,则 ABC 的面积为 2 B . 3 C . 2 D. 3 A .2 2 5.上图是由圆柱与圆锥组合而成的几何体的三视图,则 该几何体的 表面积 (表面面积,也叫全面积) 为2 3 ...A . 20B . 24 C. 28 D .324 参考公式: 圆锥侧面积 S rl ,圆柱侧面积 S 2 rl ,4 4其中 r 为底面圆的半径,l 为母线长. 正视图 侧视图 6.如下图,在 ABC 中, AB AC , D 为 BC 的中点, 第 5题图BE AC 于 E ,交 AD 于 P ,已知 BP 3 , PE 1, 俯视图 则AE6 B . 2 C .3 D . 6 A .2 . ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c .已知 a 5 , c 2, cos A 2 ,7 3则 bA . 2B . 3C . 2 D.3 8.如下图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,G 则小明到老年公寓可以选择的 最短 路径条数为F ..A .9B .12C . 18 E D .24二、填空题:本大题共8 小题,每小题 4 分,共 32 分。
XXX2019年自主招生数学试卷
XXX2019年自主招生数学试卷XXX2019年高一自主招生考试数学试卷一、选择题(本大题共7个小题,每小题6分,共42分,每小题只有一个选项正确,把正确的选项序号填在答题栏中)1.当$x=4$时。
frac{x-2}{3x-4}-\frac{x+2}{3x+4}$$的值为()。
A。
1 B。
3 C。
2 D。
32.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()。
3.设方程$(x-a)(x-b)-x=$的两根为$c,d$,则方程$(x-c)(x-d)+x=$的根为()。
A。
$-a,-b$ B。
$a,b$ C。
$-c,-d$ D。
$c,d$4.若$x,y$均为自然数,则关于$x,y$的方程$[2.019x]+[5.13y]=24$的解$(x,y)$共有()个。
x]$表示不超过实数$x$的最大整数)A。
1 B。
2 C。
3 D。
45.下图来自古希腊数学家XXX所研究的几何图形。
此图由三个半圆构成,三个半圆的直径分别为直角三角形$ABC$的斜边$BC$,直角边$AB,AC$。
$\triangle ABC$的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
设Ⅰ,Ⅱ,Ⅲ的面积分别记为$S_1,S_2,S_3$,则()。
A。
$S_1=S_2$B。
$S_1=S_3$C。
$S_2=S_3$D。
$S_1=S_2+S_3$6.如图,反比例函数$y=\frac{k}{x}(x>0)$的图像过面积等于8的长方形$OABC$的对角线$OB$的中点,$P$为函数图像上任意一点。
则$OP$的最小值为()。
A。
1 B。
2 C。
3 D。
27.已知$M,N$为等腰Rt$\triangle ABC$斜边$BC$上的两点,$AB=AC=6\sqrt{2}$,$BM=3$,$\angle MAN=45^\circ$。
则$NC$=()。
A。
3 B。
$\frac{7}{2}$ C。
4 D。
$\frac{9}{2}$二、填空题(本大题共7个小题,每小题7分,共49分)8.关于$x$的方程$x-4=5$的实数解为$\underline{\hspace{2cm}}$。
2019年3月河南省普通高中自主招生数学试卷(含答案解析)
2019年河南省普通高中自主招生数学试卷(3月份)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图所示的几何体的主视图是()A.B.C.D.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得()A.B.C.D.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.28.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019年河南省普通高中自主招生数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得()A.B.C.D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ的图象是关于t(2s<t≤4s)的一次函数.此时S△BPQ∵斜率>0∴S随t的增大而增大,直线由左向右依次上升.△BPQ③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S=PQ•BQ△BPQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,故选:D.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有16种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:由表格可知,共有16种等可能的结果,其中两人摸到的球颜色不同的情况有10种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.14.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD 的面积﹣扇形ACE 的面积,然后按各图形的面积公式计算即可. 【解答】解:连接AC , ∵DC 是⊙A 的切线, ∴AC ⊥CD , 又∵AB =AC =CD ,∴△ACD 是等腰直角三角形, ∴∠CAD =45°,又∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠CAD =∠ACB =45°, 又∵AB =AC , ∴∠ACB =∠B =45°, ∴∠FAD =∠B =45°,∵的长为,∴,解得:r =2,∴S 阴影=S △ACD ﹣S 扇形ACE =.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF =90°时,△ECF 是直角三角形,过F 作FH ⊥AB 于H ,作FQ ⊥AD 于Q ,则∠FQE =∠D =90°, 又∵∠FEQ +∠CED =90°=∠ECD +∠CED , ∴∠FEQ =∠ECD , ∴△FEQ ∽△ECD ,∴==,即==,解得FQ =,QE =,∴AQ =HF =,AH =,设AP =FP =x ,则HP =﹣x ,∵Rt △PFH 中,HP 2+HF 2=PF 2,即(﹣x )2+()2=x 2, 解得x =1,即AP =1.综上所述,AP 的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x +y )(x ﹣y )+y (x +2y )﹣(x ﹣y )2,其中x =2+,y =2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(x +y )(x ﹣y )+y (x +2y )﹣(x ﹣y )2 =x 2﹣y 2+xy +2y 2﹣x 2+2xy ﹣y 2 =3xy ,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=2时,四边形AODC是菱形;(3)当AD=2时,四边形AEDF是正方形.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,根据HL,证明即可;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,得到∠DBA的度数,根据正弦的定义计算即可;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】(1)证明:∵=,∴∠CAD=∠BAD,又DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵=,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=AB cos∠DBA=4sin60°=2,故答案为:2;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==2,故答案为:2.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan ∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,。
2019年孝感高中数学自主招生试题
(1) △DEF 为等腰直角三角形;
(2) 四边形 C EDF 不可能为正方形;
(3) 四边形 C EDF 的面积随点 E 的运动而变化;
(4)点 C 到直线 EF 的距离的最大值为 2 2
6.二次函数 y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(5/2,0) 对称轴为直线 x=1. 给出下列结论: (1) a bc>0;(2) a-2b+4c=0;(3) 8a+c<0;(4)关于 x 的方程 ax2+bx+c+2=0 有两个不等的实根 其中所有正确的结论是_______________ (填写正确结论的序号).
16.(本小 12 分) 设互不和等的非零实数 a,b,c 满足
a 3 b 3 c 3 , (a 3)2 (b 3)2 (c 3 )2 的值
b
c
a
b
c
a
17.(本小腿 12 分)旅游区提倡低碳生活,在景区提供自行车出租.该景区有 50 辆自行车供旅 游客租货使用,管理这些自行车的费用是每日 115 元.根据经验,若每辆自行车的日租金不 超过 8 元。.则自行车可以全部租出;若超过 8 元,则每超出 1 元,租不出的自行车就增加 3 辆.为了便于结算、每辆自行车的日租金 x(元)只取整数,并且要求出租自行车一日的总收入 必须高于这一日的管理费用,用 y(元)表示出租自行车的日净收入(即一日中出租自行车的总 收入减去管理费用后的所得),
秒 1cm 的速度向右移动,经过 t 秒,以点 P 为圆心, 3 cm 为半径的圆与△ABC 的边相切(切
点在边上),请写出 t 可取的所有值:___________ (单位:秒)
10. 在△ABC 中,∠ A=120°,BC=2,若△ABC 的内切圆面积为 S,则 S 的最大值为_______
2019年四川省南充高中自主招生数学试卷(6月份) 含解析
2019年四川省南充高中自主招生数学试卷(6月份)一.选择题(共10小题)1.当实数x的取值使得有意义时,函数y=﹣4x+1中y的取值范围是()A.y≥﹣7 B.y>﹣7 C.y<﹣7 D.y≤﹣72.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.43.若关于x的不等式组的所有整数解的和是6,则m的取值范围是()A.3<m<4 B.3<m≤4 C.3≤m<4 D.3≤m≤44.一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1<y2,则x 的取值范围是()A.﹣2<x<0或x>1 B.﹣2<x<1C.x<﹣2或x>1 D.x<﹣2或0<x<15.对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限6.关于x的方程的根为负数,则a的值为()A.a≠﹣3 B.a≠3 C.a<﹣1且a≠﹣3 D.a>﹣1且a≠3 7.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米8.设a,b是方程x2+20x+1=0的两个根,c,d是方程x2﹣17x+1=0的两个根,则代数式(a+c)(b+c)(a﹣d)(b﹣d)的值为()A.﹣2017 B.0 C.340 D.﹣1119.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.1010.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=EM;④BN2+EF2=EN2;⑤AE•AM=NE•FM,其中正确结论的个数是()A.2 B.3 C.4 D.5二.填空题(共6小题)11.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为.12.已知x2﹣4xy+3y2=0,则=.13.已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=.14.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN 的面积为.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.16.如图,已知AB=8,P为线段AB上一个动点,分别以A、B为边在AB的同侧作菱形APCD 和菱形PBFE,点P、C、E在同一直线上,∠DAP=60°,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,线段MN的最小值时.三.解答题(共6小题)17.先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.18.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(2)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?19.对于任意实数k,方程(k2+1)x2﹣2(k+a)2x+k2+4k+b=0总有一个根是1.(1)求实数a,b.(2)当k=5时,求方程的另一个根.20.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)若BD=BC,求点C的坐标.21.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin ∠ABO=,求的值.22.