第6章 静电场中的导体和电介质习题讲解
大学物理第六章静电场中的导体习题课
.
1
一、静电场中的导体
1.静电平衡条件: 导体内部场强为0。
2.静电平衡时导体为等势体,导体表面为 等势面。
3.静电平衡时导体内无净电荷,所有电荷分 布于导体表面。
4.孤立导体电荷面密度与导体表面的曲率 有关,曲率越大,面密度越大.
5.静电平衡时,场强方向与导体表面垂直。
.
2
本章小结与习题课
6.静电平衡时,导体表面的场强大小为
E 0
7. 空腔内无电荷:空腔内表面无电荷全部
电荷分布于外表面,空腔内场强 E = 0。空腔
导体具有静电屏蔽的作用。
8. 空腔原带有电荷 Q:将 q 电荷放入空腔
内,内表面带有 -q 电荷,外表面带有 Q + q
电荷。接地可屏蔽内部电场变化对外部电
场的影响。
.
S
.
x 14
5(08)、一平行板电容器,两板相距d,对它充电后断开,然 后把两板间距增大到2d,如果电容器内电场边缘效应忽略不计, 则 (A)电容器的电容增大一倍 (B)电容器所带的电量增大一倍 (C)电容器两极间的电场强度增大一倍 (D)储存在电容器中的电场能量增大一倍
we1 2E2或 we1 20E2
(1)球壳内外表面上的电荷 (2)球心O处,由球壳内表面上电荷产生的电势 (3)球心O处的总电势
qO a r
Q
b
.
11
解: (1)由静电感应,金属球壳内表面有感应电荷-q,外 表面上带电荷q+Q
(2)无论球壳内表面上的感应电荷-q是如何分布的,因
为任一电荷元离O点距离都是a,所以由这些电荷在O
点产生的电势为:
3
本章小结与习题课
二、电介质中的场强 1.介质中的场强 EE0E'
第6章 静电场中导体和电介质 重点与知识点
理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
一、静电场中的导体
2、空腔导体(带电荷 、空腔导体 带电荷 带电荷Q)
1)、腔内无电荷,导体的净电荷只能分布在外表面。 腔内无电荷,导体的净电荷只能分布在外表面。 净电荷只能分布在外表面 Q
在静电平衡状态下,导体 在静电平衡状态下, 空腔内各点的场强等于零, 空腔内各点的场强等于零, 空腔的内表面上处处没有 空腔的内表面上处处没有 净电荷分布。 净电荷分布。
C2 U
Cn
2、电容器的并联
C = C1 + C2 + ⋅ ⋅ ⋅ + Cn
= ∑ Ci
i =1
nq1C1来自q2C2qn U
Cn
2012年3月23日星期五
理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
四、 电场的能量
(一)、静电场的能量
电场能量密度: 电场能量密度
We 1 2 1 we = = εE = ED V 2 2
ε
电容率, : 电容率,决定于电介质种类的常数
2)、电介质中的高斯定理 )
v r D ⋅ dS = ∑ Q0i ∫
S i (自由电荷)
2012年3月23日星期五
电介质中通过任 一闭合曲面的电位 一闭合曲面的电位 移通量等于该曲面 移通量等于该曲面 所包围的自由电荷 所包围的自由电荷 的代数和
第六章 静电场中的导体和电介质
一般电场所存储的能量: 一般电场所存储的能量
dWe = wedV
1 2 We = ∫ dWe = ∫ ε E dV V V 2
适用于所有电场) (适用于所有电场)
文蔚《物理学》(上册)配套题库【课后习题】(静电场中的导体与电介质)【圣才出品】
第6章静电场中的导体与电介质一、问题6-1 有人说:“某一高压输电线的电压有500kV,因此你不可与之接触”。
这句话是对,还是不对?维修工人在高压输电线路上是如何工作的呢?答:不对。
