“导体棒切割磁感线”题型与归类

合集下载

导体棒切割磁感线动态分析专题

导体棒切割磁感线动态分析专题

姓名:导体棒切割磁感线动态分析专题1.如图所示,宽度为L=2 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻。

导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=。

一根质量为m=的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。

现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10 m/s,在运动过程中保持导体棒与导轨垂直。

求:(1)在闭合回路中产生的感应电流的大小和方向;(2)导体棒MN两端的电压;(3)作用在导体棒上的拉力的大小和方向;(4)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量。

2.如图,固定在同一水平面内的两根长直金属导轨的间距为L=1m,其右端接有阻值为R=Ω的电阻,整个装置处在竖直向上、磁感应强度大小为B=1T的匀强磁场中,一质量为m= (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ=。

现杆在水平向左、垂直于杆的恒力F=2N作用下从静止开始沿导轨运动,当杆运动的距离为d=时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r=Ω,导轨电阻不计,重力加速度为g。

求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量;(3)电阻R上的发热量3. 水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。

用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动。

当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v与F的关系如右下图。

(g=10m/s2)(1)金属杆在匀速运动之前做什么运动(2)若m=,L=,R=Ω;磁感应强度B为多大(3)由v—F图线的截距可求得什么物理量其值为多少BFabrRvBRMN30º ab cd N Q M PB F 4.如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为 =370的绝缘斜面上,两导轨间距为L=1m 。

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

“导体棒切割磁感线”题型与归类电子教案

“导体棒切割磁感线”题型与归类电子教案

“导体棒切割磁感线”题型与归类“导体棒切割磁感线”问题的题型与归类问题一:电磁感应现象中的图象在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来.此问题可分为两类(1)由给定的电磁感应过程选出或画出相应的物理量的函数图像;(2)由给定的有关图像分析电磁感应过程,确定相关的物理量.1.判断函数图象如果是导体切割之动生电动势问题,通常由公式:E=BLv确定感应电动势的大小随时间的变化规律,由右手定则或楞次定律判断感应电流的方向;如果是感生电动势,则由法拉弟电磁感应定律确定E的大小,由楞次定律判断感应电流的方向。

题型1-1-1:例1、如图甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R1,ab=bc=cd=da=l,现将线框以与ab垂直的速度v匀速穿过一宽度为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行.令线框的cd边刚与磁场左边界重合时t=O,电流沿abcda流动的方向为正.(1)在图乙中画出线框中感应电流随时间变化的图象.(2)在图丙中画出线框中a、b两点间电势差Uab随时间t变化的图象.分析:本题是电磁感应知识与电路规律的综合应用,要求我们运用电磁感应中的楞次定律、法拉第电磁感应定律及画出等效电路图用电路规律来求解,是一种常见的题型。

解答:(1)令I0=Blv/R,画出的图像分为三段(如下图所示)t=0~l/v,i=-It= l/v~2l/v,i=0t=2l/v~3l/v,i=-I=Blv,面出的图像分为三段(如上图所示)(2)令Uab小结:要求我们分析题中所描述的物理情景,了解已知和所求的,然后将整个过程分成几个小的阶段,每个阶段中物理量间的变化关系分析明确,最后规定正方向建立直角坐标系准确的画出图形例2、如图所示,一个边长为a ,电阻为R 的等边三角形,在外力作用下以速度v 匀速的穿过宽度均为a 的两个匀强磁场,这两个磁场的磁感应强度大小均为B ,方向相反,线框运动方向与底边平行且与磁场边缘垂直,取逆时针方向为电流的正方向,试通过计算,画出从图示位置开始,线框中产生的感应电流I 与沿运动方向的位移x 之间的函数图象分析:本题研究电流随位移的变化规律,涉及到有效长度问题.解答:线框进入第一个磁场时,切割磁感线的有效长度在均匀变化.在位移由0到a/2过程中,切割有效长度由0增到23a ;在位移由a/2到a 的过程中,切割有效长度由23a 减到0.在x=a/2时,,I=R avB 23,电流为正.线框穿越两磁场边界时,线框在两磁场中切割磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化.在位移由a 到3a/2 过程中,切割有效长度由O 增到23a 。

