钢结构厂房吊车梁设计
钢结构 吊车梁设计
n
—刹车轮与轨道间的滑动摩擦系数 取0.1
K 1
P
i 1
n
max, k
—吊车一侧制动轮的最大轮压之和
2.4.3 吊车梁内力计算
1.计算内容
M x max 及相应
Q、 支座
Vmax
M y max 及局部弯矩(制动桁架)M y
2.计算原则
注意:计算吊车梁的强度、稳定和连接时,按两台吊 车考虑;计算吊车梁的疲劳和变形时按作用在跨间内 起重量最大的一台吊车考虑。疲劳和变形的计算,采 用吊车荷载的标准值,不考虑动力系数。
1加强上翼缘图242吊车梁系统组成图242吊车梁系统组成2制动梁制动桁架较大竖向荷载吊车梁横向水平荷载制动梁制动梁图242吊车梁系统组成图242吊车梁系统组成竖向荷载吊车梁横向水平荷载制动桁架15制动桁架辅助桁架图242吊车梁系统组成图242吊车梁系统组成垂直支撑水平支撑3边柱吊车梁设置垂直辅助桁架轻中级工作制制动桁架吊车梁242吊车梁荷载242吊车梁荷载吊车起重物及系统自重
2.疲劳验算位置
5
A6~A8级吊车梁下列位置应进行疲劳验算 1.受拉翼缘与腹板连接处的主体金属 2.受拉区加劲肋端部的主体金属
2
4
1 3
3.受拉翼缘与支撑连接处的主体金属 (a)跨中截面 (螺栓孔处) 4.下翼缘与腹板连接的角焊缝 5.支座加劲肋与腹板连接的角焊缝
(b)支座截面
图2.4.5 疲劳验算点
x x
受拉区:B点最不利 Mx f Wnx2
y
B
(a)
Wnx1、Wnx2 ——吊车梁截面对x轴上部、 下部纤维处的净截面 图2.4.3 截面强度验算 抵抗矩。
2.带制动梁 A点最不利
钢结构吊车梁设计一般规定、荷载计算
钢结构吊车梁设计一般规定、荷载计算一、设计一般规定1.吊车梁及吊车的工作级别(1)吊车的使用等级根据《起重机设计规范GB/T 3811-2008》3.2.1,吊车按照吊车可能完成的总工作循环数将使用等级划分为U0~U9共10个等级,吊车使用总工作循环数Cr与吊车使用等级及使用频繁程度的关系见《起重机设计规范GB/T 3811-2008》3.2.1表1,如下:表1 起重机的使用等级(2)吊车的起升荷载状态级别根据《起重机设计规范GB/T 3811-2008》3.2.2,起重机的起升载荷,是指起重机在实际的起吊作业中每一次吊运的物品质量(有效起重量)与吊具及属具质量的总和(即起升质量)的重力;起重机的额定起升载荷,是指起重机起吊额定起重量时能够吊运的物品最大质量与吊具及属具质量的总和(即总起升质量)的重力。
其单位为牛顿(N)或千牛(kN)。
起重机的起升载荷状态级别是指在该起重机的设计预期寿命期限内,它的各个有代表性的起升载荷值的大小及各相对应的起吊次数,与起重机的额定起升载荷值的大小及总的起吊次数的比值情况,据此载荷状态级别被分为Q1~Q4共4个级别。
详见《起重机设计规范GB/T 3811-2008》3.2.2表2。
表2起重机的载荷状态级别及载荷谱系数(3)吊车的工作级别根据吊车的10个使用等级与吊车的4个起升荷载状态级别,将吊车整机的工作级别分为A1~A8共8个级别,详见《起重机设计规范GB/T 3811-2008》3.2.3表3。
表3 吊车的工作级别在《建筑结构荷载规范GB 5009-2012》(简称《荷规》)中,工作级别与吊车的荷载系数(《荷规》6.2)、动力系数(《荷规》6.3)及吊车荷载的组合值系数、频遇值系数、准永久值系数(《荷规》6.4)有关,为方便设计,在吊车荷载的条文说明中将吊车的工作制与工作级别的对应关系做如下规定:表4 吊车的工作制等级与工作级别的对应关系2吊车梁荷载吊车梁荷载分为竖向荷载(吊车的竖向轮压)与水平荷载,水平荷载又分为纵向水平荷载与横向水平荷载,吊车纵向水平制动力产生纵向水平荷载,对于轻、中级工作制吊车(A1-A5),横向水平荷载考虑由小车的水平制动力产生,对于重级、特重级工作制吊车(A6-A8),横向水平荷载还需考虑吊车的摇摆力,根据《钢结构设计标准GB50017-2017》3.2.2,计算强度、稳定性以及连接的强度时,此水平力不宜与小车产生的水平制动力同时考虑。
3.4.吊车梁设计
注意:
当吊车梁采用制动桁架时,需要计算附加轴力和局部弯矩。
附加轴力的计算:用桁架内力分析方法计算 M y max N b1 制动桁架节间局部弯矩按以下近似公式:
轻中级工作制吊车:
M y1
a d
TH d 4
TH
重级工作制吊车:
M y1 TH d 3
3.4.5 焊接实腹式吊车梁的截面选择
计算力及吊车台总数组合表
计算项目
F Q 1Pk , max
T 1.4 ( Q Q1 ) / n
计算力
轻、中级吊车 重级吊车
吊车台数组合
吊车梁及制动结 构的强度和稳定 轮压处腹板局部 压应力、腹板局 部稳定
F Q 1 Pk , max
T 1.4 ( Q Q1 ) / n
下撑式
桁架式
2.7.1 吊车梁系统的组成
吊车梁系统:
吊车梁(吊车桁架) 制动结构 制动梁 制动桁架
制动桁架 辅 助 桁 架 水平支撑 垂直支撑 吊 车 梁 吊车梁 制动梁 加劲肋
制动结构的作用: 承受横向水平力 侧向支承上翼缘,保证吊车梁的整体稳定 制动梁可兼作检修平台
制动桁架 吊车梁
天窗架
3、刚度验算
按效应最大的一台吊车的荷载标准值计算,且不乘动 力系数。 吊车梁的竖向挠度:
M kxl v [v ] 10EI x
2
式中:[v]——吊车梁的容许挠度 轻级桥式吊车:l/800 中级桥式吊车:l/1000