因为此情形下人和该高压输电线电势相等,在人的身体中不会形成电流.故对人没有危害。
维修工人在高压输电线路上工作时,绝对不可让身体同时接触两根输电线,如果要接触,则应采取绝缘、防护措施。
6-2 有一个绝缘的金属筒,上面开一小孔,通过小孔放入一用丝线悬挂的带正电的小球。
试讨论在下列各种情形下,金属筒外壁带何种电荷?(1)小球跟筒的内壁不接触;(2)小球跟筒的内壁接触;(3)小球不跟筒接触.但人用手接触一下筒的外壁,松开手后再把小球移出筒外。
答:(1)此情形下金属筒外壁带正电荷;(2)此情形下金属筒外壁带正电荷;(3)此情形下金属筒外壁带负电荷。
6-3 将一个带电小金属球与一个不带电的大金属球相接触,小球上的电荷会全部转移到大球上去吗?答:不会。
由可知,电荷易聚集在曲率半径较小的导体表面,但也会分布在别处表面。
6-4 为什么高压电器设备上金属部件的表面要尽可能不带棱角?答:参考6-3答案。
6-5 在高压电器设备周围,常围上一接地的金属栅网,以保证栅网外的人身安全。
试说明其道理。
答:高压电器设备周围具有很强的电场,为保证对靠近高压电器设备的人、畜不造成伤害,利用接地导体壳可保护壳外空间不受壳内带电体的影响,静电屏蔽内电场的原理,采用在高压电器设备周围,围上一接地的金属栅网,以保证栅外的人、畜的安全。
6-6 在绝缘支柱上放置一闭合的金属球壳,球壳内有一人。
当球壳带电并且电荷越求越多时,他观察到的球壳表面的电荷面密度、球壳内的场强是怎样的?当一个带有跟球壳相异电荷的巨大带电体移近球壳时,此人又将观察到什么现象?此人处在球壳内是否安全?答:当金属球壳带电并且电荷越来越多时,球壳内的人观察到球壳表面的电荷面密度越来越大,且仍旧均匀分布,但球壳内的场强始终为零。
第6章静电场中的导体和电介质习题讲解
第6章静电场中的导体和电介质习题讲解第6章静电场中的导体和电介质⼀、选择题1. ⼀个不带电的导体球壳半径为r , 球⼼处放⼀点电荷, 可测得球壳内外的电场.此后将该点电荷移⾄距球⼼r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪⼀种情况?[ ] (A) 对球壳内外电场⽆影响(B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图(D) 球壳内电场不变, 球壳外电场改变2. 当⼀个导体带电时, 下列陈述中正确的是[ ] (A) 表⾯上电荷密度较⼤处电势较⾼ (B) 表⾯上曲率较⼤处电势较⾼ (C) 表⾯上每点的电势均相等 (D) 导体内有电⼒线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表⾯的电势相等(D) 导体内的场强⼤⼩和电势均是不为零的常数4. 当⼀个带电导体达到静电平衡时[ ] (A) 导体内任⼀点与其表⾯上任⼀点的电势差为零 (B) 表⾯曲率较⼤处电势较⾼(C) 导体内部的电势⽐导体表⾯的电势⾼ (D) 表⾯上电荷密度较⼤处电势较⾼T6-1-5图5. ⼀点电荷q放在⼀⽆限⼤导体平⾯附近, 相距d, 若⽆限⼤导体平⾯与地相连, 则导体平⾯上的总电量是 [ ] (A)qq(B) - (C) q (D) -q 226. 在⼀个绝缘的导体球壳的中⼼放⼀点电荷q, 则球壳内、外表⾯上电荷均匀分布.若使q偏离球⼼, 则表⾯电荷分布情况为[ ] (A) 内、外表⾯仍均匀分布 (B) 内表⾯均匀分布, 外表⾯不均匀分布 (C) 内、外表⾯都不均匀分布 (D) 内表⾯不均匀分布, 外表⾯均匀分布7. 带电量不相等的两个球形导体相隔很远, 现⽤⼀根细导线将它们连接起来.若⼤球半径为m, ⼩球半径为n, 当静电平衡后, 两球表⾯的电荷密度之⽐σ m/σ n 为mnm2n2[ ] (A) (B) (C) 2 (D) 2nmnm8. 