19、物理高考中电磁感应计算题问题归类例析

19、物理高考中电磁感应计算题问题归类例析

物理选考中电磁感应计算题问题归类例析导体在磁场中运动切割磁感线产生电磁感应现象,是历年物理选考的一个热点问题。

因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。

通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,要探讨的问题不外乎以下几种: (1)导体棒的总体动态分析:①受力分析:导体棒切割磁感线时,相当于电源,注意单杆切割和双杆切割的区别,安培力会随速度的变化而改变;仔细分析研究对象的受力情况,写出牛顿第二定律公式分析导体棒的加速度。

②运动过程分析:分析运动过程中速度和加速度的动态变化过程,电磁感应过程中物体的运动大多为加速度减小的变加速直线运动。

最后分析导体棒在稳定状态下的运动情况。

③等效电路分析:谁为等效电源,外电路的串并联、路端电压、电流如何求解等。

(2)能量转化的计算:分析运动过程中各力做功和能量转化的问题:如安培力所做的功、摩擦力做功等,结合研究对象写好动能定理。

明确在电磁感应现象中,通过克服安培力做功,把其他形式的能转化为电能,再通过电流做功,把电能转化为内能和其他形式的能。

(3)各运动量速度v 、位移x 、时间t 的计算:①位移x 的计算一般需要结合电量q :②速度v 和时间t 的计算一般需要结合动量定理:, 上式还可以计算变力的冲量。

③以电荷量作为桥梁,可以直接把上面的物理量位移x 、速度v 、时间t 联系起来。

按照不同的情景模型,现举例分析。

一、“单杆”切割磁感线型1、杆与电阻连接组成回路:此时杆相当于电源,,安培力和速度v 成正比 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、质量为m,阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型引言电磁感应是指导体内的电荷受到磁场变化的影响而发生运动的现象。

当导体与磁场相互作用时,导体内部将产生感应电流。

本文将讨论关于电磁感应导体棒切割磁感线的题型,并探讨有关问题。

电磁感应基础知识回顾在讨论电磁感应导体棒切割磁感线的题型之前,我们首先回顾一些基础知识。

电磁感应定律电磁感应定律是描述电磁感应现象的基本定律。

它可以用以下公式表达:ε=−dΦdt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。

该定律表明,当磁场发生变化时,导体内部将产生感应电动势,通过闭合回路可以产生感应电流。

磁感线磁感线是描述磁场分布的线条。

磁感线的方向表示磁场的方向,磁感线的密度表示磁场强度。

在磁场的分布中,磁感线形成一个封闭的回路。

电磁感应导体棒切割磁感线问题在实际问题中,我们经常遇到关于电磁感应导体棒切割磁感线的题型。

这类问题要求计算感应电动势、感应电流或导体受到的力等。

我们将通过以下几个方面来探讨这类问题。

导体切割磁感线产生的感应电动势当导体切割磁感线时,根据电磁感应定律,导体内将产生感应电动势。

感应电动势的大小可以根据切割磁感线的速度、磁感线的密度和导体的长度等因素来计算。

根据右手定则,我们可以确定感应电动势的方向。

导体切割磁感线产生的感应电流如果导体是一个闭合回路,切割磁感线产生的感应电动势将产生感应电流。

根据欧姆定律,我们可以计算产生的感应电流的大小,并根据导体形状和电源方向确定感应电流的方向。

感应电流会产生磁场,与外部磁场相互作用。

导体受到的力通过切割磁感线产生的感应电流,导体将受到一个力,称为洛伦兹力。

洛伦兹力的大小与感应电流、磁感线的强度以及导体的长度和形状等有关。

根据洛伦兹力的方向规则,我们可以确定导体受到的力的方向。

导体切割磁感线的应用导体切割磁感线的现象广泛应用于发电机、电动机和变压器等电磁设备中。

通过切割磁感线产生感应电流,可以实现能量转换和能量传输。

各种电磁设备的工作原理都涉及到导体切割磁感线的现象。

高考物理电磁感应中单棒切割磁感线的模型分类总结

高考物理电磁感应中单棒切割磁感线的模型分类总结

电磁感应中单棒切割磁感线的模型汇总电磁感应中金属棒沿"U"型框架或平行导轨运动,要涉及磁场对电流的作用,法拉第电磁感应定律,含源电路的计算等电学知识和力学知识,其中单棒切割磁感线是这类习题的基础。