重级桥式吊车:l/1200
注意:
《钢结构设计规范》(GB50017-2003)规定:对于工 作级别为A7、A8吊车的制动结构,计算其水平挠度,按效 应最大的一台吊车的荷载标准值计算,且不乘动力系数。
吊车及吊车梁设计
钢结构设计规范(新规范)GB50017-2003中表A.1.1手动吊车梁和单梁吊车(包括悬挂吊车)L/500轻级工作制桥式吊车L/800中级工作制桥式吊车L/1000重级工作制和起重量Q≥50的中级工作制桥式吊车L/1200风荷载控制柱顶位移,1/500,1/400;吊车作用下,仅重级工作制控制梁顶处节点位移,1/1250;中级可以放松吊车下位移,有PKPM 计算的图籍为例吊车下位移(1/800).A1-A3 轻级如:安装,维修用的电动梁式吊车.手动梁式吊车.A4-A5中级如:机械加工车间用的软钩桥式吊车A6-A7 重级如:繁重工作车间软钩桥式吊车A8超重级如:冶金用桥式吊车,连续工作的电磁,抓斗桥式吊车吊车轻重级别不能片面的根据工作频繁程度分,但是和吨位无关系。
如前帖所说,按照载荷状态和利用等级两个指标来分。
1、载荷状态:是一个概率分布参数,通俗的说,就是这台吊车在整台吊车的寿命期间内(如20年),吊额定载荷的次数和所有的吊装次数的百分比。
分轻、中、重、特重4级。
举例来说,对于港口的抓斗,它在自己的寿命内,每吊一次都是额定载荷,属于特重,而有些车间的检修桥吊,它一辈子只吊额定载荷只有几次,其余只吊额定载荷的几分之一。
就属于轻。
2、利用等级:整个寿命期间的工作循环数,通俗的说,就是一辈子的吊多少次。
从U0~U9分为10个级别,U0是1.6E+4,也就是少于16000次,U9为4E+6,也就是多于400万次。
3、根据上述2个指标,列表后,X方向为利用等级,Y为载荷状态,根据对角线原则再确定。
如果载荷状态为轻,但是利用等级为U9,也是特重;如果载荷状态为特重,但是利用等级为U0,也是轻级。
有关吊车荷载主要有以下几种:1、吊车竖向荷载标准值应采用吊车最大轮压或最小轮压。
(《荷规》5.1.1)Pmax与Pmin关系:Pmin= (Q总+Q)/n-PmaxDmax与Dmin根据影响线求出:Dmax与Dmin同时出现,一端出现Dmax时,对应另一端出现Dmin。
钢结构吊车梁课程设计
钢结构吊车梁课程设计一、课程目标知识目标:1. 学生能理解钢结构吊车梁的基本概念、分类及在工业建筑中的应用。
2. 学生掌握钢结构吊车梁的受力特点、计算方法及主要构造要求。
3. 学生了解钢结构吊车梁的施工工艺、安装要点及质量控制。
技能目标:1. 学生能运用相关公式对钢结构吊车梁进行简单的受力分析。
2. 学生具备对钢结构吊车梁施工图的识图能力,并能进行基本的施工图绘制。
3. 学生能针对实际工程案例,提出合理的钢结构吊车梁施工方案。
情感态度价值观目标:1. 培养学生热爱工程专业,增强对钢结构吊车梁工程领域的兴趣。
2. 培养学生严谨的科学态度和良好的工程意识,提高对工程质量的重视。
3. 培养学生团队协作精神,提高沟通协调能力。
课程性质:本课程为专业核心课程,以理论教学与实践教学相结合,注重培养学生的实际操作能力和工程素养。
学生特点:学生已具备一定的力学基础和建筑结构知识,具有较强的求知欲和动手能力。
教学要求:教师应结合课程特点和学生实际,采用案例教学、讨论式教学等方法,激发学生的学习兴趣,提高学生的专业素养。
同时,注重实践教学,让学生在实际操作中掌握专业知识,提高综合能力。
通过本课程的学习,使学生能够达到上述课程目标,为今后的职业发展打下坚实基础。
二、教学内容1. 钢结构吊车梁基本概念及分类:介绍吊车梁的定义、功能、分类及在工业建筑中的应用,参考教材第二章第一节。
2. 钢结构吊车梁受力特点及计算方法:讲解吊车梁的受力分析、荷载组合、计算模型及公式,参考教材第二章第二节。
3. 钢结构吊车梁主要构造要求:阐述吊车梁的构造要求、连接方式、材质选择等,参考教材第二章第三节。
4. 钢结构吊车梁施工工艺及安装要点:介绍吊车梁的施工工艺、安装方法、质量控制措施等,参考教材第二章第四节。
5. 钢结构吊车梁施工图识图与绘制:教授吊车梁施工图的识图技巧、绘图规范及注意事项,参考教材第二章第五节。
6. 钢结构吊车梁工程案例分析:分析典型工程案例,让学生了解吊车梁在实际工程中的应用及施工方案,参考教材第二章第六节。
厂房吊车梁
4 吊车梁翼缘板或腹板的 焊接拼接应采用加引弧板 和引出板的焊透对接焊缝, 引弧板和引出板割去处应 户打磨平整。焊接吊车梁 和焊接吊车桁架的工地移 段拼接应采用焊接或高强 度螺栓的摩擦型连接。
5 在焊接吊车梁或吊车衍 架中,要求焊透的T形接头对 接与角接组合焊缝形式。
• 6 吊车梁横向加劲肋的宽度不宜小于90MM。 在支座处的横向加劲肋应在腹板两侧成对设置, 并片与梁上下翼缘刨平顶紧。中间横向加劲肋 的L端应与梁厂翼缘刨平顶紧,在重级工作制 吊车梁中,中间横向加劲肋亦就在腹板两侧成 对布置。而中、轻级工作制吊梁则可单侧没置 或两侧错开没置。 在焊接吊车梁中。横 向加劲肋(含短加劲肋)不得与受拉翼缘相焊.但 可与受压翼缘焊接。端加劲肋可与梁上下翼缘 相焊、中间横向加劲肋的下端宜在距受拉下翼 缘50-100MM处断断开,其与腹板的连接焊 缝不宜在肋卜端起落弧。 当吊车梁受拉 翼缘(或吊车桁架下弦)与支撑相连时不宜采用 焊接。