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)如图1,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E 的坐标和△BEC面积的最大值?(2)在(1)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(3)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′C、N′B,求N′C+N′B的最小值.参考答案与试题解析一.选择题(共10小题)1.当实数x的取值使得有意义时,函数y=﹣4x+1中y的取值范围是()A.y≥﹣7 B.y>﹣7 C.y<﹣7 D.y≤﹣7【分析】由被开方数非负可求出x的取值范围,利用一次函数图象上点的坐标特征可求出当x=2时y的值,再利用一次函数的性质可得出y的取值范围.【解答】解:∵实数x的取值使得有意义,∴x﹣2≥0,∴x≥2.当x=2时,y=﹣4x+1=﹣7.∵k=﹣4<0,∴y值随x值的增大而减小,∴当x≥2时,函数y=﹣4x+1中y的取值范围是y≤﹣7.故选:D.2.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【分析】根据不等式的性质2、垂径定理、平行四边形的判定定理和反比例函数的性质分别进行分析即可.【解答】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.3.若关于x的不等式组的所有整数解的和是6,则m的取值范围是()A.3<m<4 B.3<m≤4 C.3≤m<4 D.3≤m≤4【分析】不等式组整理后表示出解集,由解集中所有整数解和是6求出m的范围即可.【解答】解:不等式组整理得:,解得:1≤x<m,整数解的和是6,得到1+2+3=6,即整数解为1,2,3,则m的范围是3<m≤4,故选:B.4.一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1<y2,则x 的取值范围是()A.﹣2<x<0或x>1 B.﹣2<x<1C.x<﹣2或x>1 D.x<﹣2或0<x<1【分析】几何图象,写出一次函数图象在反比例函数图象下方所对应的自变量的范围即可.【解答】解:当y1<y2,x的取值范围为﹣2<x<0或x>1.故选:A.5.对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.6.关于x的方程的根为负数,则a的值为()A.a≠﹣3 B.a≠3 C.a<﹣1且a≠﹣3 D.a>﹣1且a≠3 【分析】先解关于x的分式方程,求得x的值,然后再依据“解是负数”建立不等式求a的取值范围.【解答】解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得:x=,∵关于x的方程的根为负数,∴,∴a>﹣1,且x≠3.故选:D.7.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP ==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.8.设a,b是方程x2+20x+1=0的两个根,c,d是方程x2﹣17x+1=0的两个根,则代数式(a+c)(b+c)(a﹣d)(b﹣d)的值为()A.﹣2017 B.0 C.340 D.﹣111【分析】根据根与系数关系,可得a+b=﹣20,ab=1,c+d=17,cd=1,然后对代数式进行变形,代入求值即可.【解答】解:由题意可得a+b=﹣20,ab=1,c+d=17,cd=1∴(a+c)(b+c)(a﹣d)(b﹣d)=[ab+(a+b)c+c2)][ab﹣(a+b)d+d2]=(1﹣20c+c2)(1+20d+d2)=1+20d+d2﹣20c﹣400﹣20d+c2+20c+1=d2+c2+2﹣400=(c+d)2﹣400=172﹣400=﹣111,故选:D.9.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.10【分析】根据等腰三角形的判定,进行划分,即可解答.【解答】解:如图:∴最多画9条,故选:C.10.如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=EM;④BN2+EF2=EN2;⑤AE•AM=NE•FM,其中正确结论的个数是()A.2 B.3 C.4 D.5【分析】①正确,只要证明A,B,C,D,E五点共圆即可解决问题;②正确,只要证明点M是△ABC的内心即可;③正确,想办法证明EM=AE,即可解决问题;④正确.如图2中,将△ABN逆时针旋转90°得到△AFG,连接EG.想办法证明△GEF 是直角三角形,利用勾股定理即可解决问题;⑤错误.利用反证法证明即可;【解答】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∵∠AEC=90°,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,∵BD是直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM,∠BAM=∠MAC,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=EA=EM,故③正确,如图2中,将△ABN逆时针旋转90°∵∠NAB=∠GAF,∴∠GAN=∠BAD=90°,∵∠EAN=45°,∴∠EAG=∠EAN=45°,∵AG=AN,AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,GF=BN,∵∠AFG=∠BN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴=,∴只有△ECN∽△MAF才能成立,∴∠AMF=∠CEN,∴CE∥AM,∵AE⊥CE,∴MA⊥AE(矛盾),∴假设不成立,故⑤错误,故选:C.二.填空题(共6小题)11.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为y=3x+5 .【分析】根据白球的概率公式:得到相应的方程:=,根据方程求解即可.【解答】解:∵取出一个白球的概率P=,∴=,∴12+4x=7+x+y,∴y与x的函数关系式为:y=3x+5.故答案为:y=3x+5.12.已知x2﹣4xy+3y2=0,则=或2 .【分析】根据x2﹣4xy+3y2=0,可以求得x和y的关系,从而可以求得所求式子的值.【解答】解:∵x2﹣4xy+3y2=0,∴(x﹣3y)(x﹣y)=0,∴x﹣3y=0或x﹣y=0,∴x=3y或x=y,当x=3y时,==3+=,当x=y时,==1+1=2,故答案为:或2.13.已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=40°或140°.【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,当∠A为钝角时,正确画图可得结论.【解答】解:根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠BAC=40°,②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=40°,∴∠BAC=140°,故答案为:40°或140°.14.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN 的面积为8 .【分析】由题意A(﹣4,4),B(2,2),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN 计算即可.【解答】解:∵A(﹣4,4),B(2,2),∴OA⊥OB,建立如图新的坐标系,OB为x′轴,OA为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1,6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=•4•6﹣•4•2=8,故答案为8.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF =45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN =x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.16.如图,已知AB=8,P为线段AB上一个动点,分别以A、B为边在AB的同侧作菱形APCD 和菱形PBFE,点P、C、E在同一直线上,∠DAP=60°,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,线段MN的最小值时2.【分析】连接PM、PN.首先证明∠MPN=90°设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.三.解答题(共6小题)17.先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.【分析】将原式括号内通分、将除法转化为乘法,再计算减法,最后约分即可化简原式,根据特殊锐角三角函数值求得a的值,代入即可.【解答】解:原式=[﹣]•(a﹣1)=•(a﹣1)=当a=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.18.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(2)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【分析】(1)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(2)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(2)设当日可获利润w(元),日零售价为x元,由(1)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.19.对于任意实数k,方程(k2+1)x2﹣2(k+a)2x+k2+4k+b=0总有一个根是1.(1)求实数a,b.(2)当k=5时,求方程的另一个根.【分析】(1)将x=1代入方程有(k2+1)﹣2(k+a)2+k2+4k+b=0,根据题意知4k(1﹣a)+1+b﹣2a2=0对于任意实数k恒成立,据此可得a=1、b=1;(2)将a、b,k的值代入方程,利用因式分解法解方程可得结论.【解答】解:(1)由题意得对于任意实数k,均有(k2+1)﹣2(k+a)2+k2+4k+b=0,即4k(1﹣a)+1+b﹣2a2=0对于任意实数k恒成立,∴1﹣a=0,即a=1,则b=1;(2)把k=5,a=1,b=1代入原方程得:26x2﹣72x+46=0,13x2﹣36x+23=0,(x﹣1)(13x﹣23)=0,x1=1,x2=.∴方程的另一个根是.20.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)若BD=BC,求点C的坐标.【分析】(1)利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;(2)首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE===,∵OA=4,∴C点的坐标为:(,2),∵点C在反比例函数y=的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在y=的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2).21.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin ∠ABO=,求的值.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)解法一:如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO =,设DP=3a,则PM=5a,可得结果.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,利用相似三角形的性质解决问题即可:【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∵∠PMH=∠PMN=∠AMB=∠BMO,∠BMO=∠ABO∴∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,∴∠OMB=∠ABO,∴sin∠ABO=sin∠OMB==,设OB=OQ=3a,则OM=5a,易证MB2=MD•MO,∵MB是切线,∴∠MBP=∠MQB,∴△MPB∽△MBQ,∴=,∴MB2=MP•MQ,∴MD•MO=MP•MQ,∴=,∵∠DMP=∠QMO,∴△MPD∽△MOQ,∴=,∴MP=•PD=•PD,∴==.22.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)如图1,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E 的坐标和△BEC面积的最大值?(2)在(1)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(3)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′C、N′B,求N′C+N′B的最小值.【分析】(1)△BEC面积S=×EH×OC=4×(﹣x2+x+3+x﹣3)=﹣x2+3x,即可求解;(2)分AM是平行四边形的边、AM是平行四边形的对角线两种情况,分别求解即可;(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点N′使得ON′=ON.证明△M′ON′∽△N′OB,即可求解.【解答】解:(1)直线y=﹣x+3与x轴交于点C,与y轴交于点B,则点B、C的坐标分别为:(0,3)、(4,0),将点B、C的坐标代入抛物线表达式并解得:抛物线的表达式为:y=﹣x2+x+3;过点E作y轴的平行线交BC于点H,设点E(x,﹣x2+x+3),则点H(x,﹣x+3),△BEC面积S=×EH×OC=4×(﹣x2+x+3+x﹣3)=﹣x2+3x,∴﹣<0,∴S有最大值3,此时点E(2,3);(2)存在,理由:将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,故点M(2,),设点P(m,n),n=﹣m2+m+3,点Q(1,s);①当AM是平行四边形的边时,点A向右平移4个单位向上平移个单位得到M,同样点Q(P)向右平移4个单位向上平移个单位得到P(Q),故m=1+4=5或m=1﹣4=﹣3,故点P(5,﹣)或(﹣3,﹣);②当AM是平行四边形的对角线时,由中点公式得:﹣2+2=m+1,解得:m=﹣1,故点P(﹣1,);综上,点P的坐标为:(5,﹣)或(﹣3,﹣)(﹣1,);(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点N′使得ON′=ON.∵ON′=1,OM′•OB=×3=1,∴ON′2=OM′•OB,,∵∠BON′=∠M′ON′,∴△M′ON′∽△N′OB,∴==,∴M′N′=BN′,∴CN′+BN′=CN′+N′M′=CM′,此时CN′+BN′最小(两点间线段最短,C、M′、N′共线时),最小值=CM′==.。