导体棒运动可分为给一定初速或在外力作用下的两种情况,在高中阶段我们常见的电学元件有电阻、电源、电容器、电感线圈,组合在一起一共有八种典型模型,下面我们具体来讨论这八种模型遵循的规律。

模型(一)匀强磁场与导轨导体棒垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,初速度为v ,水平导轨光滑。

除电阻R 外,其它电阻不计。

(1)电路特点∶导体棒相当于电源。

(2)动态分析∶R BLV R E I ==,R V L B BIL F A 22==,ma=A F ↓↓→↓→↓→a V A F I ,导体棒做a 减小的减速运动,最后回路中电流等于零,a=0、v=0,棒静止。

(3)电量关系∶设此过程中导体棒的位移为xRBLX R =∆=φn q 0mv -0q =-BL (4)能量关系∶回路中焦耳热为Q ,20mv 210--=A W QW A =模型(二)匀强磁场与导轨导体棒垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,,初速度为零,在恒力F 作用向右运动;水平导轨光滑。

除电阻R 外,其它电阻不计。

(1)电路特点∶导体棒相当于电源。

(2)动态分析∶R BLV R E I ==,R V L B BIL F A 22==,ma=-A F F ↓↑→↑→↑→a V A F I ,导体棒做a 减小的加速运动。

最后的稳定状态为:当安培力F A 等于外力F 时,电流达到恒定值,导体棒以v m 做匀速直线运动。

22m v L B FR =(3)电量关系∶如果导体棒位移为x ,RBLX R =∆=φn q 0-mv q t m =-BL F (4)能量关系∶回路中焦耳热为Q ,0-mv 21-FX 2m =A W QW A =模型(三)匀强磁场与导轨垂直,磁感应强度为B ,棒ab 长为L ,质量为m ,电阻为R ,初速度为零;电源电动势为E ,内阻为r ;水平导轨光滑,电阻不计。

导体棒切割磁感线的综合问题(单棒、含容和双棒)

导体棒切割磁感线的综合问题(单棒、含容和双棒)

F(m1m2)a
1
2
FB m1a FB BIl
v
有外力等距双棒
v2
I Bl( v2 v1 ) R1 R2
v2
v1
(R1R2 )m1F B2l2(m1m2 )
O
v1 t
有外力等距双棒
4.变化
(1)两棒都受外力作用
F1
F2
1
2
(2)外力提供方式变化
有外力不等距双棒
运动分析:
F
某时刻两棒速度分别为v1、 v2
加速度分别为a1、a2
a1
F
FB1 m1
a2
FB2 m2
经极短时间t后其速度分别为:
F F
B B
1
1 l1 2 l2 v1 v1 a1t v2 v2 a2t
2
此时回路中电流为: IB l1(v1a1t)B l2(v2a2t)
R 1R 2
当 l1a1 l2a2 时
B(l1v1l2v2)B(l1a1l2a2)t R1R2
导体棒切割磁感线的综合问题(单棒、含容 和双棒)
细述
一、单棒问题 二、含容式单棒问题 三、无外力双棒问题 四、有外力双棒问题
阻尼式单棒
1.电路特点
v0
导体棒相当于电源。
2.安培力的特点
安培力为阻力,并随速
B2l2v
度减小而减小。
FB BIl R r
3.加速度特点
加速度随速度减小而减小
v
a FB B2l2v m m(Rr)
m
B
M
m
FB
h
v0
1
2
(3)两棒都有初速度
v1
v2
(4)两棒位于不同磁场中

导体棒切割磁感线问题

导体棒切割磁感线问题

导体切割磁感线问题电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

(如果学生能力足够,完全可以力学和电学同时分析,找到中间那个联系点,一般联系点都是合力,之后运用牛二定律很容易解题。

)导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q 之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R中的电流强度为0.4A,方向从N经R到Q。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F=F安=BIh=0.02N。

(3)金属棒ab两端的电势差等于U ac、U cd与U db三者之和,由于U cd=E cd-Ir cd,所以U ab =E ab-Ir cd=BLv-Ir cd=0.32V。