真空中有两块⾯积相同的⾦属板, 甲板带电q, ⼄板带电Q.现将两板相距很近地平⾏放置, 并使⼄板接地, 则⼄板所带的电量为 [ ] (A) 0 (B) -q (C) -q+Qq+Q(D) 22T6-1-8图9. 在带电量为+q的⾦属球的电场中, 为测量某点的电场强度E, 现在该点放⼀带电量为(+q/3)的试验电荷, 电荷受⼒为F, 则该点的电场强度满⾜ 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq测得它所受⼒为F.若考虑到q不是⾜够⼩, 则此时F/q⽐P点未放q时的场强[ ] (A) ⼩ (B) ⼤(C) 相等 (D) ⼤⼩不能确定10. 在⼀个带电量为Q的⼤导体附近的P点, 置⼀试验电荷q, 实验T6-1-10图 q11. 有⼀负电荷靠近⼀个不带电的孤⽴导体, 则导体内场强⼤⼩将[ ] (A) 不变 (B) 增⼤ (C) 减⼩ (D) 其变化不能确定12. ⼀个带正电的⼩球放⼊⼀个带等量异号电荷、半径为R的球壳中.在距球⼼为r(r(B) 放⼊⼩球后场强增加 (C) 因两者电荷异号, 故场强减⼩ T6-1-12图 (D) ⽆法判定13. 真空中有⼀组带电导体, 其中某⼀导体表⾯处电荷⾯密度为σ, 该表⾯附近的场强⼤⼩E=σ/ε0, 其中E是[ ] (A) 该处⽆穷⼩⾯元上电荷产⽣的场(B) 该导体上全部电荷在该处产⽣的场(C) 这⼀组导体的所有电荷在该处产⽣的场(D) 以上说法都不对14. 设⽆穷远处电势为零, 半径为R的导体球带电后其电势为U, 则球外离球⼼距离为r处的电场强度⼤⼩为UURUR2U[ ] (A) (B) (C) (D) rRr2r3其场强为E0, 电位移为D0; ⽽当两极间充满相对介电常数为εr的各向同性均匀电介质时, 其间场强为E, 电位移为D, 则有关系[ ] (A) E=E0/εr,D=D0 (B) E=E0,D=D0 (C) E=E0/εr,D=D0/εr T6-1-15图(D) E=E0,D=εrD015. ⼀平⾏板电容器始终与⼀端电压恒定的电源相连.当此电容器两极间为真空时,16. ⼀空⽓平⾏板电容器接上电源后, 在不断开电源的情况下浸⼊媒油中, 则极板间的电场强度⼤⼩E和电位移⼤⼩D的变化情况为[ ] (A) E和D均减⼩ (B) E和D均增⼤ (C) E不变, D减⼩ (D) E不变, D增⼤17. 把⼀个带正电的导体B靠近⼀个不带电的绝缘导体A时, 导体A的电势将[ ] (A) 升⾼ (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个⼤⼩不等的⾦属球, 其⼤球半径是⼩球半径的两倍, ⼩球带有正电荷.当⽤⾦属细线连接两⾦属球后[ ] (A) ⼤球电势是⼩球电势的两倍 (B) ⼤球电势是⼩球电势的⼀半 (C) 所有电荷流向⼤球 (D) 两球电势相等19. 在⽆穷⼤的平板A上均匀分布正电荷, ⾯电荷密度为σ,不带净电荷的⼤导体平板B, 则A板与B板间的电势差是σd[] (A)(B)2ε0σd(C)(D)3ε0σdε0ε0dσT6-1-19图20. 导体壳内有点电荷q, 壳外有点电荷Q, 导体壳不接地.当Q值改变时, 下列关于壳内任意⼀点的电势和任意两点的电势差的说法中正确的是[ ] (A) 电势改变, 电势差不变(B) 电势不变, 电势差改变(C) 电势和电势差都不变 (D) 电势和电势差都改变 T6-1-20图21. 两绝缘导体A、B带等量异号电荷.现将第三个不带电的导体C插⼊A、B之间, 但不与A、B接触, 则A、B间的电势差将[ ] (A) 增⼤ (B) 减⼩(C) 不变 (D) 如何变化不能确定T6-1-21图22. 