(完整)2019重点高中自主招生数学模拟试卷一
第10题2019重点高中自主招生数学模拟试题一(满分120分。
考试时间共90分钟)一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知实数,a b 满足2217404a b a b +-++=,那么ab -的平方根是 ( )2.若210x x --=,则3225x x -+的值为( )A .0B .2C .4D .53.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( ) A . 40% B .13 C .12D . 30% 4.方程组223x y x y ⎧+=⎪⎨+=⎪⎩的实数解的个数为( )A .4B .3C .2D .15.对于每个自变量x ,y 是21211y x y x =+=-,两个值中的最小值,则当32x -≤≤时,函数y的最小值与最大值的和是( ) A .2-B .1C .2D .36.如图,在□ABCD 中,AB =2BC ,BE ⊥AD 于E ,F 为CD 中点, 设DEF α∠=,EFC β∠=,则下面结论成立的是( )A .3βα<B .4βα>C .3βα=D .4βα=二、填空题 (本题有6个小题,每小题6分,共36分) 7.在2,2-,0三个整数中,任取一个,恰好使分式x x-+22有意义...的概率是 . 8.已知一个几何体由一些大小相同的小正方体组成,它的主视图和俯视图如图所示,那么组成该几何体所需小正方体的个数最多为 .9.求()22(sin 20)sin 70tan 28tan 62++=o o o o .10.如图,△ABC 是直角三角形,∠ABC=90︒,BC=6,BA=8,现以AC 为边在AC 的右侧作正方形ACDE ,则BE 的长为 .第8题ABCD E F第8题11.已知△ABC 的两条高线的长分别为5和20, 若第三条高线的长也是整数,则第三条高线长的最大值为 .12.抛物线221236y x tx t =-+-与x 轴有两个交点A 、B ,线段AB (含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为21,则t 的取值范围是 . 三、解答题(本大题共4题,共54分.解答应写出文字说明、证明过程或演算步骤) 13.(本题满分12分)(Ⅰ)已知,,a b c 均不为0,且232757a b b c c a +--==,求223c bb a-+的值; (Ⅱ)已知:0x >,且70x y -=,求xy的值.14.(本题满分12分) 如图,点A 是函数111(0,0)k y k x x=>>图象上的任意一点,过点A 作AB ⊥x 轴,交另一个函数222(0,0)k y k x x =<>的图象于点B ,在y 轴上取点C ,使四边形ABCO 是平行四边形.(Ⅰ)求证:平行四边形ABCO 的面积为定值;(Ⅱ)设直线CB 与函数222(0,0)k y k x x=<>的图象相交于另一点D ,若不论点A 在何处,都有CB BD =,试求12k k 与的关系式.已知矩形ABCD中,AB=2,AD=5,点E是AD边上一动点,连接BE、CE,以BE为直径作⊙O,交BC于点F,过点F作FH⊥CE于H.(Ⅰ)当直线FH与⊙O相切时,求AE的长;(Ⅱ)若直线FH交⊙O于点G,(ⅰ)当FH∥BE时,求AE的长;(ⅱ)在点E运动过程中,△OFG能否成为等腰直角三角形?如果能,求出此时AE的长;如果不能,说明理由.如图,Rt △ABC 的斜边AB 在x 轴上,AB =4,点B 的坐标为(-1,0),点C 在y 轴的正半轴.若抛物线2(0)y ax bx c a =++≠的图象经过点A ,B ,C . (Ⅰ)求y 关于x 的函数解析式;(Ⅱ)设对称轴与抛物线交于点E ,与AC 交于点D 。
2019年四川省南充高中自主招生数学考试试卷 解析版
2019年四川省南充高中自主招生数学试卷一、填空题(每小题8分,共112分)1.(8分)已知x 满足﹣x2﹣2x=1,那么x2+2x=.2.(8分)若|m+2|+(n﹣1)2=0,则m+2n值为.3.(8分)抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac=.4.(8分)已知a n=(﹣1)n+1,当n=1时,a1=0,当n=2时,a2=2,当n=3时,a3=0,…,则a1+a2+a3+…+a=.5.(8分)已知sinα<cosα,则锐角α的取值范围是.6.(8分)直角三角形ABC中,∠C=90°且tan B=2tan A﹣1,则∠B=.7.(8分)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n=.(用含n的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …a n8.(8分)已知关于x,y的二元一次方程组的解满足x+y=3m,则m=.9.(8分)设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实数根,当m=时,x12+x22有最小值,最小值是.10.(8分)从3台甲型彩电和2台乙型彩电任选2台,其中两种品牌的彩电都齐全的概率是.11.(8分)对于正数x,规定f(x)=,计算f()+f()+…+f()+f ()+f(1)+f(2)+f(3)+…+f(2007)+f(2008)=.12.(8分)在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是.13.(8分)若ab=1,则的值为.14.(8分)如图AB与圆O相切于A,D是圆O内一点,DB与圆相交于C.已知BC=DC=3,OD=2,AB=6,则圆的半径为.二、选择题(每小题6分,共24分)15.(6分)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈16.(6分)如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤1 17.(6分)解关于x的方程不会产生增根,则k的值是()A.2 B.1 C.k≠2且k≠一2 D.无法确定18.(6分)如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°和115°D.130°和50°三、解答题(共64分)19.(10分)先化简,再求值:÷,其中a=1+,b=1﹣20.(12分)如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH所夹的锐角为θ,且∠BEG与∠CFH都是锐角,已知EG=a,FH=b,四边形EFGH的面积为S.(1)求证:sinθ=;(2)试用a,b,S来表示正方形ABCD的面积.21.(12分)抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca =﹣4;a<b<c.(1)求这条抛物线的解析式;(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.P 是抛物线上第一象限内的点,AP交y轴于点D,当OD=1.5时,试比较S△AOD与S△DPC的大小.22.(14分)如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D 与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.23.(16分)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题8分,共112分)1.(8分)已知x满足﹣x2﹣2x=1,那么x2+2x= 2 .【分析】设x2+2x=y,则原方程可化为y2﹣4=0,解得y1=2,y2=﹣2,解方程可解答.【解答】解:﹣x2﹣2x=1,设x2+2x=y,则原方程可化为﹣y=1,3﹣y(y﹣1)=y﹣1,y2=4,解得y1=2,y2=﹣2,经检验,y=±2是方程﹣y=1的解,当y1=2时,x2+2x=2,解得x=﹣1,经检验,x=﹣1是原方程的解;当y2=﹣2时,x2+2x=﹣2,此方程无实数解;∴x2+2x=2,故答案为:2.2.(8分)若|m+2|+(n﹣1)2=0,则m+2n值为0 .【分析】根据非负数的性质列式计算求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,m+2=0,n﹣1=0,解得m=﹣2,n=1,所以,m+2n=﹣2+2×1=0.故答案为:0.3.(8分)抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac=﹣1 .【分析】根据x轴上点的坐标特点可设出A、B两点的坐标为(x1,0),(x2,0),根据△ABC是直角三角形可知x1、x2必异号,再由抛物线与y轴的交点可求出C点的坐标,由射影定理即可求出ac的值.【解答】解:设A(x1,0),B(x2,0),由△ABC是直角三角形可知x1、x2必异号,则x1•x2=<0,由于函数图象与y轴相交于C点,所以C点坐标为(0,c),由射影定理知,|OC|2=|AO|•|BO|,即c2=|x1|•|x2|=||,故|ac|=1,ac=±1,由于<0,所以ac=﹣1.故答案为:﹣1.4.(8分)已知a n=(﹣1)n+1,当n=1时,a1=0,当n=2时,a2=2,当n=3时,a3=0,…,则a 1+a2+a3+…+a=2008 .【分析】由已知可得a 1+a2=2,a3+a4=2,…,a2n﹣1+a2n=2,则有a1+a2+a3+…+a=1004(a1+a2),代入即可求解.【解答】解:由已知可得a1+a2=2,a3+a4=2,…,a2n﹣1+a2n=2,∵a 1+a2+a3+…+a=1004(a1+a2)=2008,故答案为2008.5.(8分)已知sinα<cosα,则锐角α的取值范围是0°<α<45°.【分析】根据正弦函数值随锐角的增大而增大,可得答案.【解答】解:由sinα<cosα,得0°<α<45°,故答案为:0°<α<45°.6.(8分)直角三角形ABC中,∠C=90°且tan B=2tan A﹣1,则∠B=45°.【分析】根据正切的定义得到tan B=,tan A=,根据题意列出方程,解方程得到a ﹣b,根据等腰直角三角形的概念解答.【解答】解:在直角三角形ABC中,∠C=90°,则tan B=,tan A=,∴=2×﹣1,整理得,2a2﹣ab﹣b2=0,(2a+b)(a﹣b)=0,解得,a =b,∴∠B=45°,故答案为:45°.7.(8分)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n=3n+1 .(用含n 的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …a n【分析】从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.【解答】解:故剪n次时,共有4+3(n﹣1)=3n+1.8.(8分)已知关于x,y的二元一次方程组的解满足x+y=3m,则m=﹣.【分析】先求出二元一次方程组的解为,再由x+y=m得到m﹣=3m,即可求出m的值.【解答】解:二元一次方程组的解为,∵x+y=3m,∴m﹣=3m,∴m=﹣,故答案为﹣9.(8分)设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实数根,当m=时,x12+x22有最小值,最小值是.【分析】由根与系数的关系知x12+x22是关于m的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m的取值范围,从判别式入手.【解答】解:∵x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,∴△=(﹣4m)2﹣4×2×(2m2+3m﹣2)≥0,可得m≤,又x1+x2=2m,x1x2=,∴x12+x22=2(m﹣)2+=2(﹣m)2+,∵m≤,∴﹣m>0,∴当m=时,x12+x22取得最小值为2(﹣)2+=.故答案为,.10.(8分)从3台甲型彩电和2台乙型彩电任选2台,其中两种品牌的彩电都齐全的概率是.【分析】根据题意画出树状图得出所有等情况数和两种品牌的彩电都齐全的情况数,再根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有20种等情况数,其中两种品牌的彩电都齐全的12种,则两种品牌的彩电都齐全的概率是=;故答案为:.11.(8分)对于正数x,规定f(x)=,计算f()+f()+…+f()+f ()+f(1)+f(2)+f(3)+…+f(2007)+f(2008)=2007.5 .【分析】根据题意得到f(x)+f()=1,原式结合后相加即可求出值.【解答】解:根据题意得:f(x)+f()=+=+==1,f(1)=0.5,则原式=[f()+f(2008)]+[f()+f(2007)]+…+[f()+f(2)]+f (1)=2007.5,故答案为:2007.512.