11 吊车梁的受拉翼缘(或吊车拓架的 受拉弦杆)上不得焊接悬挂设备的零件, 并不宜在该处打火或焊接夹具。 12 吊车钢轨的接头构造应保证车轮 平稳通过。当采用焊接长轨且用压板 与吊车梁连接时,压板与钢轨间应留 有一定空隙(约1MM)、以使钢轨受温 度作用后有纵向伸缩的可能。
连接构造
制动梁(或制动桁架) 花纹钢板 横隔 (竖向支撑) 吊车梁 加劲肋
d) 加劲肋 角钢斜撑 制动梁
a)吊车梁斜向支撑
b)制动梁挂于墙架柱
c)制动桁架时支撑布置
谢谢!
厂房吊车梁
傅伊达 郑李阳 林翔 俞蕴涛
吊车梁
吊车梁是吊车的路基,吊车梁上有吊 车轨道,吊车就通过轨道在吊车梁上 来回行驶。梁的横截面有的是箱式的、 焊接而成形;也有简易的,用型材焊 接成型,一般为钢筋混凝土或钢结构。
钢结构厂房吊车梁设计
钢结构厂房吊车梁设计在钢结构厂房的设计中,吊车梁是一个至关重要的组成部分。
它承担着吊车在运行过程中产生的垂直和水平荷载,并将这些荷载传递给厂房的柱和基础,对整个厂房结构的安全性和稳定性起着关键作用。
接下来,让我们详细探讨一下钢结构厂房吊车梁的设计。
吊车梁所承受的荷载主要包括吊车的自重、吊重、运行时的冲击荷载以及横向和纵向的水平荷载等。
这些荷载的组合和取值需要根据相关的规范和标准进行准确计算,以确保吊车梁在使用过程中具有足够的强度和刚度。
在设计吊车梁时,首先要合理选择其截面形式。
常见的截面形式有工字型钢梁、箱型梁等。
工字型钢梁制造简单、施工方便,在中小跨度的吊车梁中应用广泛;箱型梁的抗扭性能较好,适用于跨度较大或对梁的抗扭要求较高的情况。
材料的选择也是设计中的重要环节。
一般选用高强度的钢材,如Q355 或 Q390 等。
钢材的质量和性能直接影响到吊车梁的承载能力和耐久性。
吊车梁的强度计算包括正应力、剪应力和局部承压应力的计算。
正应力要考虑弯矩的作用,剪应力则与剪力有关,局部承压应力主要出现在吊车轨道与梁的接触部位。
同时,还需要进行整体稳定性和局部稳定性的验算,以防止梁在受力过程中发生失稳现象。
除了强度和稳定性,吊车梁的刚度同样不容忽视。
过大的变形会影响吊车的正常运行和厂房结构的安全性。
通常通过控制吊车梁的挠度来保证其刚度要求,挠度限值应符合相关规范的规定。
在连接设计方面,吊车梁与柱的连接通常采用高强螺栓连接或焊接。
连接节点的设计要保证传力明确、可靠,并且便于施工和维护。
吊车梁之间的拼接也需要精心设计,以确保拼接部位的强度和刚度不低于梁的其他部位。
吊车梁的疲劳问题也是需要特别关注的。
由于吊车的频繁运行,吊车梁会承受反复的荷载作用,容易产生疲劳损伤。
因此,在设计中要对吊车梁的疲劳性能进行验算,并采取相应的构造措施来提高其抗疲劳能力,比如采用合理的焊缝形式、减少应力集中等。
为了提高吊车梁的耐久性,还需要进行防腐和防火处理。
某地跨度15米轻钢结构单层厂房带吊车结构设计图纸
钢结构设计 吊车梁
7
吊车的横向水平荷载
计算公式:
T
Q
(规定百分数)
(Q
Q1)g n
式中的“规定百分数”为:
软钩吊车 Q≤10t时 12%
Q=15~20t时 10%
Q≥75t时 8%
硬钩吊车
20%
Q为吊车的额定起重量(t);Q1为桥式吊车上的横行小车 重量(t),厂家的产品样本或设计手册上可查到;n为桥式 吊车的总轮数,例如四轮吊车n=4,八轮吊车n=8;g为重
浙江大学钢结构研究室
17
挠度验算
吊车梁的竖向挠度应满足下式要求:v
M xkl 2 10EIx
vT
式中:Mxk为由自重和不考虑动力系数的一台最大起 重量的吊车竖向荷载标准值所产生的最大弯矩,容
许挠度 vT 可查规范得。
此外,冶金工厂或类似车间中设有工作级别为A7、 A8级吊车的车间,其跨间每侧吊车梁或吊车桁架的
不大,在设计吊车梁时一般不需考虑。 ) 吊车梁上的永久荷载 吊车梁走道活荷载,(标准值2kN,可适当等
效地并入竖向轮压)
2020年7月1日
浙江大学钢结构研究室
5
2020年7月1日
浙江大学钢结构研究室
6
吊车的竖向荷载
吊车最大轮压标准值 : Pkmax(吊车的厂家的产品样 本或设计手册上均可查到 )
重级工作制计算制动结构水平挠度,考虑1台最大重 级工作制吊车。
荷载最不利位置按绝对最大弯矩和弯矩、剪力影响 线原理确定。
2020年7月1日
浙江大学钢结构研究室
11
最大弯矩计算 最大剪力计算
2020年7月1日
浙江大学钢结构研究室
12
吊车梁的验算
强度验算 整体稳定验算 局部稳定验算 疲劳验算 挠度验算
吊车梁设计(钢结构)
2.1吊车梁系统的组成2.2吊车梁上的荷载2.3吊车梁内力计算2.4吊车梁截面验算(4)其他荷载(2)吊车横向水平荷载(1)吊车竖向荷载(3)吊车纵向水平荷载(1)简支吊车梁(2)连续吊车梁2.4.2强度计算2.4.1一般规定2.4.3腹板及横向加劲肋强度补充计算2.4.4整体稳定计算2.4.5刚度计算2.4.6疲劳计算122.5吊车梁连接计算及构造要求2.5.4其它构造要求2.5.1梁腹板与翼缘板连接2.5.2支座加劲肋与腹板、翼缘板连接2.5.3吊车梁与柱的连接2.7 车挡2.6吊车轨道3横行小车吊车梁柱吊车桥架4吊车是厂房中常见的起重设备,按照吊车的利用次数和荷载大小,国家标准《起重机设计规范》(GB3811)将其分为八个工作级别,称为A1~A8。