两个薄⾦属同⼼球壳, 半径分别为R和r (R>r), 若分别带上电量为Q和q的电荷, 此时⼆者的电势分别为U和V.现⽤导线将⼆球壳连起来, 则它们的电势为[ ] (A) U (B) V (C) U+V (D)1(U+V) 2T6-1-22图23. 就有极分⼦电介质和⽆极分⼦电介质的极化现象⽽论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同24. ⼀平⾏板电容器中充满相对电容率为εr的各向同性均匀电介质.已知电介质表⾯极化电荷⾯密度为±σ', 则极化电荷在电容器中产⽣的电场强度⼤⼩为T6-1-24图σ'[ ] (A)ε0σ'(B)2ε0σ'(C)ε0εrσ'(D)εr25. ⼀导体球外充满相对电容率为εr的均匀电介质, 若测得导体表⾯附近场强为E, 则导体球⾯上的⾃由电荷⾯密度σ为[ ] (A) ε0E (B) ε0εrE (C) εrE (D) (ε0εr-εr)E27. 在⼀点电荷产⽣的电场中, 以点电荷处为球⼼作⼀球形封闭⾼斯⾯, 电场中有⼀块对球⼼不对称的电介质, 则 [ ] (A) ⾼斯定理成⽴,并可⽤其求出封闭⾯上各点的场强(B) 即使电介质对称分布, ⾼斯定理也不成⽴ (C) ⾼斯定理成⽴, 但不能⽤其求出封闭⾯上各点的电场强度 (D) ⾼斯定理不成⽴ T6-1-26图28. 在某静电场中作⼀封闭曲⾯S.若有D?dS=0, 则S⾯内必定s[ ] (A) 没有⾃由电荷 (B) 既⽆⾃由电荷, 也⽆束缚电荷(C) ⾃由电荷的代数和为零 (D) ⾃由电荷和束缚电荷的代数和为零29. 关于介质中的⾼斯定理[ ] (A) ⾼斯⾯的D通量仅与⾯内的⾃由电荷的代数和有关(B) ⾼斯⾯上处处D为零, 则⾼斯⾯内必不存在⾃由电荷(C) ⾼斯⾯的D通量由⾯内的⾃由电荷和束缚电荷共同决定(D) ⾼斯⾯内不包围⾃由电荷时, ⾼斯⾯上各点电位移⽮量D为零sD?dS=∑q0, 下列说法中正确的是30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起⾃正电荷, ⽌于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平⾏ (C) 电位移线只出现在有电介质的空间(D) 起⾃正⾃由电荷, ⽌于负⾃由电荷, 任何两条电位移线不相交31. 两个半径相同的⾦属球, ⼀个为空⼼, 另⼀个为实⼼.把两者各⾃孤⽴时的电容值加以⽐较, 有[ ] (A) 空⼼球电容值⼤ (B) 实⼼球电容值⼤ (C) 两球容值相等 (D) ⼤⼩关系⽆法确定32. 有⼀空⽓球形电容器, 当使其内球半径增⼤到两球⾯间的距离为原来的⼀半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的⼀半 (C) 与原来的相同 (D) 以上答案都不对33. n只具有相同电容的电容器, 并联后接在电压为?U的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V和系统的电场能W [ ] (A) V=n?U,W增⼤(B) V=n?U,W不变(C) V=n?U,W 减⼩ (D) V=1?U,W不变 n34. 把⼀充电的电容器与⼀未充电的电容器并联.如果两电容器的电容⼀样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减⼩ (D) 如何变化不能确定35. 平⾏板电容器的极板⾯积为S, 两极板间的间距为d, 极板间介质电容率为ε.