(8分)在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是3<r≤4或r=2.4 .【分析】此题注意两种情况:(1)圆与AB相切时;(2)点A在圆内部,点B在圆上或圆外时.根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.【解答】解:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=5.分两种情况:(1)圆与AB相切时,即r=CD=3×4÷5=2.4;(2)点A在圆内部,点B在圆上或圆外时,此时AC<r≤BC,即3<r≤4.∴3<r≤4或r=2.4.13.(8分)若ab=1,则的值为 1 .【分析】对所求的代数式利用分式加减法则化简整理得原式=,然后将ab=1代入即可求出代数式的值.【解答】解:原式==,将ab=1代入得,原式=1.填空答案为:1.14.(8分)如图AB与圆O相切于A,D是圆O内一点,DB与圆相交于C.已知BC=DC=3,OD=2,AB=6,则圆的半径为.【分析】利用切割线定理求出BF,然后求出OE,利用勾股定理求出圆的半径OC即可.【解答】解:连结BC并延长,交圆于F,过O作OE⊥BF,∵BA是圆O的切线,切点为A,由切割线定理可知:AB2=BC•BF,∵BC=DC=3,AB=6,∴BF=12,CF=9,∴DE=,OD=2,∴OE===,CE═,OC===.故答案为:.二、选择题(每小题6分,共24分)15.(6分)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈【分析】根据圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C选择.【解答】解:如图,设圆的周长是C,则圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C,则这个圆共转了4C÷C=4圈.故选:A.16.(6分)如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤1【分析】方程(x﹣1)(x2﹣2x+m)=0的三根是一个三角形三边的长,则方程有一根是1,即方程的一边是1,另两边是方程x2﹣2x+m=0的两个根,根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.则方程x2﹣2x+m=0的两个根设是x2和x3,一定是两个正数,且一定有|x2﹣x3|<1<x2+x3,结合根与系数的关系,以及根的判别式即可确定m的范围.【解答】解:∵方程(x﹣1)(x2﹣2x+m)=0有三根,∴x1=1,x2﹣2x+m=0有根,方程x2﹣2x+m=0的△=4﹣4m≥0,得m≤1.又∵原方程有三根,且为三角形的三边和长.∴有x2+x3>x1=1,|x2﹣x3|<x1=1,而x2+x3=2>1已成立;当|x2﹣x3|<1时,两边平方得:(x2+x3)2﹣4x2x3<1.即:4﹣4m<1.解得m>.∴<m≤1.故选:D.17.(6分)解关于x的方程不会产生增根,则k的值是()A.2 B.1 C.k≠2且k≠一2 D.无法确定【分析】先将分式方程化为整式方程,解得x=k,根据题意可得x≠±1,从而求出k 的值.【解答】解:去分母得,x(x+1)﹣k=x(x﹣1),解得x=k,∵方程不会产生增根,∴x≠±1,∴k≠±1,即k≠±2.故选:C.18.(6分)如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°和115°D.130°和50°【分析】连接OC,OB,当点P在优弧BC上时,由圆周角定理可求得∠P=65°,当点P在劣弧BC上时,由圆内接四边形的对角互补可求得∠BPC=115°.故本题有两种情况两个答案.【解答】解:连接OC,OB,则∠ACO=∠ABO=90°,∠BOC=360°﹣90°﹣90°﹣50°=130°,应分为两种情况:①当点P在优弧BC上时,∠P=∠BOC=65°;②当点P在劣弧BC上时,∠BPC=180°﹣65°=115°;故选:C.三、解答题(共64分)19.(10分)先化简,再求值:÷,其中a=1+,b=1﹣【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===当,时,原式=.20.(12分)如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH所夹的锐角为θ,且∠BEG与∠CFH都是锐角,已知EG=a,FH=b,四边形EFGH的面积为S.(1)求证:sinθ=;(2)试用a,b,S来表示正方形ABCD的面积.【分析】(1)设EG于FH相交于点O,过E作EM⊥FH于M,过G点作GN⊥FH于N,则S =S△EFH+S△FHG,得出S=EM•FH+GN•FH=ab•sinθ,即可得出结论;(2)过E、F、G、H分别对正方形ABCD作对边的垂线,则四边形PQRT、四边形AETH、四边形EBFP、四边形CFQG、四边形DGRH都是矩形,设正方形ABCD的边长为x,PQ=y,QR=z,由勾股定理得y=,z=,由矩形的性质得出S△AEH=S△THE,S△=S△FPE,S△CFG=S△QGF,S△DGH=S△RHG,则S正方形ABCD+S矩形PQRT=2S四边形EFGH,即x2+yz=2S,EBF代入即可得出结果.【解答】(1)证明:设EG于FH相交于点O,过E作EM⊥FH于M,过G点作GN⊥FH于N,如图1所示:则S=S△EFH+S△FHG,∴S=EM•FH+GN•FH=EO•sinθ•FH+OG•sinθ•FH=(EO+OG)•sinθ•FH=EG•FH •sinθ=ab•sinθ,∴sinθ=;(2)解:过E、F、G、H分别对正方形ABCD作对边的垂线,如图2所示:则四边形PQRT、四边形AETH、四边形EBFP、四边形CFQG、四边形DGRH都是矩形,设正方形ABCD的边长为x,PQ=y,QR=z,由勾股定理得:y=,z=,由矩形的性质得:S△AEH=S△THE,S△EBF=S△FPE,S△CFG=S△QGF,S△DGH=S△RHG,∴S正方形ABCD+S矩形PQRT=2S四边形EFGH,∴x2+yz=2S,即x2+•=2S,解得:x2=,∴正方形ABCD的面积用a、b、S表示为:.21.(12分)抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca =﹣4;a<b<c.(1)求这条抛物线的解析式;(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.P 是抛物线上第一象限内的点,AP交y轴于点D,当OD=1.5时,试比较S△AOD与S△DPC的大小.【分析】(1)因为a不等于0故分别令c=0以及b=0时求出a,c的值.(2)令y=0求出A,B两点的坐标.做PG⊥x轴于G,利用线段比求出m值,然后可求出各有关线段的值.最后求解.【解答】解:(1)∵a≠0,abc=0,∴bc=0<1>当b=0时由,得,解得或,∵a<b<c,∴,(不合意,舍去)∴a=﹣1,b=0,c=4.(2分)<2>当c=0时由,得,解之得或.∵a<b<c,∴和都不合题意,舍去.(3分)∴所求的抛物线解析式为y=﹣x2+4.(4分)(2)在y=﹣x2+4中,当y=0时,x=±2∴A、B两点的坐标分别为(﹣2,0),(2,0),过P作PG⊥x轴于G,设P(m,n)∵点P在抛物线上且在第一象限内,∴m>0,n>0,n=﹣m2+4∴PG=﹣m2+4,OA=2,AG=m+2(5分)∵OD∥PG,OD=1.5∴,即解得(不合题意,舍去),∴OG=(7分)∵当x=0时,y=4,∴点C的坐标为(0,4)∴DC=OC﹣OD=4﹣1.5=2.5 S△PDC=CD•OG=×S△AOD=AO•OD=×1.5×2=∴S△PDC>S△AOD.(8分)22.(14分)如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D 与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.【分析】(1)因为点E为切点,则得到∠AED=90°,已知有一组公共角,则根据有两组角相等的两个三角形相似可推出△ADE∽△ABC;(2)连接DF,则DE=DF,设CD=x,则AD=6﹣x,根据相似三角形的对应边成比例可得到DE的长,再利用勾股定理求得DF的长,则解方程即可得到CD的长;(3)取a=3,(可取<a<6的任意一个数),则AD=3,根据DE<AD即可得到DE<DC从而得到⊙D与BC没有公共点.【解答】(1)证明:∵点E是切点∴∠AED=90°∵∠A=∠A,∠ACB=90°∴△ADE∽△ABC;(2)解:连接DF,则DE=DF设CD=x,则AD=6﹣x∵△ADE∽△ABC∴∴DE=在RT△DCF中DF2=x2+CF2=x2+4∴=x2+4x2+3x﹣4=0∴x=1,x=﹣4(舍去)∴CD=1(当CD=1时,0<x<6,所以点D在AC上);(3)解:取a=3,(可取<a<6的任意一个数)则AD=AC﹣CD=3,∵DE<AD,∴DE<DC,即d>r,则⊙D与BC相离,∴当a=3时,⊙D与BC没有公共点.23.(16分)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.【分析】(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可;(2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3;(3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在.【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).(3)存在.解法1:要使四边形DCEP是平行四边形,必需有PE=DC.∵点D在直线y=x+1上,∴点D的坐标为(1,2),∴﹣x2+3x=2.即x2﹣3x+2=0.解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.设直线CE的函数关系式为y=x+b.∵直线CE经过点C(1,0),∴0=1+b,∴b=﹣1.∴直线CE的函数关系式为y=x﹣1.∴得x2﹣3x+2=0.2019年四川省南充高中自主招生数学考试试卷解析版解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.21 / 21。
安徽师范大学附属中学2019年高中自主招生考试数学试题
注意事项:安徽师范大学附属中学2019年高中自主招生考试数学试卷1.本试卷总分150分,考试时间120分钟。
2.答案一律用黑色钢笔或墨水笔写在答题卷上,不能写在本试卷上。
一、选择题(本大题共6 小题,每小题4 分,共24 分.在每小题所给的四个选项中,恰有一项.题.卷.相.应.位.置.上)1.16的平方根是( ▲ )A. 4 .2 D. ± 22.若1x-=x -1成立,则x 满足( ▲ )A. x ≥≥1 C. x ≤1 D. x <13.已知m 5-1,则m2 + 2m 的值是( ▲ )A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b 与水平线平行,以其中一条为x 轴,取向右为正方向;直线c、d 与水平线垂直,以其中一条为y 轴,取向上为正方向.某同学在此坐标平面上画了二次函数y =m x2 + 2mx +12 (m ≠ 0)的图像如图,则下面结论正确的是( ▲ )A.a 为x 轴,c 为y 轴B. a 为x 轴,d 为y 轴C.b 为x 轴,c 为y 轴D.b 为x 轴,d 为y 轴5.如图,已知AB 为圆的直径,C 为半圆上一点,D 为半圆的中点,AH⊥CD,垂足为H,HM 平分∠AHC,HM 交AB 于M.若AC=3,BC=1,则MH 长为( ▲ )A.1B.1.5C.0.5D.0.76.如图,△ABC 中,∠ACB=90°,D 是BC 边上一点,∠ADC=3∠BAD,BD=8,CD=7,则AB 的值是( ▲A.16B.20C. 217D. 2+7二、填空题(本大题共10 小题,每小题4 分,共40 分.不需写出解答过程,请把答案直接填写在答.题.卷.相.应.位.置.上)7.已知实数x、y 满足2542x yx y+=⎧⎨-=⎩则x -y =▲.8.分解因式:x2 + 4xy +4y2 +x +2y- 2 = ▲.9.在平面直角坐标系中,点A、B 的坐标分别是(m,3)、(3m-1,3).若线段AB 与直线y = 2x +1相交,则m 的取值范围是▲.10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径是▲cm.11.如图,已知在矩形ABCD 中,点E 在边BC 上,BE=2CE,将矩形沿着过点E 的直线翻折后,点C、D 分别落在M、N 处,且点M、N、B 在同一直线上,折痕与边AD 交于点F,NF 与BE 交于点G.设AB3EFG 的周长为▲..(第 11 题)(第 12 题)12.如图,点 A 1,A 2,…,A n 均在直线 y = x -1 上,点 B 1,B 2,…,B n 均在双曲线 y = -1x上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴, B n A n +1⊥y 轴,…,记点 A n 的横坐标为 a n (n 为正整数).若 a 1 =-1,则 a 2016 = ▲ . 13.如图,已知△ABC 中, ∠C = 90 °, ∠A = 30 °,AC =3.动点 D 在边 AC 上,以 BD 为边作等边△BDE (点 E 、D 、B 逆时针排列). 在点 D 从点 A 移动至点C 的过程中,点 E移动的路线长为 ▲(第 13 题)(第 14 题)(第 16 题)14. 如图,Rt △ABC 中,∠ACB =90°,AC =2,BC =3,点 M 是直线 BC 上一动点,且∠CAM +∠CBA =45°,则 BM = ▲ .15.在平面直角坐标系中,有三条直线,它们的函数表达式分别是y = x , y = x + 1 , y = x + 2 .在这三条直线上各有一个动点,依次为 A 、B 、C ,它们的横坐标分别为 a 、b 、 c ,则当 a 、b 、c 满足 ▲ 时,A 、B 、C 三点不能构成三角形. 16.