工作制等级轻级中级重级特重级工作级别A1~A3A4、A5A6、A7A8工作制等级和工作级别的对应关系许多文献习惯将吊车以轻、中、重和特重四个工作制等级来划分,它们之间的对应关系如下:5《起重机设计规范》GB3811-1983附录A6●吊车梁(或吊车桁架)●制动结构●辅助桁架●支撑1-吊车梁;2-制动梁;3-制动桁架;4-辅助桁架;5-水平支撑;6-垂直支撑吊车梁及制动结构的组成组成:7吊车梁类型:按计算简图:●简支梁●连续梁按构造:●焊接梁●高强度螺栓桁架梁●栓-焊梁按构件类型:●实腹梁●型钢截面●焊接工字形截面●箱形截面●上行式直接支承吊车桁架:●上行式间接支承吊车桁架:吊车轨道直接铺设在桁架上弦上桁架梁上弦放置节点间短梁,以承受吊车荷载●吊车桁架8制动结构:●制动梁●制动桁架●承受横向水平荷载,保证吊车梁的整体稳定●可作为人行走道和检修平台作用:宽度:●应依吊车起重量﹑柱宽以及刚度要求确定。
●一般不小于0.75m 。
●宽度≤1.2m 时,常用制动梁●宽度>1.2m 时,宜采用制动桁架制动结构选用:对于硬钩吊车的吊车梁,其动力作用较大,均宜采用制动梁。
关于钢结构吊车梁设计分析
关于钢结构吊车梁设计的分析摘要:本文作者结合钢吊车梁及制动结构设计和施工管理的实践经验,分析了在钢吊车梁及制动结构设计过程中应注意的几个问题。
关键词:钢结构吊车梁;设计;分析中图分类号:tu391文献标识码:a文章编号:2095-2104(2012)吊车梁是工业厂房的重要组成部分,吊车梁及制动结构如不严格按照规范进行设计施工,将会导致一系列问题,如资金浪费、工期拖延,甚至埋下严重的安全隐患,影响生产。
可以说吊车梁能否正常工作直接影响着生产的正常进行。
现今的工程绝大部分均采用钢结构吊车梁。
1 钢吊车梁及制动系统简介与设计流程钢吊车梁及制动结构一般由吊车梁、制动梁(桁架)、辅助桁架、垂直支撑、下翼缘水平支撑以及吊车轨道和轨道联结件组成。
吊车梁直接承受吊车的竖向荷载,一般设计为简支结构,可采用型钢梁或焊接 h 型钢梁。
当厂房柱距小且吊车起重量不大时,可不设置制动结构,但须经过计算使吊车梁有足够的侧向抗弯刚度。
对于跨度或起重量较大的吊车梁,应设置制动系统,制动结构承受吊车的水平制动力,保证吊车梁的整体稳定,并且可作为检修走道,须通过计算保证其强度,同时也要采取必要的构造措施。
2 钢吊车梁及制动系统设计分析2.1 关于吊车梁计算的荷载取值:《建筑结构荷载规范》(gb2009-2001)中第五章已进行了详述,须注意的是,5.1.2 条中规定吊车横向水平荷载标准值是根据小车重量和额定起重量之和乘以不同的百分数确定的,但在《钢结构设计规范》(gb50017- 2003)中 3.2.2 条规定,验算重级工作制吊车梁及制动结构的强度、稳定性及连接的强度时,应考虑吊车摆动引起的水平力,并给出了计算公式,并且与《荷载规范》中的水平力不同时考虑,此时应取其中大值进行计算,当遇到重级别工作制吊车梁设计时应引起注意。
《荷载规范》5.3.1 条中规定动力系数的取法,但并不是所有计算中都要乘动力系数,《钢结构规范》3.1.6 条中规定只有在计算强度和稳定性时,动力荷载设计值应乘以动力系数;在计算疲劳和变形时,动力荷载标准值不乘动力系数。
大跨度吊车梁设计
大跨度吊车梁设计摘要:此文结合了已建的工程项目实例,论述了大跨度吊车梁的形式选择,受力分析,阐述了大跨度吊车梁设计中应注意的要点和细节问题。
关键词:大跨度吊车梁;制动结构前言近些年我国铁路工业发展迅速,动车制造工厂中工艺设备布置也相对复杂,标准的门式钢架厂房并不能满足生产工艺的需要,因此抽柱排架等非标准厂房得到了采纳,相应的大跨度吊车梁也随之出现。
吊车梁是工业厂房建筑中重要组成部分,一般是由吊车梁本身和相应的制动结构等构件组成。
吊车梁基本上用来承担吊车的竖向荷载,当柱距和吊车吨位不大时,可不设制动系统,自身刚度可以承担满足稳定要求,但对于大跨度或起重较大的吊车梁,若不设置制动系统或设置的制动系统刚度相对较弱,在水平荷载的作用下,吊车梁会产生较大的水平变形,这将会给吊车的运行产生非常不利的影响,严重者会造成事故。
1 工程概况齐车集团在大连旅顺经济开发区建设的特种集装箱产业基地项目,此厂房是单层门式刚架结构厂房,长320m,宽150m,檐口高度13.4m。
根据工艺布置的特殊要求,需要在厂房的某个特定区域将厂房排架柱连续抽去2根,形成27m宽、66m 长的工艺操作区域;抽柱部分柱间跨度及吊车梁跨度于是就达到了27米,如图一所示。
图一局部吊车梁平面布置图2 吊车梁的方案选择吊车梁可以做成如下几种方案:第一种为工字型实腹式吊车梁,由上下翼缘钢板、腹板共同焊接而成,局部稳定不足时,会考虑设置纵、或横向腹板加劲肋。
此种吊车梁构造相对简单,受力比较明确,制作也方便快捷,焊接质量易于得到保证,是小跨度吊车梁最常用的结构形式。
第二种为桁架式吊车梁,是由型钢等组成的上下弦及腹杆共同受力的空腹式结构,优点是用钢量少;缺点是制作难度大,占用厂房空间,节点连接复杂,抗疲劳能力差。
第三种是箱式吊车梁,也即是由一个封闭箱型截面钢梁充当吊车梁。
箱式吊车梁的优点是抗扭刚度大,不需要增设水平制动桁架或制动板;其缺点是制作及施工较为复杂、造价也相对较高。
钢结构设计吊车梁计算