现对极板充电Q, 则两极间的电势差为[ ] (A) 0 (B)QdQdQd (C) (D) εS2εS4εS36. ⼀平⾏板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平⾏板电容器的极板间距拉⼤, 将会发⽣什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增⼤(C) 两极间的场强减⼩ (D) 电容器储存的能量不变38. 真空中带电的导体球⾯和带电的导体球体, 若它们的半径和所带的电量都相等, 则球⾯的静电能W1与球体的静电能W2之间的关系为[ ] (A) W1>W2 (B) W1=W2 (C) W1<W2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增⼤为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B) 11倍 (C) 4倍 (D) 倍 2240. ⼀空⽓平板电容器, 充电后把电源断开, 这时电容器中储存的能量为W0.然后在两极板间充满相对电容率为εr的各向同性均匀电介质, 则该电容器中储存的能量W为W[ ] (A) W=εrW0 (B) W=0εr(C) W=(εr+1)W0 (D) W=W041. ⼀平⾏板电容器, 两板间距为d, 与⼀电池联接时, 相互作⽤⼒为F.若将电池断T6-1-40图开, 极间距离增⼤到3d, 则其相互作⽤⼒变为 FF[ ] (A) (B)3F (C) (D) 不变 3942. ⾦属圆锥体带正电时, 其圆锥表⾯[ ] (A) 顶点处电势最⾼(B) 顶点处场强最⼤(C) 顶点处电势最低(D) 表⾯附近场强处处相等T6-1-42图43. 平板电容器与电源相连, 现把两板间距拉⼤, 则[ ] (A) 电容量增⼤(B) 电场强度增⼤(C) 带电量增⼤(D) 电容量、带电量及两板间场强都减⼩T6-1-43图⼊电容器的两极板之间.则插⼊前后, 电容C、场强E和极板上的电荷⾯密度σ的变化情况为 44. 空⽓平⾏板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插σ不变 (B) C增⼤, E不变, σ增⼤ (C) C 不变, E增⼤, σ不变 (D) C增⼤, E 增⼤, σ增⼤ [ ] (A) C不变, E不变,T6-1-44图45. 空⽓平板电容器与电源相连接.现将极板间充满油液, ⽐较充油前后电容器的电容C、电压U和电场能量W的变化为[ ] (A) C增⼤, U减⼩, W减⼩(B) C增⼤, U不变, W增⼤(C) C减⼩, U不变, W减⼩(D) C减⼩, U减⼩, W减⼩46. ⼀空⽓平⾏板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.⽐较充⼊电介质前后的情形, 以下四个物理量的变化情况为[ ] (A)(B)(C)(D)E增⼤, C增⼤, ?U增⼤, W增⼤ E减⼩, C增⼤, ?U 减⼩, W减⼩ E减⼩, C增⼤, ?U 增⼤, W减⼩ E增⼤, C减⼩, ?U 减⼩, W增⼤47. 平⾏板电容器两极板(可看作⽆限⼤平板)间的相互作⽤⼒F与两极板间电压?U的关系是:1 ?U12 (C) F∝?U (D) F∝ ?U2[ ] (A) F∝?U (B) F∝48. 在中性导体球壳内、外分别放置点电荷q和Q, 当q在壳内空间任意移动时, Q 所受合⼒的⼤⼩[ ] (A) 不变 (B) 减⼩(C) 增⼤ (D) 与q、Q距离有关49. 在⽔平⼲燥的玻璃板上, 放两个⼤⼩不同的⼩钢球, 且⼩球上带的电量⽐⼤球上电量多.