如图,已知点 P (2,0),Q (8 ,0),A 是 x 轴正半轴上一动点,以 OA 为一边在第一象限内作正方形 OABC ,当 PB + BQ 取最小值时,点 B 的坐标是 ▲ . 三、解答题(本大题共 8 题,共 86 分.请在答.题.卷.指.定.区.域.作答,解答题时应写出文字说明, 证明过程或演算步骤)17.(10 分)若关于 x 的分式方程223242m x x x +=--+无解,求m 的值. 18.(10 分)甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发 0.2 小时后乙开汽车前往.设甲行驶的时间为 x (h),甲、乙两人行驶的路程分别为 y 1 (km)与 y 2 (km).图①是 y 1 与 y 2 关于 x 的函数图像. (1)分别求线段 OA 与线段 BC 所表示的 y 1 与 y 2 关于 x 的函数表达式; (2)当 x 为 ▲ 时,两人相距 6 km ; (3)设两人相距 S 千米,在图②所给的直角坐标系中画出 S 关于 x 的函数图像.19.(10 分)如图,在□ABCD 中, AB = 5 , BC = 10,F 为 AD 的中 点,CE ⊥AB 于 E ,设 ∠ABC = α (60°≤ α < 90 °). (1)当α = 60 °时,求 CE 的长; (2)当 60°< α < 90 °时,是否存在正整数 k ,使得 ∠EFD = k ∠AEF ? 若存在,求出 k 的值,若不存在,请说明理由.20.(10 分) 如图,直线 y = k 1x 和 y = k 2x 与反比例函数 y =1x图像分别交于两点 A 、C 和 B 、D ,连接 AB ,BC ,CD ,DA . (1)四边形 ABCD 一定是 ▲ 四边形; (2)四边形 ABCD 可能是矩形吗?若可能,求 k 1 , k 2 满足 的关系式;若不能,说明理由;(3)设 P ( x 1 ,y 1 ),Q ( x 2 ,y 2)( x 2 > x 1 > 0 )是函数 y =1x图像上的任意两点, a =122y y +, b =122x x +,试判断 a , b 的大小关系,并说明理由.21.(10 分)如图,在平面直角坐标系 xOy 中,已知点 A (0,4), 点 B 是 x 轴正半轴上一点,连接 AB ,过点 A 作 AC ⊥AB ,交 x 轴于点 C ,点 D 是点 C 关于点 A 的对称点,连接 BD ,以 AD 为直径作⊙Q 交 BD 于点 E ,连接并延长 AE 交 x 轴于点 F ,连接 DF . (1)求线段 AE 的长;(2)若 AB - BO = 2 ,求AF CF的值;(3)若△DEF 与△AEB 相似,求BE DE的值.22.(10 分)问题:如图 1,a 、b 、c 、d 是同一平面内的一组等距平行线(相邻平行线间的距离 为 1).画出一个正方形 ABCD ,使它的顶点 A 、B 、C 、D 分别在直线 a 、b 、d 、c 上,并计 算它的边长.小明的思考过程:(图 1)(图 2)他利用图 1 中的等距平行线构造了 3⨯ 3 的正方形网格,得到了辅助正方形 EFGH ,如图 2 所示,再分别找到它的四条边的三等分点 A 、B 、C 、D ,就可以画出一个满足题目要求的正方形. 请回答:图 2 中正方形 ABCD 的边长为 ▲ . 请参考小明的方法,解决下列问题:(1)请在图 3 的菱形网格(最小的菱形有一个内角为 60°,边长为 1)中,画出一个等边△ ABC , 使它的顶点 A 、B 、C 落在格点上,且分别在直线 a 、b 、c 上,并直接写出等边△ ABC 的边长(只 需要画出一种即可).(图 3)(图 4)(2)如图 4,a 、b 、c 是同一平面内的三条平行线,a 、b 之间的距离是1 ,b 、c 之间的距离是 12,等边△ ABC 的三个顶点分别在 a 、b 、c 上,直接写出△ ABC 的边长.23.(14 分)已知二次函数 y = ax 2 + 4x + c (a ≠ 0) 的图像是经过 y 轴上点C (0,2)的一条抛物 线,顶点为 A ,对称轴是经过点 H (2,0)且平行于 y 轴的一条直线.点 P 是对称轴上位于点 A 下方的一点,连接 CP 并延长交抛物线于点 B ,连接 CA 、AB .(1)求这个二次函数的表达式及顶点 A 的坐标; (2)当∠ACB =45°时,求点 P 的坐标; (3)将△ CAB 沿 CB 翻折后得到△ CDB ,问点 D 能否恰好落在坐标轴上?若能,求点P 的坐标,若不能,说明理由.24. (12 分)对于平面直角坐标系 xOy 中的点 M 和图形W 1 ,W 2 给出如下定义:点 P 为图形W 1 上一点,点 Q 为图形W 2 上一点,当点 M 是线段 PQ 的中点时,称点 M 是图形W 1 ,W 2 的“中立点”.如 果点 P ( x , y ),Q ( x , y ),那么“中立点”M 的坐标为12(,2x x +12)2y y + 已知,点 A (-3,0),B (0,4),C (4,0).(1)连接 BC ,在点 D (12 ,0),E (0,1),F (0,12)中,可以成为点 A 和线段 BC 的“中立点”的是 ▲ ;(2)已知点 G (3,0),⊙G 的半径为 2.如果直线 y = -x +1上 存在点 K 可以成为点 A 和⊙G 的“中立点”,求点 K 的坐标; (3)以点 C 为圆心,半径为 2 作圆.点 N 为直线 y = 2x + 4 上的一点,如果存在点 N ,使得 y 轴上的一点可以成为 点 N 与⊙C 的“中立点”,直接写出点 N 的横坐标 x N 的 取值范围.。
2019年漳州一中、龙海一中、漳浦一中高中自主招生考试数学题(解析版)
【解析】
【分析】
在CB延长线上取BD=BA=c,则∠D=∠BAD,由已知得到 ,然后得到△ABC∽△DAC,根据相似三角形的性质,∠D=∠BAC,通过外角性质和等量代换,即可得到答案.
【详解】解:如图,在CB延长线上取BD=BA=c,则∠D=∠BAD,
∵ ,
∴ ,
∴ ,
∵ , , ,
∴ ,
9.方程 的根可视为函数 的图象与函数 的图象交点的横坐标,则方程 的实根 所在的范围是( )
A. B. C. D.
【答案】D
【解析】
【分析】
首先根据题意推断方程 的实根是函数 与 的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程 的实根x所在范围.
∴CD= ,AC= ,
∴BC=CD+BD= ,
∴S△ABC= ,
∵S△ABC= ,
∴ ,
解得:r= ,
故答案为: .
∴4a﹣2b+c<0,
∴
∴故③正确;
④由于该抛物线的顶点横坐标为﹣1,此时y=a﹣b+c是最小值,
∴am2+bm+c>a﹣b+c(m≠﹣1),
∴m(am+b)>a﹣b(m≠﹣1),故④错误;
故选B.
【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系.
【详解】解: 的实根是函数 与 的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.
当 时, , 无意义,此时抛物线的图象在反比例函数下方;
2019年山东省枣庄三中自主招生数学试卷
2019年山东省枣庄三中自主招生数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.2.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数在同一坐标系内的图象可能为()A.B.C.D.3.(3分)如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1B.2C.3D.44.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=,BC=2,则sin∠ACD 的值为()A.B.C.D.5.(3分)某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为()A.B.C.D.以上全错6.(3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或7.(3分)如图,△ABC中,内切圆O和边BC、CA、AB分别相切于点D、E、F,则以下四个结论中,错误的结论是()A.点O是△DEF的外心B.∠AFE=(∠B+∠C)C.∠BOC=90°+∠A D.∠DFE=90°一∠B8.(3分)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.129.(3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+10.(3分)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2B.6C.2﹣2D.4二.填空题(共5个题,每题4分,共20分)11.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.12.(4分)同时抛掷若干一元硬币,要使有硬币正面朝上的概率不低于0.9,则至少需要枚硬币.13.(4分)关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.14.(4分)如图,⊙O的半径为2,圆心O到直线l的距离为4,有一内角为60°的菱形,当菱形的一边在直线l上,另有两边所在的直线恰好与⊙O相切,此时菱形的边长为.15.(4分)点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是.三.解答题(共60分)16.2018央视中秋晚会在曲阜尼山举行,让全国乃至全世界的目光再一次聚焦曲阜.其中世界最大最高的孔子像,位于晚会场地对面尼山圣境儒宫西侧小山上.来观看晚会的小明想测量一下远处孔子像的高度.如图,小明在B处测得孔子像的顶端A的仰角为α=37°,然后沿着正对孔子像的方向前进了160m 到达E处,再次测得孔子像的顶端A的仰角β=53°.已知塑像的底座CF=18m,小山的高度FG=183m,那么孔子像AC的高度是多少?(参考数据:sin37°=cos53°=0.6,cos37°=sin53°=0.8,,).17.(8分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试解决下面的问题:请用树状图或列表法分析,甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大.18.(12分)如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD =2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.19.(16分)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB 的最小值.20.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且P A=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.参考答案一、选择题(共10小题,每小题3分,满分30分)1.A;2.C;3.C;4.A;5.B;6.C;7.D;8.A;9.A;10.A;二.填空题(共5个题,每题4分,共20分)11.48+12;12.4;13.<a<﹣2;14.4或或;15.;。
2019高中自主招生数学试题
2019数学试题考试时间 100分钟 满分100分说明:(1)请各位同学注意,本试卷题目有一定的难度,你要根据自己的情况量力而行,争取用最短的时间获得最多的分数,提高自己的考试效率!考试,比的不仅是知识和能力,更重要的是要有良好的心态和适合自己的期望值,争取把会做的题目都做对,祝你取得好成绩!(2)请在背面的答题纸上作答。
另外,答完题后注意保护好自己的答案,防止他人的不劳而获,要做到公平竞争!一、选择题(共8个小题,每小题4分,共32分)。
每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入试卷背面的表格里,不填、多填或错填都得0分。
1.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C o ,B 点表示四月的平均最低气温约为5C o .下面叙述不正确的是A .各月的平均最低气温都在0C o 以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均气温高于20C o 的月份有5个2.上图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集为A .1x <-或5x >B .5x >C .15x -<<D .无法确定第2题20Co 15C o 10C o 5CoA十月四月三月二月一月十二月十一月九月八月七月六月五月B平均最低气温平均最高气温3.小敏打开计算机时,忘记了开机密码的前两位,只记得密码第一位是,,M I N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A .115B .815C .18D .1304.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c .若22245b c b c +=+-且222a b c bc =+-,则ABC ∆的面积为ABCD5.上图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积...(表面面积,也叫全面积)为 A .20πB .24πC .28πD .32π参考公式:圆锥侧面积S rl π=,圆柱侧面积2S rl π=,其中r 为底面圆的半径,l 为母线长.6.如下图,在ABC ∆中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =ABCD7.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b =ABC .2D .38.如下图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短..路径条数为 A .9B .12C .18D .24E GFggg 正视图g侧视图俯视图第5题图二、填空题:本大题共8小题,每小题4分,共32分。