吊车梁计算吊车梁采用Q345-B 起重量10t 跨度22.5m 总重量8.8t 小车4t ,max k P =75kN ,min k P =19.2kNmax P =1.4⨯1.05⨯,max k P =110.25kN竖向轮压作用max M =82.68 ⨯2.25=186.04kN.mmax V =110.25⨯1.5=165.4kN横向水平力'1.4g (Q+Q )/n=1.4100.1210+4/4=5.88kN T ξ=⨯⨯⨯()5.88=186=9.92110.25y M kN ⨯ 水平反力 5.88165.48.82110.25H kN =⨯= 暂取吊车梁截面如图所示1) 毛截面特性2=281+500.8+201=88A cm ⨯⨯⨯0280+4025.5+2051==23288y mm ⨯⨯⨯ 毛截面惯性矩32224=1/120.850+12823.2+12027.8+50 2.3=39125x I cm ⨯⨯⨯⨯⨯⨯⨯334128120=+=24961212y I cm ⨯⨯5.3cm y i = 5.3cm y i =净截面特性2=(28-22)1+500.8+201=84n A cm ⨯⨯⨯⨯形心位置 1=y (40⨯25.5+20⨯51)/84=243mm净截面惯性矩32224=1/120.850+40 1.2+12424.3+2026.7=36820nx I cm ⨯⨯⨯⨯⨯⨯3==148524.8nx nx I W cm 上 3==135427.2nx nx I W cm 下 3x S =28124.3+23.80.823.8/2=907cm ⨯⨯⨯⨯对上翼缘 324128=-1272=163312ny I cm ⨯⨯⨯⨯ =ny W 3=116.7cm 14ny I 毛截面 33128/12==130.714y W cm ⨯ 2)强度验算①上翼缘最大正应力6622max 33ny n 186109.9210=+=+=210.26N/mm <310N/mm 148510116.710y x M M W W σ⨯⨯⨯⨯上 下翼缘正应力 max n =x M W σ下=6318610=137135410⨯⨯.422N/mm <310N/mm ②剪应力 33max 4165.41090710===50.936820810x w V S I t τ⨯⨯⨯⨯⨯22N/mm <180N/mm ③腹板局部压应力=+5+250+510+2130360mm z y R l a h h =⨯⨯=31.0110.2510=38.38360c w z P t l ψσ⨯⨯==⨯22N/mm <310N/mm3)整体稳定验算1116000100.412280520l t b h ξ⨯===<⨯ 取0.730.180.80b βξ=+= 6000113.253y mm λ== h=520mm1121633/24690.65b I I I α===+ 0.8(21)0.248b b ηα=-= 2345/y f N mm =222234320235=+]43208800520235 =0.8+0248]0.770.6113.2148510345b b b y X yAh y W f ϕβλ⨯⨯⨯=>⨯ ' 1.070.282/0.70b b ϕϕ=-=66'33186.0109.9210 5.6560.7165110130.7101000yXb y M M l mm W σϕ⨯⨯=+=+=<=⨯⨯⨯ 4)刚度验算 挠度 2622kx 54186.04 1.05 1.4106000=236.8310/mm 1010 2.06103912510X M l N EI υ÷÷⨯⨯==<⨯⨯⨯⨯ 满足要求 吊车为A1~A5 疲劳可不进行验算5)加劲肋0wh t 可按构造配量0.50h 02a h ≤≤ 求间距 a =1.20h =600mm界面尺寸外伸长度 0/30+40=57s b h mm ≥ 厚度s t ≥/15s b =3.8m 采用80⨯8mm支座反力 R=165.4KN计算截面面积A=18⨯1.2+15⨯0.8=33.62cm绕腹板中线的截面惯性矩 3341.218 1.50.8+583.81212I cm ⨯⨯==4.17cm i = 50=12.04.17λ= 查表ϕ=0.989 322165.41049.8310/0.9893360N N mm f N mm A ϕ⨯==<=⨯ 6) 焊缝计算上翼缘与腹板连接焊缝=1.8f h mm= 取f h =6mm下翼缘与腹板连接焊缝3max 1.2 1.2165.410 1.771.4 1.4500160f w w t R h mml f ⨯⨯===⨯⨯ 同样取f h =6mm 吊车梁计算结束。
钢结构厂房吊车梁设计
钢结构厂房吊车梁设计引言钢结构厂房吊车梁设计是在钢结构厂房建设中非常重要的一环。
吊车梁作为厂房运输和搬运设备的重要组成部分,其设计合理与否直接影响到厂房运行效率和安全性。
本文将介绍钢结构厂房吊车梁设计的关键要点和注意事项。
设计标准在进行钢结构厂房吊车梁设计时,需要遵循一系列的设计标准和规范。
常用的设计标准包括GB/T 706-2016《热轧钢型钢尺寸、形状、重量和允许偏差》以及GB 50017-2017《钢结构设计规范》等。
基本原则钢结构厂房吊车梁设计应遵循以下基本原则: 1. 承载能力:吊车梁的设计应满足工作负荷要求,确保吊车梁能够承受预定的荷载和工作条件。
2. 稳定性:吊车梁的结构应具有足够的稳定性,以防止发生塌落或损坏的情况。
3. 经济性:吊车梁的设计应尽可能节约钢材使用,降低成本,但不能影响结构的安全和稳定性。
吊车梁类型选择根据厂房的具体需求和使用情况,可以选择不同类型的吊车梁。