高考物理电磁感应中双棒切割磁感线模型分类总结

高考物理电磁感应中双棒切割磁感线模型分类总结

电磁感应中双棒切割磁感线模型上次分析了电磁感应中单棒切割磁感线的8种模型,包含了在一定初速或在外力作用下、电路中有电阻、电源、电容器、电感线圈等元件的各种情况。

单棒切割磁感线是此类问题的基础,其他情况是在此基础上的变化和延伸,因此必须熟读和深入理解。

本文对于双棒切割磁感线问题的典型模型再做具体分析。

模型一:无外力等间距匀强磁场与导轨导体棒垂直,磁感应强度为B ,棒长均为L ,质量分别为m 1和m 2,棒1开始时静止,棒2初速度为v 0,水平导轨光滑,棒的电阻分别为R 1和R 2,其它电阻不计。

(1)电路特点:棒2相当于电源,棒1受到安培力作用向右加速运动,运动后产生反电动势。

(2)动态分析∶212112R R V BL R R BLVBLV I +∆=+-=2122R R V L B BIL F A +∆==ma=A F 随着棒2减速,棒1加速,两棒的相对速度∆v 逐渐减小,电路中的电流I逐渐减小,安培力逐渐减小。

由牛顿第二定律ma =A F 得,加速度a 逐渐减小。

棒1做a 减小的加速运动,棒2做a 减小的减速运动。

a=0时达到稳定状态,电流等于零,以共同速度做匀速直线运动。

(3)电量关系∶棒1:0-v m q 1共=BL 棒2:022v m -v m q -共=BL 由于棒1和棒2所受的安培力大小相等方向相反,故动量守恒共)(v m m v m 2102+=2121x q R R BL R R S B +∆=+∆=∆x 为两棒的相对位移(4)能量关系∶系统减小的机械能等于回路中产生的焦耳热Q (类似于完全非弹性碰撞)()Q ++=221202v m m 21v m 21共2121R R Q Q =匀强磁场与导轨导体棒垂直,磁感应强度为B ,棒长分别为L 1和L 2,质量分别为m 1和m 2,棒1初速度为v 0,棒2开始时静止,水平导轨光滑,棒的电阻分别为R 1和R 2,其它电阻不计。

(1)电路特点:棒1相当于电源,棒2受到安培力作用向右加速运动,运动后产生反电动势。

导体棒切割磁感线问题分类解析(新、选)

导体棒切割磁感线问题分类解析(新、选)

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析
目前的研究主要集中在简单情况下的导体棒切割磁感线问题,对于更复杂的情况,如导体 棒形状不规则、磁场非均匀等,需要进一步深入研究。
多物理场耦合效应的研究
在导体棒切割磁感线的过程中,除了电磁感应外,还可能涉及到热传导、力学等多种物理 场的耦合效应,未来可以开展多物理场耦合效应的研究,更全面地揭示该过程的物理机制 。
解题思路
本题主要考察法拉第电磁感应定律的应用,需要掌握感应电动势的计算 公式和判断感应电流方向的方法。
双棒切割典型例题
题目描述
两根导体棒在匀强磁场中做匀速切割磁感线运动,求两根导体棒之间的感应电动势和感应电流。
解析过程
根据法拉第电磁感应定律和欧姆定律,可以分别求出两根导体棒产生的感应电动势和感应电流。通过比较两根导体棒 的运动状态和电路连接方式,可以确定感应电动势和感应电流的大小和方向。
解题思路
本题主要考察法拉第电磁感应定律和欧姆定律的应用,需要掌握感应电动势和感应电流的计算方法,同 时注意分析电路的连接方式和导体棒的运动状态。
多棒切割典型例题
01
题目描述
多根导体棒在匀强磁场中做匀速切割磁感线运动,求多根 导体棒之间的感应电动势和感应电流。
02 03
解析过程
根据法拉第电磁感应定律和欧姆定律,可以分别求出每根 导体棒产生的感应电动势和感应电流。通过比较各根导体 棒的运动状态和电路连接方式,可以确定多根导体棒之间 的感应电动势和感应电流的大小和方向。
双棒切割问题
两导体棒以相同速度在匀强磁场中做切割磁感线运动
此时两导体棒产生的感应电动势相同,感应电流也相同,两导体棒受到的安培力大小相 等、方向相反,系统动量守恒。
两导体棒以不同速度在匀强磁场中做切割磁感线运动
此时两导体棒产生的感应电动势不同,感应电流也不同,两导体棒受到的安培力大小不 相等、方向相反,系统动量不守恒。