2019年四川省南充高中自主招生数学试卷(6月份)
2019年四川省南充高中自主招生数学试卷(6月份)一、选择题(共10个小题,每小题5分请将正确答案的序号填涂在答题卡相应位置)1.(5分)当实数x的取值使得有意义时,函数y=﹣4x+1中y的取值范围是()A.y≥﹣7B.y>﹣7C.y<﹣7D.y≤﹣72.(5分)下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1B.2C.3D.43.(5分)若关于x的不等式组的所有整数解的和是6,则m的取值范围是()A.3<m<4B.3<m≤4C.3≤m<4D.3≤m≤44.(5分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1<y2,则x的取值范围是()A.﹣2<x<0或x>1B.﹣2<x<1C.x<﹣2或x>1D.x<﹣2或0<x<15.(5分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限6.(5分)关于x的方程的根为负数,则a的值为()A.a≠﹣3B.a≠3C.a<﹣1且a≠﹣3D.a>﹣1且a≠3 7.(5分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米8.(5分)设a,b是方程x2+20x+1=0的两个根,c,d是方程x2﹣17x+1=0的两个根,则代数式(a+c)(b+c)(a﹣d)(b﹣d)的值为()A.﹣2017B.0C.340D.﹣1119.(5分)在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5B.7C.9D.1010.(5分)如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=EM;④BN2+EF2=EN2;⑤AE•AM=NE•FM,其中正确结论的个数是()A.2B.3C.4D.5二、填空题(共6个小题,每小题5分,请将正确答案填涂在答题卡相应位置)11.(5分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为.12.(5分)已知x2﹣4xy+3y2=0,则=.13.(5分)已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=.14.(5分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.15.(5分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.16.(5分)如图,已知AB=8,P为线段AB上一个动点,分别以A、B为边在AB的同侧作菱形APCD和菱形PBFE,点P、C、E在同一直线上,∠DAP=60°,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,线段MN的最小值时.三、解答题(6个小题,共70分)17.(10分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.18.(10分)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(2)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?19.(10分)对于任意实数k,方程(k2+1)x2﹣2(k+a)2x+k2+4k+b=0总有一个根是1.(1)求实数a,b.(2)当k=5时,求方程的另一个根.20.(12分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)若BD=BC,求点C的坐标.21.(14分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.22.(14分)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B、C两点.(1)如图1,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(2)在(1)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(3)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′C、N′B,求N′C+N′B的最小值.2019年四川省南充高中自主招生数学试卷(6月份)参考答案与试题解析一、选择题(共10个小题,每小题5分请将正确答案的序号填涂在答题卡相应位置)1.(5分)当实数x的取值使得有意义时,函数y=﹣4x+1中y的取值范围是()A.y≥﹣7B.y>﹣7C.y<﹣7D.y≤﹣7【解答】解:∵实数x的取值使得有意义,∴x﹣2≥0,∴x≥2.当x=2时,y=﹣4x+1=﹣7.∵k=﹣4<0,∴y值随x值的增大而减小,∴当x≥2时,函数y=﹣4x+1中y的取值范围是y≤﹣7.故选:D.2.(5分)下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1B.2C.3D.4【解答】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.3.(5分)若关于x的不等式组的所有整数解的和是6,则m的取值范围是()A.3<m<4B.3<m≤4C.3≤m<4D.3≤m≤4【解答】解:不等式组整理得:,解得:1≤x<m,整数解的和是6,得到1+2+3=6,即整数解为1,2,3,则m的范围是3<m≤4,故选:B.4.(5分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1<y2,则x的取值范围是()A.﹣2<x<0或x>1B.﹣2<x<1C.x<﹣2或x>1D.x<﹣2或0<x<1【解答】解:当y1<y2,x的取值范围为﹣2<x<0或x>1.故选:A.5.(5分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.6.(5分)关于x的方程的根为负数,则a的值为()A.a≠﹣3B.a≠3C.a<﹣1且a≠﹣3D.a>﹣1且a≠3【解答】解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得:x=,∵关于x的方程的根为负数,∴,∴a>﹣1,且x≠3.故选:D.7.(5分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE =3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.8.(5分)设a,b是方程x2+20x+1=0的两个根,c,d是方程x2﹣17x+1=0的两个根,则代数式(a+c)(b+c)(a﹣d)(b﹣d)的值为()A.﹣2017B.0C.340D.﹣111【解答】解:由题意可得a+b=﹣20,ab=1,c+d=17,cd=1∴(a+c)(b+c)(a﹣d)(b﹣d)=[ab+(a+b)c+c2)][ab﹣(a+b)d+d2]=(1﹣20c+c2)(1+20d+d2)=1+20d+d2﹣20c﹣400﹣20d+c2+20c+1=d2+c2+2﹣400=(c+d)2﹣400=172﹣400=﹣111,故选:D.9.(5分)在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5B.7C.9D.10【解答】解:如图:∴最多画9条,故选:C.10.(5分)如图,以矩形ABCD对角线AC为底边作等腰直角△ACE,连接BE,分别交AD,AC于点F,N,CD=AF,AM平分∠BAN.下列结论:①EF⊥ED;②∠BCM=∠NCM;③AC=EM;④BN2+EF2=EN2;⑤AE•AM=NE•FM,其中正确结论的个数是()A.2B.3C.4D.5【解答】解:如图1中,连接BD交AC于O,连接OE.∵四边形ABCD是矩形,∴OA=OC=OD=OB,∴OE=OA=OC,∴OA=OB=OC=OD=OE,∴A,B,C,D,E五点共圆,∵BD是直径,∴∠BED=90°,∴EF⊥ED,故①正确,∵CD=AB=AF,∠BAF=90°,∴∠ABF=∠AFB=∠FBC=45°,∴BM平分∠ABC,∵AM平分∠BAC,∴点M是△ABC的内心,∴CM平分∠ACB,∴∠MCB=∠MCA,故②正确,∵∠EAM=∠EAC+∠MAC,∠EMA=∠BAM,∠BAM=∠MAC,∴∠EAM=∠EMA,∴EA=EM,∵△EAC是等腰直角三角形,∴AC=EA=EM,故③正确,如图2中,将△ABN逆时针旋转90°∵∠NAB=∠GAF,∴∠GAN=∠BAD=90°,∴∠EAG=∠EAN=45°,∵AG=AN,AE=AE,∴△AEG≌△AEN(SAS),∴EN=EG,GF=BN,∵∠AFG=∠BN=∠AFB=45°,∴∠GFB=∠GFE=90°,∴EG2=GF2+EF2,∴BN2+EF2=EN2,故④正确,不妨设AE•AM=NE•FM,∵AE=EC,∴=,∴只有△ECN∽△MAF才能成立,∴∠AMF=∠CEN,∴CE∥AM,∵AE⊥CE,∴MA⊥AE(矛盾),∴假设不成立,故⑤错误,故选:C.二、填空题(共6个小题,每小题5分,请将正确答案填涂在答题卡相应位置)11.(5分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为y=3x+5.【解答】解:∵取出一个白球的概率P=,∴=,∴12+4x=7+x+y,∴y与x的函数关系式为:y=3x+5.故答案为:y=3x+5.12.(5分)已知x2﹣4xy+3y2=0,则=或2.【解答】解:∵x2﹣4xy+3y2=0,∴(x﹣3y)(x﹣y)=0,∴x﹣3y=0或x﹣y=0,∴x=3y或x=y,当x=3y时,==3+=,当x=y时,==1+1=2,故答案为:或2.13.(5分)已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=40°或140°.【解答】解:根据△ABC中∠A为锐角与钝角,分为两种情况:①当∠A为锐角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠BAC=40°,②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=40°,∴∠BAC=140°,故答案为:40°或140°.14.(5分)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为8.【解答】解:∵A(﹣4,4),B(2,2),∴OA⊥OB,建立如图新的坐标系,OB为x′轴,OA为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1,6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=•4•6﹣•4•2=8,故答案为8.15.(5分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.16.(5分)如图,已知AB=8,P为线段AB上一个动点,分别以A、B为边在AB的同侧作菱形APCD和菱形PBFE,点P、C、E在同一直线上,∠DAP=60°,M、N分别是对角线AC、BE的中点.当点P在线段AB上移动时,线段MN的最小值时2.【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设P A=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.三、解答题(6个小题,共70分)17.(10分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.【解答】解:原式=[﹣]•(a﹣1)=•(a﹣1)=当a=2sin60°﹣tan45°=2×﹣1=﹣1时,原式==.18.(10分)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(2)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【解答】解:(1)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(2)设当日可获利润w(元),日零售价为x元,由(1)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.19.(10分)对于任意实数k,方程(k2+1)x2﹣2(k+a)2x+k2+4k+b=0总有一个根是1.(1)求实数a,b.(2)当k=5时,求方程的另一个根.【解答】解:(1)由题意得对于任意实数k,均有(k2+1)﹣2(k+a)2+k2+4k+b=0,即4k(1﹣a)+1+b﹣2a2=0对于任意实数k恒成立,∴1﹣a=0,即a=1,则b=1;(2)把k=5,a=1,b=1代入原方程得:26x2﹣72x+46=0,13x2﹣36x+23=0,(x﹣1)(13x﹣23)=0,x1=1,x2=.∴方程的另一个根是.20.(12分)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)若BD=BC,求点C的坐标.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE===,∵OA=4,∴C点的坐标为:(,2),∵点C在反比例函数y=的图象上,∴k=5,(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m﹣,2).∵点C,D都在y=的图象上,∴m=2(m﹣),∴m=6,∴C点的坐标为:(,2).21.