常见的吊车梁类型包括: - 单梁吊车:适用于跨度较小(通常小于30m)的厂房,结构简单,安装方便。
- 双梁吊车:适用于跨度较大(通常大于30m)的厂房,具有较好的稳定性和承载能力。
- 悬臂式吊车:适用于需要在厂房外进行搬运操作的场景,可以实现吊车梁在悬臂端的工作。
选择吊车梁类型时需要考虑以下因素: - 吊车梁的跨度:根据厂房的实际情况,选择合适的吊车梁跨度,以满足工作需求。
- 吊车梁的工作负荷:根据厂房运输和搬运的需求,确定吊车梁的工作负荷等级。
- 吊车梁的工作速度:根据搬运物料的要求,确定吊车梁的工作速度。
- 吊车梁的高度限制:根据厂房天花板的高度,确定吊车梁的高度限制。
吊车梁荷载计算在进行吊车梁设计时,需要进行荷载计算以确保吊车梁的结构稳定。
吊车梁的荷载计算包括静态荷载和动态荷载两部分。
静态荷载计算包括自重、搬运物料的重量以及设备和附件的重量等。
动态荷载计算则考虑吊车梁在运行过程中产生的冲击荷载和振动荷载。
钢结构厂房吊车梁设计
吊车梁设计3.3.1设计资料P 轮压P图3-1 吊车轮压示意图吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。
3.3.2吊车荷载计算吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=⋅⋅=⨯⨯=横向荷载设计值 0.10()0.108.849.81.4 3.032QQ g H kN n γ⋅+⨯⨯==⨯=3.3.3内力计算3.3.3.1吊车梁中最大弯矩及相应的剪力如图位置时弯矩最大A图2-2 C 点最大弯矩Mmax 相应的截面位置考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为:222.max274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ⎛⎫∑- ⎪⎡⎤⨯⨯-⎝⎭==⨯=⋅⎢⎥⎦⎣2max ()2110.18(30.125)2 1.0387.07.5cw lP a V kN l β-⨯⨯-==⨯=∑3.3.3.2吊车梁的最大剪力如图位置的剪力最大图2-3 A 点受到剪力最大时截面的位置3.51.03110.18(1)179.606A R kN =⨯⨯+=,max 179.69V kN =。
3.3.3.3水平方向最大弯矩max 3.3312.688.6110.18c H H M M kN m P ==⨯=⋅。
3.3.4截面选择3.3.4.1梁高初选允许最小高度由刚度条件决定,按允许挠度值(500lv =)规定的最小高度为:6min 0.6[][]0.6600050020010360lh f l mm v-≥=⨯⨯⨯⨯=。
由经验公式估算梁所需要的截面抵抗矩633max 1.2 1.2312.68101876.0810200M W mm f ⨯⨯===⨯梁的经济高度为:300563.34h mm ==。
吊车梁设计
吊车梁用于在车间内装载吊车,称为吊车梁。
它通常安装在工厂的上部。
起重机梁是起重机的基础。
吊车梁上有一条吊车轨道,吊车通过导轨在吊车梁上来回移动。
横梁的一些横截面是箱形并焊接的。
另一些是简单的,通过焊接型材,通常是钢筋混凝土或钢结构而形成。
吊车梁和吊车桁架的设计规范和要求1.焊接吊车梁的法兰板应使用一层钢板。
当使用两层钢板时,应沿横梁的全长设置外钢板,并在设计和施工中应采取措施使上法兰的两层钢板紧密接触。
2.起重机桁架和制动桁架不适用于支撑夹具或刚性耙硬钩起重机以及类似的起重机结构。
3.焊接起重机的桁架应满足以下要求:(1)在桁架节点处,腹板构件与弦之间的间隙a不得小于50 mm,角撑板的两侧应制成半径r不小于60 mm的弧;角撑板边缘与腹板构件轴线之间的夹角θ应不小于30°(图8.5.3-1);对于角撑板与角钢弦之间的连接焊接,引弧点应减小5mm(图8.5.3-la);竹尖板和H型弦的T形和对接角焊应完全焊接,电弧处不应有电弧缺陷。
重型起重机桁架的弧应打磨,使其与弦平滑过渡(图8.5.3-1b)。
(2)当通过焊接连接杆的填充板时,焊接接头的弧点应缩回至少5mm(图8.5.3-1c),重型起重机桁架构件的填充板应用高强度螺栓连接。
(3)当桁架构件为H形时,接头结构可以采用图8.5.3-2的形式。
4.吊车梁的翼缘板或腹板的焊接和拼接应在垫板和垫板上焊接,并在垫板和垫板的切口处打磨平整。
焊接吊车梁和焊接吊车桁架的现场移动段拼接应采用高强度螺栓的焊接或摩擦式连接。
5.在吊车梁或吊车托架的焊接中,第7.1.1条要求完全焊接的对接和T形角焊的组合焊接形式应如图8.5.5所示。
6.起重机横梁的横向加强筋宽度应不小于90mm。
支撑处的横向加劲肋应成对布置在腹板的两侧,并应用横梁的上,下凸缘进行规划和拧紧。
中间横向加劲肋的l端应平整,并与梁工厂的法兰紧密连接。
在重型起重机梁中,中间的横向加劲肋成对布置在腹板的两侧。
钢结构吊车梁cad设计构造详图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吊车梁设计3.3.1设计资料P 轮压P图3-1 吊车轮压示意图吊车总重量:8.84吨,最大轮压:74.95kN ,最小轮压:19.23kN 。