导体棒切割磁感线的综合问题单棒含容与双棒-PPT

导体棒切割磁感线的综合问题单棒含容与双棒-PPT

(3)导体棒受安培力恒定:
FB
CB2l 2F m CB2l 2
v v0
(4)导体棒克服安培力做得功等于
电容器储存得电能:
证明
W克B
1 C(Blv)2 2
O
F
t
电容有外力充电式
4、几种变化:
(1)导轨不光滑
F
(2)恒力得提供方式不同
FB
h
mmgg
B
B
F
(3)电路得变化
F
无外力等距双棒
1、电路特点
v0 2
m2v0 ( m1 m2 )v共
(2)能量转化规律
系统机械能得减小量等于内能得增加量、
(类似于完全非弹性碰撞)
1 2
m2v02
1 2 ( m1
m2
)v共2 +Q
两棒产生焦耳热之比:
Q1 R1
Q2 R2
无外力等距双棒
5、几种变化: (1)初速度得提供方式不同 (2)磁场方向与导轨不垂直
B2l 2
电动式单棒
7、稳定后得能量转化规律
Imin E
Imin E反
I
2 min
(
R
r)
mgvm
8、起动过程中得三个规律
(1)动量关系: BLq mgt mvm 0
(2)能量关系:
qE
QE
mgS
1 2
mvm2
(3)瞬时加速度: a FB mg = B (E Blv)l g
m
q n Bl s
棒2:
a2
F FB m2
只要a2>a1, (v2-v1)
I FB
a1 a2
当a2=a1时 v2-v1恒定 I恒定 FB恒定 两棒匀加速

电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型

电磁感应导体棒切割磁感线题型一、概述电磁感应是指导体内部电荷的运动状态发生改变时,会产生磁场,从而在导体周围形成磁感线。

当导体与磁场相对运动时,磁感线会被切割,产生感应电动势和感应电流。

这就是电磁感应现象。

二、导体棒切割磁感线题型在考试中,常见的关于电磁感应的题型之一就是导体棒切割磁感线题型。

这类题目通常给定一个导体棒在某个时间段内移动的速度和一个垂直于其运动方向的恒定磁场。

要求求出在该时间段内导体棒中所产生的感应电动势或者感应电流大小。

三、切割磁感线产生的电动势公式根据法拉第电磁感应定律,当导体棒与恒定磁场相对运动时,在其两端会产生一个由负极向正极流动的闭合回路中的电荷移动,从而形成一个环路。

根据欧姆定律,该回路中会有一定大小的电流I通过。

根据基尔霍夫第二定律,该回路中所产生的电动势E等于回路中电势差之和,即:E = ε - IR其中,ε表示感应电动势大小,I表示回路中的电流强度,R表示回路中的总电阻。

根据楞次定律,感应电动势的方向与导体棒运动方向垂直,并且遵循右手定则。

具体而言,当右手握住导体棒,并将拇指指向运动方向时,四指所指方向就是感应电动势的方向。

四、切割磁感线产生的感应电流公式当导体棒闭合成环路时,在环路中会有一定大小的电流通过。

根据欧姆定律,该环路中电流I等于环路中总电压V除以总电阻R:I = V/R其中,V等于由导体棒切割磁场所产生的感应电动势ε。

五、影响切割磁感线产生的感应电动势或者感应电流大小因素1. 磁场强度:磁场强度越大,则切割磁感线所产生的感应电动势或者感应电流越大。

2. 导体长度:导体长度越长,则切割磁感线所产生的感应电动势或者感应电流越大。

3. 导体速度:导体速度越快,则切割磁感线所产生的感应电动势或者感应电流越大。

4. 磁场方向:磁场方向与导体棒运动方向垂直时,切割磁感线所产生的感应电动势或者感应电流最大。

六、实际应用导体棒切割磁感线的现象在实际生活中有着广泛的应用。

电磁感应大题题型总结

电磁感应大题题型总结

电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。

在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。

当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。

- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。

- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。

电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。

根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。

- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。

2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。

导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。

在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。

高考物理全真复习- 导体棒切割磁感线问题分类解析

高考物理全真复习- 导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab 两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd =Bhv 。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