(14分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠P AB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠P AB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∵∠PMH=∠PMN=∠AMB=∠BMO,∠BMO=∠ABO∴∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,∴∠OMB=∠ABO,∴sin∠ABO=sin∠OMB==,设OB=OQ=3a,则OM=5a,易证MB2=MD•MO,∵MB是切线,∴∠MBP=∠MQB,∴△MPB∽△MBQ,∴=,∴MB2=MP•MQ,∴MD•MO=MP•MQ,∴=,∵∠DMP=∠QMO,∴△MPD∽△MOQ,∴=,∴MP=•PD=•PD,∴==.22.(14分)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B、C两点.(1)如图1,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(2)在(1)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.(3)如图2,点N的坐标是(1,0),将线段ON绕点O逆时针旋转得到ON′,旋转角为α(0°<α<90°),连接N′C、N′B,求N′C+N′B的最小值.【解答】解:(1)直线y=﹣x+3与x轴交于点C,与y轴交于点B,则点B、C的坐标分别为:(0,3)、(4,0),将点B、C的坐标代入抛物线表达式并解得:抛物线的表达式为:y=﹣x2+x+3;过点E作y轴的平行线交BC于点H,设点E(x,﹣x2+x+3),则点H(x,﹣x+3),△BEC面积S=×EH×OC=4×(﹣x2+x+3+x﹣3)=﹣x2+3x,∴﹣<0,∴S有最大值3,此时点E(2,3);(2)存在,理由:将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,故点M(2,),设点P(m,n),n=﹣m2+m+3,点Q(1,s);①当AM是平行四边形的边时,点A向右平移4个单位向上平移个单位得到M,同样点Q(P)向右平移4个单位向上平移个单位得到P(Q),故m=1+4=5或m=1﹣4=﹣3,故点P(5,﹣)或(﹣3,﹣);②当AM是平行四边形的对角线时,由中点公式得:﹣2+2=m+1,解得:m=﹣1,故点P(﹣1,);综上,点P的坐标为:(5,﹣)或(﹣3,﹣)(﹣1,);(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点N′使得ON′=ON.∵ON′=1,OM′•OB=×3=1,∴ON′2=OM′•OB,,∵∠BON′=∠M′ON′,∴△M′ON′∽△N′OB,∴==,∴M′N′=BN′,∴CN′+BN′=CN′+N′M′=CM′,此时CN′+BN′最小(两点间线段最短,C、M′、N′共线时),最小值=CM′==.。
2019年四川省成都七中自主招生数学试卷(含答案解析)
2019年四川省成都七中⾃主招⽣数学试卷(含答案解析)2019年四川省成都七中⾃主招⽣数学试卷副标题⼀、选择题(本⼤题共12⼩题,共60.0分)1. 若M =5x 2?12xy +10y 2?6x ?4y +13(x 、y 为实数),则M 的值⼀定是( )A. ⾮负数B. 负数C. 正数D. 零 2. 将⼀个棱长为m(m >2且m 为正整数)的正⽅体⽊块的表⾯染上红⾊,然后切成m 3个棱长为1的⼩正⽅体,发现只有⼀个表⾯染有红⾊的⼩正⽅体的数量是恰有两个表⾯染有红⾊的⼩正⽅体的数量的12倍,则m 等于( ) A. 16 B. 18 C. 26 D. 32 3. 已知6a 2?100a +7=0以及7b 2?100b +6=0,且ab ≠1,则ab 的值为( )A. 503B. 67C.1007D. 764. 若a =√3√2+√3+√5,b=2+√6?√10,则ab 的值为( )A. 12B. 142+36+105. 满⾜|ab|+|a ?b|?1=0的整数对(a,b)共有( )A. 4个B. 5个C. 6个D. 7个6. 在凸四边形ABCD 中,E 为BC 边的中点,BD 与AE 相交于点O ,且BO =DO ,AO =2EO ,则S △ACD :S △ABD 的值为( ) A. 2:5 B. 1:3 C. 2:3 D. 1:27. 从1到2019连续⾃然数的平⽅和12+22+32+?+20192的个位数字是( )A. 0B. 1C. 5D. 9 8. 已知x +y +z =0,且1x+1+1y+2+1z+3=0,则代数式(x +1)2+(y +2)2+(z +3)2的值为( ) A. 3 B. 14 C. 16 D. 369. 将⼀枚六个⾯编号分别为1、2、3、4、5、6的质地均匀的正⽅体骰⼦先后投掷两次,记第⼀次掷出的点数为a ,第⼆次掷出的点数为b ,则使关于x 、y 的⽅程组{ax +by =22x +y =3,只有正数解的概率为( ) A. 112B. 16C. 518D. 133610. ⽅程3a 2?8a ?3b ?1=0,当a 取遍0到5的所有实数值时,则满⾜⽅程的整数b 的个数是( ) A. 12个 B. 13个 C. 14个 D. 15个11. 若⼀个三⾓形的三边和为40,且各边长均为整数,则符合条件的三⾓形的个数为( ) A. 31个 B. 32个 C. 33个 D. 34个12. 若关于x 的⽅程x 2+ax +b ?3=0有实根,则a 2+(b ?4)2的最⼩值为( )A. 0B. 1C. 4D. 9⼆、填空题(本⼤题共7⼩题,共52.0分)13.已知x=3+√132,则代数式x4?3x3?3x+1的值为______.14.在正⼗边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有______个.15.在Rt△ABC中,∠C=90°,AC=1,BC=2,D为AB中点,E为边BC上⼀点,将△ADE沿DE翻折得到△A′DE,使△A′DE与△BDE重叠部分的⾯积占△ABE⾯积的14,则BE的长为______.16.已知关于x的⽅程√x2?2x+1?√x2?4x+4+2√x2?6x+9=m恰好有两个实数解,则m的取值范围为______.17.如图,PA切⊙O于点A,PE交⊙O于点F、E,过点A作AB⊥PO于点D,交⊙O于点B,连接DF,若sin∠BAO=23,PE=5DF,则PFPE=______.18.如图,四边形ABCD中,AB=AD=5,BC=DC=12,∠B=∠D=90°.M和N分别是线段AD和线段BC上的点,且满⾜BN=DM,则线段MN的最⼩值为______.19.若?121+x?2x2=a0+a1x+a2x2+a3x3…+a n x n,则a2+a3=______.三、解答题(本⼤题共2⼩题,共38.0分)20.已知⼆次函数y=x2+(a?7)x+6,反⽐例函数y=ax(1)当a=2时,求这两个函数图象的交点坐标;(2)若这两个函数的图象的交点不⽌⼀个,且交点横、纵坐标都是整数,求符合条件的正整数a的值;(3)若这两个函数的交点都在直线x=12的右侧,求a的取值范围.21.已知:四边形ABCD中,点E、F分别为边AD、AB上的点,连接BE、DF相交于点G,且满⾜∠ADF=∠ABE(1)如图1,若DE=BG=n,cos∠AEB=23,GE=3,求AE的长(⽤含n的代数式表⽰);(2)如图2,若ABCD为矩形,G恰为BE中点,连接CG,AE=1,作点A关于BE,求DE的长.的对称点A′,A′到CG的距离为3√24答案和解析1.【答案】A【解析】解:M =5x 2?12xy +10y 2?6x ?4y +13=4x 2?12xy +9y 2+y 2?4y +4+x 2?6x +9=(2x ?3y)2+(y ?2)2+(x ?3)2≥0,故M ⼀定是⾮负数.故选:A .通过配⽅法配出平⽅根,从⽽判断M 值的⼤⼩.本题考查了配⽅法的应⽤,熟练配⽅法的应⽤是解答此题的关键. 2.【答案】C【解析】解:将⼀个棱长为m(m >2且m 为正整数)的正⽅体⽊块的表⾯染上红⾊,然后切成m 3个棱长为1的⼩正⽅体,则只有⼀个表⾯染有红⾊的⼩正⽅体的数量为6(m ?2)2,恰有两个表⾯染有红⾊的⼩正⽅体的数量12(m ?2),∵只有⼀个表⾯染有红⾊的⼩正⽅体的数量是恰有两个表⾯染有红⾊的⼩正⽅体的数量的12倍,∴6(m ?2)2=12×12(m ?2),解得m 1=26,m 2=2(舍去),故选:C .只有⼀个表⾯染有红⾊的⼩正⽅体的数量为6(m ?2)2,恰有两个表⾯染有红⾊的⼩正⽅体的数量12(m ?2),根据只有⼀个表⾯染有红⾊的⼩正⽅体的数量是恰有两个表⾯染有红⾊的⼩正⽅体的数量的12倍,即可得到m 的值.本题主要考查了正⽅体,解决问题的关键是抓住表⾯涂⾊的正⽅体切割⼩正⽅体的特点:1⾯涂⾊的在⾯上,2⾯涂⾊的在棱长上,3⾯涂⾊的在顶点处,没有涂⾊的在内部,由此即可解决此类问题. 3.【答案】D【解析】解:∵7b 2?100b +6=0,∴6×1b 2100×1b+7=0,∵6a 2?100a +7=0,∴a 、1b 是⽅程6x 2?100x +7=0的两根,∴由根与系数的关系可知:ab =76,故选:D .根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运⽤根与系数的关系,本题属于基础题型.4.【答案】B【解析】解:a =√32+3+5√2+√3?√52+3?5=√3(√2+√3?√5)26=√2(√2+√3?√5)4=b4.∴ab =14.故选:B .将a 乘以√2+√3?√5√2+√3?√5可化简为关于b 的式⼦,从⽽得到a 和b 的关系,继⽽能得出ab 的值.本题考查⼆次根式的乘除法,有⼀定难度,关键是在分母有理化时要观察b的形式.5.【答案】C【解析】解:∵|ab|+|a?b|=1,∴0≤|ab|≤1,0≤|a?b|≤1,∵a,b是整数,∴|ab|=0,|a?b|=1或|a?b|=0,|ab|=1①当|ab|=0,|a?b|=1时,Ⅰ、当a=0时,b=±1,∴整数对(a,b)为(0,1)或(0,?1),Ⅱ、当b=0时,a=±1,∴整数对(a,b)为(1,0)或(?1,0),②当|a?b|=0,|ab|=1时,∴a=b,∴a2=b2=1,∴a=1,b=1或a=?1,b=?1,∴整数对(a,b)为(1,1)或(?1,?1),即:满⾜|ab|+|a?b|=1的所有整数对(a,b)为(0,1)或(0,?1)或(1,0)或(?1,0)或(1,1)或(?1,?1).∴满⾜|ab|+|a?b|?1=0的整数对(a,b)共有6个.故选:C.先判断出|ab|=0,|a?b|=1或|a?b|=0,|ab|=1,再借助a,b是整数即可得出结论.此题考查了绝对值,以及数对,分类讨论的思想,确定出|ab|=0,|a?b|=1或|a?b|= 0,|ab|=1是解题的关键.6.【答案】D【解析】解:如图,过点B作BF//AD交AE延长线于F,连接OC,∵BF//AD∴∠F=∠DAO∵BO=DO,∠BOF=∠DOA∴△FOB≌△AOD(AAS)∴FO=AO∵AO=2EO∴FO=2EO∴EO=EF,∵E为BC边的中点∴BE=CE∵∠BEF=∠CEO∴△BEF≌△CEO(SAS)∴∠BFE=∠COE∴BF//OCAD//OC∴S△ACD=S△AOD,∵BD=2OD∴S△ABD=2S△AOD,∴S△ABD=2S△ACD∴S△ACD:S△ABD=1:2;。
2019年高中自主招生 数学试卷 (枣庄三中、枣庄实验高中)
高中(枣庄三中、新城实验高中)自主招生数学试卷一.选择题:本大题共10小题,每小题3分,共30分)1. 4的平方根是()A.±2B.-2C.2D. ±2.分式方程=的解为()A.x=2B.x=-2C.x=-D.x=3.(2016•重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.854.(2016•重庆)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣D.5.(2016•丽水)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6) B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6) D.M(2,3),N(﹣4,6)6.(2016•山西)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH7.(2016•永州)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小8.(2016•潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB 于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣9.(2016•资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.10.(2016•茂名)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是().A. B. C. D.二.填空题:本大题共5小题,每小题5分,共25分11.一元一次方程3x-3=0的解是。
2019高中自主招生数学试题.pptx
个字母,第二位是 1,2,3,4,5 中的一个数字,则小敏输入一次密码能够成功开
机的概率是
A. 1 15
B. 8 15
C. 1 8
D. 1 30
4.在 ABC 中,内角 A 、 B 、 C 的对边分别为 a 、 b 、 c .若 b2 c2 2b 4c 5 且
a2 b2 c2 bc ,则 ABC 的面积为
上。
9.设 x R ,则不等式| x 3 | 1 的解集为
10.方程组
x2 xy
xy 12 y 2 4
的解为
. .
11.在 ABC 中,若 a4 b4 c4 2(a2 b2 )c2 2a2b2 0 ,则 C .
12.有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲、乙、丙三人各取走一张卡片,甲
则b
A. 2
B. 3
C.2
D.3Байду номын сангаас
8.如下图,小明从街道的 E 处出发,先到 F 处与小红
会合,再一起到位于G 处的老年公寓参加志愿者活动,
G
则小明到老年公寓可以选择的最.短.路径条数为
F
A.9 D.24
B.12
C.18
E
2
二、填空题:本大题共 8 小题,每小题 4 分,共 32 分。请将答案填入下面表格里的横线
(2)请在背面的答题纸上作答。另外,答完题后注意保护好自己的答案, 防止他人的不劳而获,要做到公平竞争!