3.3.2吊车荷载计算吊车荷载动力系数05.1=α,吊车荷载分项系数40.1=Q γ 则吊车荷载设计值为竖向荷载设计值 max 1.05 1.474.95110.18Q P P kN αγ=⋅⋅=⨯⨯=横向荷载设计值 0.10()0.108.849.81.4 3.032QQ g H kN n γ⋅+⨯⨯==⨯=3.3.3内力计算3.3.3.1吊车梁中最大弯矩及相应的剪力如图位置时弯矩最大A图2-2 C 点最大弯矩Mmax 对应的截面位置考虑吊车来那个自重对内力的影响,将内力乘以增大系数03.1=w β,则最大弯矩好剪力设计值分别为:222.max274.95(3.75 1.875)273.107.5c k l P a M kN m l ωβ⎛⎫∑- ⎪⎡⎤⨯⨯-⎝⎭==⨯=⋅⎢⎥⎦⎣2max ()2110.18(30.125)2 1.0387.07.5cw lP a V kN l β-⨯⨯-==⨯=∑3.3.3.2吊车梁的最大剪力如图位置的剪力最大图2-3 A 点受到剪力最大时截面的位置3.51.03110.18(1)179.606A R kN =⨯⨯+=,max 179.69V kN =。
3.3.3.3水平方向最大弯矩max 3.3312.688.6110.18c H H M M kN m P ==⨯=⋅。
3.3.4截面选择3.3.4.1梁高初选容许最小高度由刚度条件决定,按容许挠度值(500lv =)要求的最小高度为:6min 0.6[][]0.6600050020010360lh f l mm v-≥=⨯⨯⨯⨯=。
由经验公式估算梁所需要的截面抵抗矩633max 1.2 1.2312.68101876.0810200M W mm f ⨯⨯===⨯梁的经济高度为:300563.34h mm ==。
取600h mm =。
3.3.4.2确定腹板厚度0600214576h mm =-⨯=。
按抗剪强度要求计算腹板所需的厚度为:3max 01.2 1.2179.6910 2.34576160w v V t mm h f ⨯⨯===⋅⨯2.403.5w t mm ===。
取6w t mm =。
3.3.4.3确定翼缘尺寸初选截面时:01111(~)(~)576115.2~1925353b h mm ≈=⨯=上翼缘尺寸取35014mm mm ⨯,下翼缘尺寸取24014mm mm ⨯。
初选截面如下图所示:x图2-4 吊车梁截面3.3.5截面特征3.3.5.1毛截面特性203332223457.20.635 1.424 1.4116.9235 1.459.357.20.63524 1.40.735.33116.9235 1.4157.224 1.435 1.4(59.335.33)157.2(3535.33)24 1.4121212(0.735.33)7910x A cmy cmI cm =⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯==⨯⨯⨯=+⨯⨯-++⨯⨯-++⨯⨯-=⨯∑3337910 2.6810(6035.33)x W cm ⨯==⨯-上翼缘对中和轴的毛截面面积矩2335 1.4(59.335.33)(6035.33 1.4)0.621336.978S cm =⨯⨯-+--⨯=。
上翼缘对y 轴的截面特性:34411.435 1.0671012y I cm =⨯⨯=⨯ 22311.4352.85106y W cm =⨯⨯=⨯3.3.5.2净截面特征203323257.20.6(352 2.35) 1.424 1.4110.34(352 2.35) 1.459.357.20.63524 1.40.732.05110.34(352 2.35) 1.40.657.2(352 2.35) 1.4(59.332.05)0.657.2(35121224 1.432.05)1nn nx Acm y cmI =⨯+-⨯⨯+⨯=-⨯⨯⨯+⨯⨯+⨯⨯==-⨯⨯⨯=+-⨯⨯⨯-++⨯⨯⨯-+∑23424 1.4(0.732.05)64.997102cm +⨯⨯-=⨯333364997649972.32510 2.0281027.9532.05nx nx W cm W cm ==⨯==⨯上下,上翼缘对y 轴的截面特性:2(352 2.35) 1.442.42n A cm =-⨯⨯=3244335 1.42 2.35 1.490.44691012446925517.5ny ny I cm W cm ⨯=-⨯⨯⨯=⨯== 3.3.6梁截面承载力验算3.3.6.1强度验算 (1)正应力 上翼缘正应力:6622max 65312.68108.610150.4/210/2.32510 2.5510H ny nx M M N mm N mm W W σ⨯⨯=+=+=<⨯⨯上 满足要求。
下翼缘正应力:622max 6312.6810116.7/210/2.02810nx M N mm N mm W σ⨯===<⨯下 满足要求。
(2)剪应力计算的突缘支座处剪应力:322max 01.2108.7610 1.237.76/170/57210w V N mm N mm h t τ⨯⨯===<⨯ 满足要求。
(3)腹板的局部压应力采用QU80钢轨,轨高130mm 。
52505142130370z y R l a h h mm =++=+⨯+⨯=;集中荷载增大系数0.1=ψ,腹板的局部压应力为:3221.0110.181029.78/200/6400c w zP N mm N mm t l ψσ⋅⨯⨯===<⋅⨯(4)腹板计算高度边缘处折算应力为计算方便偏安全的取最大正应力和最大剪应力验算。