导体切割磁感线专题

导体切割磁感线专题

导体切割磁感线专题1.如图所示,MM′和NN′为一对足够长的平行光滑倾斜导轨,导轨平面的倾角θ=30°,导轨相距为L,上端M 、N和定值电阻R用导线相连,并处于垂直导轨平面向上的匀强磁场中,磁场的磁感应强度大小为B。

质量为m的金属棒ab垂直导轨放置在M、N附近。

从静止开始下滑,通过的路程为d时,速度恰好达到最大。

设金属棒的电阻为r,导轨和导线的电阻不计,求:(1)金属棒的最大加速度;(2)金属棒的最大速度v m;(3)金属棒下滑d过程中金属棒上产生的电热Q。

(4)电阻R上通过的电量q。

dθ2.如图6所示,质量为m1的金属棒P在离地h高处从静止开始沿弧形金属平行导轨MM′、NN′下滑,水平轨道所在的空间有竖直向上的匀强磁场,磁感强度为B。

水平导轨上原来放有质量为m2的金属杆Q,已知两杆质量之比为3∶4,导轨足够长,不计摩擦,m1为已知。

求:(1)两金属杆的最大速度分别为多少?(2)在两杆运动过程中释放出的最大电能是多少?a B 0 bR F k 3. 如图所示:长为L ,电阻r =0.3Ω,质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻, 量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 两端,垂直导轨平面的云强磁场向下穿过导轨平面。

现以水平向右的恒力F 使金属棒向右移动,当金属棒以υ=2m/s 的速度在导轨上匀速运动时,观察到电路中一电表正好满偏,而另一电表未满偏。

问: (1)此满偏的表示是么表?说明理由(2)拉动金属的外力F 是多大?(3)此时撤去此外力F ,金属棒将逐渐慢下来,最终停止在导轨上,求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量4、如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感强度大小为B 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“导体棒切割磁感线”问题的题型与归类
问题一:电磁感应现象中的图象
在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来.此问题可分为两类(1)由给定的电磁感应过程选出或画出相应的物理量的函数图像;(2)由给定的有关图像分析电磁感应过程,确定相关的物理量.
1.判断函数图象
如果是导体切割之动生电动势问题,通常由公式:E=BLv确定感应电动势的大小随时间的变化规律,由右手定则或楞次定律判断感应电流的方向;如果是感生电动势,则由法拉弟电磁感应定律确定E的大小,由楞次定律判断感应电流的方向。

题型1-1-1:例1、如图甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R1,ab=bc=cd=da=l,现将线框以与ab垂直的速度v匀速穿过一宽度为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行.令线框的cd边刚与磁场左边界重合时t=O,电流沿abcda流动的方向为正.
(1)在图乙中画出线框中感应电流随时间变化的图象.
(2)在图丙中画出线框中a、b两点间电势差Uab随时间t变化的图象.
分析:本题是电磁感应知识与电路规律的综合应用,要求我们运用电磁感应中的楞次定律、法拉第电磁感应定律及画出等效电路图用电路规律来求解,是一种常见的题型。

解答:(1)令I0=Blv/R,画出的图像分为三段(如下图所示)
t=0~l/v,i=-I0
t= l/v~2l/v,i=0
t=2l/v~3l/v,i=-I0
(2)令U ab=Blv,面出的图像分为三段(如上图所示)
小结:要求我们分析题中所描述的物理情景,了解已知和所求的,然后将整个过程分成几个小的阶段,每个阶段中物理量间的变化关系分析明确,最后规定正方向建立直角坐标系准确的画出图形
例2、如图所示,一个边长为a ,电阻为R 的等边三角形,在外力作用下以速度v 匀速的穿过宽度均为a 的两个匀强磁场,这两个磁场的磁感应强度大小均为B ,方向相反,线框运动方向与底边平行且与磁场边缘垂直,取逆时针方向为电流的正方向,试通过计算,画出从图示位置开始,线框中产生的感应电流I 与沿运动方向的位移x 之间的函数图象
分析:本题研究电流随位移的变化规律,涉及到有效长度问题. 解答:线框进入第一个磁场时,切割磁感线的有效长度在均匀变化.在位移由0到a/2过程中,切割有效长度由0增到2
3a ;在位移由a/
2到
a 的过程中,切割有效长度由23a
减到
0.在x=a/2时,,I=R avB
23,电流为正.线框穿越两磁场边界时,线框在两磁场中切割
磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化.在位移由a 到3a/2 过程中,切割有效长度由O 增到23a。