发现两球被静电作⽤⼒排开时, ⼩球跑得较快, 这是由于[ ] (A) ⼩球受到的斥⼒较⼤(B) ⼤球受到的斥⼒较⼤(C) 两球受到的斥⼒⼤⼩相等, 但⼤球惯性⼤ T6-1-49图 (D) 以上说法都不对50. ⼀带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球⾯、外球⾯电势相等(B) 球内、内球⾯、外球⾯电场强度⼤⼩相等 (C) 球壳内电场强度为零,球⼼处场强不为零 (D) 球壳为等势体, 球⼼处电势为零51. 如果在平⾏板电容器的两极板间平⾏地插⼊⼀块与极板⾯积相等的电介质板, 则由于电介质的插⼊及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减⼩, 但与电介质板的位置⽆关 (B) 使电容减⼩, 且与电介质板的位置有关(C) 使电容增⼤, 但与电介质板的位置⽆关(D) 使电容增⼤, 且与电介质板的位置有关 T6-1-51图52. ⼀均匀带电Q的球体外, 罩⼀个内、外半径分别为r和R的同⼼⾦属球壳. 若以⽆限远处为电势零点, 则在⾦属球壳r<R'<R 的区域内[ ] (A) E=0, U=0 (B) E=0, U≠0(C) E≠0, U≠0(D)E≠0, U=053. 把A、B两块不带电的导体放在⼀带正电导体的电场中,如T6-1-52图T6-1-53图所⽰,设⽆限远处为电势零点,A的电势为UA,B的电势为UB,则[ ] (A) UB > UA≠0 (B) UB > UA = 0(C) UB = UA⼆、填空题(D) UB < UAT6-1-53图1. 两⾦属球壳A和B中⼼相距l,原来都不带电.现在两球壳中分别放置点电荷q和Q,则电荷Q作⽤在q上的电⼒⼤⼩为F = A,此时,电荷Q作⽤在q上的电⼒⼤⼩是.ACBT6-2-1图 T6-2-2图2. 在T6-2-2图所⽰的导体腔C中,放置两个导体A和B,最初它们均不带电.现设法使导体A带上正电,则这三个导体电势的⼤⼩关系为.3. 半径为r的导体球原来不带电.在离球⼼为R (R>r)的地⽅放⼀个点电荷q, 则该导体球的电势等于.4. ⾦属球壳的内外半径分别r和R, 其中⼼置⼀点电荷q, 则⾦属球壳的电势为.T6-2-4图d处 (d < R) 固定⼀电量为+q的点电荷,⽤导线把球壳接地后,再把地线撤去,选⽆穷远处为电势零点,则球⼼O处的电势为.T6-2-5图5. ⼀个未带电的空腔导体球壳内半径为R.在腔内离球⼼的距离为6. T6-2-6图所⽰的11张⾦属箔⽚平⾏排列,奇数箔联在⼀起作为电容器的⼀极,偶数箔联在⼀起作为电容器的另⼀极.如果每张箔⽚的⾯积都是S,相邻两箔⽚间的距离为d,箔⽚间都是空⽓.忽略边缘效应,此电容器的电容为C = .T6-2-6图 T6-2-7图7. T6-2-7图中所⽰电容器的电容C1、C2、C3已知,C4的值可调.当C4的值调节到A、B两点的电势相等时,C4=.8. 位于边长为l的正三⾓形三个顶点上的点电荷电荷量分别为q、2q和-4q,这个系统的静电能为.9. 有⼀半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之⽐为.10. 电荷q均匀分布在内外半径分别为R1和R2的球壳体内,这个电荷体系的电势能为,电场能为.11. ⼀平⾏板空⽓电容器, 极板⾯积为S, 间距为d, 接在电源上并保持电压恒定为U.若将极板距离拉开⼀倍, 则电容器中的静电能改变量为. 12. 有⼀半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之⽐为.三、计算题1. 真空中⼀导体球A原来不带电.现将⼀点电荷q 移到距导体球A的中⼼距离为r处,此时,导体球的电势是多少?2. 真空中⼀带电的导体球A半径为R.现将⼀点电荷q 移到距导体球A的中⼼距离为r处,测得此时导体球的电势为零.