662max17312.6810312.6810,(600320.514)105.08/7910c nx M M N mm y N mm I σ⨯=⨯⋅==⨯--=⨯3217108.761035014(6007320.5)30.64/79106x w VS N mm I t τ⨯⨯⨯⨯--===⨯⨯ 则折算应力为:221107.78/ 1.1200220/eq N mm f N mmσβ===≤=⨯=β1——当σ与σc 同号时,β1取1.1。
3.3.6.2梁的整体稳定性验算11/6000/35017.1410.5l b ==>,因此需要计算梁的整体稳定性。
1116000140.4 2.0350600l t b h ξ⋅⨯===<⋅⨯ 10.730.180.730.180.40.802b βξ=+=+⨯=36436412111435050.0210,1424016.13101212I mm I mm =⨯⨯=⨯=⨯⨯=⨯ 11250.120.75650.1216.13b I I I α===++ 0.8(21)0.8(20.7561)0.4096b b ηα=⋅-=⨯⨯-=75.22y i mm ===1600075.2279.77y y l λ=== 梁的稳定性系数为:2264320]4320116926000.8020.4096] 2.130.679.77 2.6810b bb y x A hW φβηλ⋅=⋅⨯=⨯⨯=>⨯'0.2820.2821.07 1.070.942.13b bφφ=-=-= 整体稳定性为:(取0.1=y γ)6622max '65312.68108.610157.84/200/0.94 2.6810 2.5510H b x y M M N mm N mm W W φ⨯⨯+=+=<⋅⨯⨯⨯ 满足要求。
3.3.6.3腹板的局部稳定性验算057269580w h ==>170<,应配置横向加劲肋。
加劲肋间距min 0max 00.50.5572286,225721144a h mm a h mm ==⨯===⨯=,取1000a mm =外伸宽度:0405724059.2s b h mm ≥+=+=,取60s b mm =厚度:1560154s s t b mm ≥==,取6s t mm =计算跨中处,吊车梁腹板计算高度边缘的弯曲压应力为:627312.6810(600320.514)105.08/7910c Mh N mm I σ⨯⨯--===⨯ 腹板的平均剪应力为:32108.761031.475726w w V N mm h t τ⨯===⨯腹板边缘的局部压应力为:320.9110.181044.676370c w z P N mm t l σ⨯⨯===⨯(1)计算cr σ()226900320.51460.580.85153153cwb h t λ⨯--===<则 2200cr f N mm σ== (2)计算cr τ2160cr v f N mm τ== (3)计算cr c ,σ则 2,200c cr f N mm σ== 计算跨中区格的局部稳定性为:2222,105.0831.4744.670.54 1.020*******c cr cr c cr σστστσ⎛⎫⎛⎫⎛⎫⎛⎫++=++=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,满足要求。
其他区格,经计算均能满足要求,计算从略。
3.3.6.4挠度计算()22226203342110.1830.2352 1.03312.68.6312.68106000 4.9261000101020610791010kkx w kx x l pa M KN ml M l l mm mm EI βν⎛⎫- ⎪⨯⨯-⎝⎭==⨯=⨯⨯===<=⨯⨯⨯⨯⨯∑ 3.3.7焊缝计算(1)上翼缘与腹板连接焊缝1.24f h mm ===取6f h mm =。
(2)下翼缘与腹板连接焊缝()3max 134108.761024014520.570.5220.720.7200791010f w f x V S h mm f I ⨯⨯⨯⨯-===⨯⨯⨯⨯⨯⨯取6f h mm =。
(3)支座加劲肋与腹板的连接焊缝3max 108.76100.520.70.73(57212)200f w w f R h mm l f ⨯===⨯⨯⨯-⨯取6f h mm =。
3.3.8支座加劲肋计算取平板支座加劲板的宽度为100mm ,厚度为10mm 。
承压面积:2100101000ce A mm =⨯= 支座加劲肋的端面承应力为:322max 108.7610108.763251000ce ce ce R N mm f N mm A σ⨯===<=稳定计算:210010*********A mm =⨯+⨯=3341110100150108460001212z I mm =⨯⨯+⨯⨯= 084600057218.4,31.9250018.4z z z h I i A i λ====== 从上得知:属b 类截面,查表可以知道,所以按照下列公式来计算支座加劲肋在腹板平面外的稳定性:322max 108.761046.68/215/0.9324740ce R N mm N mm A σϕ⨯===<⨯。