一、选择题(共 8 个小题,每小题 4 分,共 32 分)。每小题均给出了代号为 A,B,C, D 的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入试卷背面的 表格里,不填、多填或错填都得 0 分。 1. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低
2019年自主招生数学模拟试卷含答案解析(已核已印)
2019年高中学校自主招生数学试卷一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或205.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.27.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是.12、=.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为.18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求t的取值范围.参考答案与试题解析一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】先判断出共有6种颜色,再根据与白相邻的颜色有黑、绿、黄、红判断出白的对面是蓝,与绿相邻的有白、黑、蓝、红判断出绿的对面是黄,与红相邻的有绿、蓝、黄、白判断出红的对面是黑,从而得解.【解答】解:由图可知,共有黑、绿、白、红、蓝、黄六种颜色,与白相邻的颜色有黑、绿、黄、红,所以,白的对面是蓝,与绿相邻的有白、黑、蓝、红,所以,绿的对面是黄,与红相邻的有绿、蓝、黄、白,所以,红的对面是黑,综上所述,涂成绿色一面的对面的颜色是黄.故选:C.2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或20【分析】由于实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则a,b 可看着方程x2﹣8x+5=0的两根,根据根与系数的关系得a+b=8,ab=5,然后把通分后变形得到,再利用整体代入的方法计算.【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.【分析】y=x2﹣x+=(x﹣)(x﹣),可求抛物线与x轴的两个交点坐标,所以|A n B n|=﹣,代入即可求解;【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|A2017B2017|=+++…+=1﹣=,故选:C.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.2【分析】根据平行线间的距离处处相等得到:△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,所以由三角形的面积公式和图形间的面积的数量关系进行证明即可.【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.7.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【分析】由勾股定理可求BC,AC的值,通过证明△ACB∽△PCQ,可得,可得CQ=,当PC是直径时,CQ的最大值=×5=.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c 的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条【分析】联立直线y=px与直线y=x+10,求出p的取值范围即可求得结果.【解答】解:联立直线y=px与直线y=x+10,,得px=x+10,x=,∵x为整数,p也为整数.∴P的取值范围为:﹣9≤P≤11,且P≠1,P≠0.而.10=2×5=1×10,0<P≤11,有四条直线,P≠0,﹣9≤P<0,只有三条直线,那么满足条件的直线有7条.10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③【分析】①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形CMGN,易求后者的面积.四边形BCDG③过点F作FP∥AE于P点.根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF.【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵,∴△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S=2S△CMG,四边形CMGN∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2.③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选:D.二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是4037x2019.【分析】根据题目中的式子可以系数为连续的奇数,未知数x的次数从1次、2次依次递增,从而可以得到第2019个单项式,本题得以解决.【解答】解:∵x,3x2,5x3,7x4,9x5,11x6,…∴第n个式子是(2n﹣1)x n,当n=2019时,对应的式子为4037x2019,故答案为:4037x2019.12.=612.5 .【分析】仔细观察,知原式还可以是.又+=1,(+)+(+)=2,+=3,…依此类推可知,将原式倒过来后再与原式相加,问题就转化为.【解答】解:设s=,①又s=,②①+②,得2s=1+2+3+4+…+49,③2s=49+48+47+…+2+1,④③+④,得4s=50×49=2450,故s=612.5;故答案为:612.5.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为(256,0).【分析】先根据伸长的变化规律求出OP8的长度,再根据每8次变化为一个循环组,然后确定出所在的位置,再根据等腰直角三角形的直角边等于斜边的倍解答即可.【解答】解:由题意可得,OP0=1,OP1=2×1=2,OP=2×2=22,2OP=2×22=23,3OP=2×23=24,4…OP=2×27=28=256,8∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,∴P8在x4的正半轴上,P8(256,0),故答案为(256,0).14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为y=(x>0)【分析】由于t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.【解答】解:∵t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,∴t1+t2=2,而x=10t1,y=10t2,∴xy=10t1×10t2=10t1+t2=102=100,∴y=(x>0).故答案为:y=(x>0).15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO =∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为13 .【分析】通过化简解析式能确定直线经过定点(﹣5,12),原点与定点的距离是原点到直线的最大距离;【解答】解:y=kx+5k+12=k(x+5)+12,∴直线经过定点(﹣5,12),∴原点与定点的距离是原点到直线的最大距离13;故答案为13;18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 6 .【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【解答】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z =(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.【分析】将括号里通分,除法化为乘法,约分,代值时,a的取值不能使原式的分母、除式为0.【解答】解:原式=••=a+3,当a=﹣3时,原式=﹣3+3=.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.【分析】(1)根据根与系数的关系可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,,代入可得关于p的方程,解方程即可;(2)由方程有三个不同的实数根x1、x2、x3,可得x3=﹣p,x1、x2是方程x2+2px ﹣3p2+5=q的两根;由根与系数的关系可得x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,进而得到关于p的方程,解出p即可求出q的值.【解答】解:(1)若q=0,则方程为x2+2px﹣3p2+5=0.因该方程有两个不同的实数x1、x2,可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,解得p2>;由,得,解得p=5或.(注意5﹣3p2≠0)因为p2>,所以p=5.(2)显然q>0.方程可写成x2+2px﹣3p2+5=±q.因该方程有三个不同的实数根,即函数与y2=±q的图象有三个不同的交点,∴可得:,即q=4p2﹣5.x1、x2是方程x2+2px﹣3p2+5=q的两根,即x2+2px﹣7p2+10=0.则x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,解得p2>.由,得,解得p2=2>,所以,q=4p2﹣5=3.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.【分析】作辅助线,构建全等三角形和平行四边形,先证明四边形ACFD是平行四边形,得DF=AC=BD,DF∥AC,再证明△BDF是等边三角形,证明△ABC ≌△BAF(SAS),可得结论.【解答】证明:延长AP至点F,使得PF=AP,连结BF,DF,CF,∵P是CD中点,∴CP=DP,∴四边形ACFD是平行四边形,∴DF=AC=BD,DF∥AC,∴∠FDB=∠BAC=60°,∴△BDF是等边三角形,∴BF=DF=AC,∠ABF=60°,∴∠ABF=∠BAC,在△ABC和△BAF中,∵,∴△ABC≌△BAF(SAS),∴AF=BC,∴AP=AF=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【分析】(1)由DC2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB∽△PAD,利用相似比得到,再利用比例的性质可计算出r的值.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4,即⊙O的半径为4.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P ≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值,得出P点坐标.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,试求t的取值范围.【分析】(1)根据“梦之点”的定义得出m的值,代入反比例函数的解析式求出n的值即可;(2)根据梦之点的横坐标与纵坐标相同,可得关于x的方程,根据解方程,可得答案;(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2得到﹣2<x1<0时,根据0≤x1<2得到﹣2≤x2<4;由于抛物线y=ax2+(b﹣1)x+1的对称轴为x=,于是得到﹣3<<3,根据二次函数的性质即可得到结论.【解答】解:(1)∵点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,∴m=2,∴P(2,2),∴n=2×2=4,∴这个反比例函数的解析式为y=;(2)由y=3kx+s﹣1得当y=x时,(1﹣3k)x=s﹣1,当k=且s=1时,x有无数个解,此时的“梦之点”存在,有无数个;当k=且s≠1时,方程无解,此时的“梦之点”不存在;当k≠,方程的解为x=,此时的“梦之点”存在,坐标为(,);(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2,又﹣2<x1<2得:﹣2<x1<0时,﹣4<x2<2;0≤x1<2时,﹣2≤x2<4;∵抛物线y=ax2+(b﹣1)x+1的对称轴为x=,故﹣3<<3,由|x1﹣x2|=2,得:(b﹣1)2=4a2+4a,故a>;t=b2﹣b+=(b﹣1)2+,y=4a2+4a+=4(a+)2+,当a>﹣时,t随a的增大而增大,当a =时,t=,∴a>时,t>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019数学试题
考试时间 100分钟 满分100分
说明:(1)请各位同学注意,本试卷题目有一定的难度,你要根据自己的情况量力而行,争取用最短的时间获得最多的分数,提高自己的考试效率!考试,比的不仅是知识和能力,更重要的是要有良好的心态和适合自己的期望值,争取把会做的题目都做对,祝你取得好成绩!
(2)请在背面的答题纸上作答。
另外,答完题后注意保护好自己的答案,防止他人的不劳而获,要做到公平竞争!
一、选择题(共8个小题,每小题4分,共32分)。
每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入试卷背面的表格里,不填、多填或错填都得0分。
1.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低
气温的雷达图.图中A 点表
示十月的平均最高气温约为15C o ,B 点表示四月的平均最低气温约为5C o .下面叙述不
正确的是
A .各月的平均最低气温都在0C o 以上
B .七月的平均温差比一月的平均温差大
C .三月和十一月的平均最高气温基本相同
D .平均气温高于20C o 的月份有5个
2.上图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++<的解集为
A .1x <-或5x >
B .5x >
C .15x -<<
D .无法确定
第2题
20C
o 15C o 10C o 5C
o
A
十月
四月
三月
二月
一月十二月
十一月
九月
八月
七月
六月
五月
B
平均最低气温
平均最高气温
3.小敏打开计算机时,忘记了开机密码的前两位,只记得密码第一位是,,M I N 中的一
个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 A .
115
B .
815
C .18
D .
130
4.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c .若22245b c b c +=+-且
222a b c bc =+-,则ABC ∆的面积为
A
B
C
D
5.上图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积...
(表面面积,也叫全面积)为 A .20π
B .24π
C .28π
D .32π
参考公式:圆锥侧面积S rl π=,圆柱侧面积2S rl π=,其中r 为底面圆的半径,l 为母线长.
6.如下图,在ABC ∆中,AB AC =,D 为BC 的中点,
BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,
则AE =
A
B
C
D
7.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c
.已知a =,2c =,2cos 3
A =,则b =
A
B
C .2
D .3
8.如下图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短..路径条数为 A .9
B .12
C .18
D .24
E G
F
g
g
g 正视图
g
侧视图
俯视图
第5题图
二、填空题:本大题共8小题,每小题4分,共32分。
请将答案填入下面表格里的横线上。
9.设x ∈R ,则不等式|3|1x -<的解集为______________.
10.方程组22
12
4
x xy xy y ⎧+=⎪⎨+=⎪⎩的解为______________. 11.在ABC ∆中,若444222222()20a b c a b c a b ++-++=,则C ∠=_______. 12.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是____________.
13.如图,在Rt ABC ∆中,90C ∠=o ,30A ∠=o ,BD 是ABC ∠的平分线,5CD =,则
AD =_______.
14.如图,圆O 的周长为4π,B 是弦CD 上任意一点(与,C D 不重合),过B 作OC 的平行线交OD 于点E ,则EO EB +=_________.(用数字表示)
15.已知31
=+x
x ,则231x x x =++_________.
16.如图,在ABC ∆中,90C ∠=o ,60A ∠=o ,1AC =,D 在BC 上,E 在AB 上,使得ADE ∆为等腰直角三角形,90ADE ∠=o ,则BE =_________.
A
B
C
D
第13题图
A
B
C
D E P
第6题图
A
B
C
E D
第16题图
B
D
E
C
O g
第14题图
三、解答题:解答应写出文字说明,证明过程或演算步骤,共36分. 17.(本小题12分)已知一元二次方程20ax bx c ++=的两根为12,x x . (1)证明:12b x x a +=-
,12c
x x a
=;(2)若方程为22310x x --=,求①1211x x +;②
2212x x +;(3)若二次函数2231y x x =--与一次函数1y x =+的图象交于,A B 两点,求
线段AB 的长.
18.(本小题10分)如图,在ABC ∆中,D 是BC 边上的中点,AD AC =,DE BC ⊥,
DE 与AB 相交于点E ,EC 与AD 相交于点F .
(1)求证:ABC FCD ∆∆~;
(2)若5FCD S ∆=,10BC =,求DE 的长.
19.(本小题14分)(1)已知正数,a b
满足1=,求22a b +的值.
(2)先填空:311=,3312+=9,333123++=___,33331234+++=___,
3333312345++++=___,然后根据发现的规律,试写出3333123n ++++L 的结果(用
A
B
E
D
F
n 表示).可参考公式(1)
1232
n n n +++++=
L ,n 为正整数.。