;在位移由3a/2到2a 过程中,切割有效长度由
2
3a
减到0.在x=3a/2时,I=R avB
3电流为负.线框移出第二个磁场时的情况与进入第
一个磁场相似,I 一x 图象如右图所示.
1、长度相等、电阻均为r 的三根金属棒AB 、CD 、EF 用导线相连,如图所示,不考虑导线电阻,此装置匀速进入匀强磁场的过程(匀强磁场垂直纸面向里,宽度大于AE 间距离),AB 两端电势差u 随时间变化的图像可能是:( )
A C
E
R
L
F
B
t /s
F /N
0 4 8 12 16 20
1
2 3
4 5
A
. B . C . D .
9、 (2003年广东,18)在图所示区域(图中直角坐标系Oxy 的1、3象限)内有匀强磁场,磁感应强度方向垂直于图面向里,大小为B .半径为l ,圆心角为60。

的扇形导线框OPQ 以角速度w 绕。

点在图面内沿逆时针方向匀速转动,导线框回路电阻为R .
(1)求线框中感应电流的最大值I 。

和交变感应电流的频率f ;
(2)在图中画出线框转一周的时间内感应电流I 随时间t 变化的图象.(规定与图中线框的位置相应的时刻为t=0) 10、.如图所示,abcd 为一个闭合矩形金属线框,图中虚线为磁场右边界(磁场左边界很远),它与线圈的ab 边平行,等分bc 边,即线框有一半位于匀强磁场之中,而另一半位于磁场之外,磁感线方向垂直线框平面向里.线框以ab 边为轴匀速转动.t=O 时的位置如图所示,在右面的坐标系上定性画出转动过程中线框内感应电流随时间变化的图像(只要求画出一个周期).
2.分析物理过程和物理量
例4、(2001年全国物理)如图甲所示,一对平行光滑导轨,放在水平面上,两导轨间的距离l =0.20m ,电阻R =Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及两轨道的电阻均可忽略不计,整个装置处于磁感应强度B =的匀强磁场中,磁场方向垂直轨道面向下,如图甲所示。

现用一外力F 沿轨道方向拉杆,使之做匀加速运动,侧得力F 与时间t 的关系如图14乙所示。

求杆的质量m 和加速度a 。

u u u u
分析: 本题已知图像要求利用电磁及力学知识求出相应的物理量,处理本类问题关键是要审清图像.
解答:导体杆在轨道上做初速度为零的匀加速直线运动,用v 表示瞬时速度,t 表示时间,则杆切割磁感线产生的感应电动势为:E =BLv =Blat ……①
闭合回路中的感应电流为
R
E
I =
……② 由安培力公式和牛顿第二定律得:F -BIl =ma ……③ 由①、②、③式得F =ma +R
at
l B 22……④
小结:图像的斜率、截距、面积等表征的物理意义或物理量是重点分析的内容,再运用力学知识、电磁学知识及电路规律来求解。

问题二:单根导线切割磁感线运动中的稳定态
9、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.
(1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;
(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;
(3)求在下滑过程中,ab 杆可以达到的速度最大值.
解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上. (2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流
R
Blv R E I ==
杆受到安培力R
v
L B Blv F 22==
根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R v
L B g a 22sin -=θ
(3)当R
v
L B mg 22sin =θ时,ab 杆达到最大速度mAX V
2
2sin L
B mgR V m θ
=
2、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( D ). A .线圈可能一直做匀速运动 B .线圈可能先加速后减速
C .线圈的最小速度一定是mgR /B 2 L 2
D .线圈的最小速度一定是
)(2l d h g +-
问题三:电磁感应中的电量与电热计算
问题四:常规与特殊的对比 1. 关于V 的相对性
7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( C ).
图7 A 、2222/)(L B fR v L B v m -= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m +=
2.关于感生电动势与动生电动势
3.关于两根导体棒中的安培力大小、方向关系。

相关文档
最新文档