求此导体球所带的电荷量.qT6-3-1图3. ⼀盖⾰-⽶勒计数管,由半径为0.1mm的长直⾦属丝和套在它外⾯的同轴⾦属圆筒构成,圆筒的半径为10mm.⾦属丝与圆筒之间充以氩⽓和⼄醇蒸汽,其电场强度最⼤值为4.3?10V?m-1. 忽略边缘效应,试问⾦属丝与圆筒间的电压最⼤不能超过多少?64. 设有⼀电荷⾯密度为σ0(>0)放置⼀块原来不带电,有⼀定厚度的⾦属板,不计边缘效应, (1)板两⾯的电荷分布;(2) 把⾦属板接地,⾦属板两⾯的电荷⼜将如何分布T6-3-4图6. ⼀平⾏板电容器两极板的⾯积都是S,其间充有N它们的电容率分别为ε1、ε2、ε3、εN,厚度分别为d1、d2、d3、 dN.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所⽰,⼀球形电容器由半径为R1的导体球和与它同⼼的半径为R2的导体球壳组成.导体球与球壳之间⼀半是空⽓,另⼀半充有电容率为ε的均匀介质.求此电容器的电容.T6-3-6图 T6-3-8图8. 静电天平的原理如T6-3-8图所⽰:⾯积为S、相距x的空⽓平⾏板电容器下板固定,上板接到天平的⼀端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放⼊天平另⼀端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U, 问此物的质量是多少?9. 两块⾯积相同的⼤⾦属平板A、B, 平⾏放置,板⾯积为S,相距d, d远⼩于平板的线度.今在A,B板之间插⼊另外⼀⾯积相同,厚度为l的⾦属板,三板平⾏.求 A、B之间的电容.10. 真空中两个同⼼的⾦属薄球壳,内外球壳的半径分别为R1和R2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容⼜是多⼤? 11. 已知⼀均匀带电球体(⾮导体)的半径为R,带电量为q.如果球体内外介质的电容率均近似为ε,在半径为多⼤的球⾯空间内的电场能量为其总能量的⼀半? 12. 半径为R的⾬点带有电量q.现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“⽆限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. ⼀⾯积为S、间隔为d的平板电容器,最初极板间为空⽓,在对其充电±q以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪⼉去了?14. ⼀种利⽤电容器控制绝缘油液⾯的装置⽰意如T6-3-14图,平⾏板电容器的极板插⼊油中,极板与电源以及测量⽤电⼦仪器相连.当液⾯⾼度变化时,电容器的电容值发⽣改变,使电容器产⽣充放电,从⽽控制电路⼯作.已知极板的⾼度为a,油的相对电容率为εr,试求此电容器等效相对电容率与液⾯⾼度h的关系.15. 如T6-3-15⼊⼀电矩为图所⽰,在场强为E的均匀电场中,静⽌地放p、转动惯量为J的电偶极⼦.若电矩 p与场强E 之间的夹⾓θ很⼩,试分析电偶极⼦将作什么运动,并计算电偶极⼦从静⽌出发运动到 p与E ⽅向⼀致时所经历的最短时间.T6-3-14图T6-3-15图 10。
第六章静电场中的导体和电介质jianhua讲解
D dS qi
S
2. 根据电场强度与电位移矢量的关系计算场强。
E
D
注意: (1)D的分布应具有一定的对称性
(2)要选取合适的高斯面
[例 1]已知: 一导体球半径为R1,带电 q0(>0)
外面包有一层均匀各向同性电介质球壳,
r R1 R2 在带电面两侧的场强都发生突变,这是面电荷 分布的电场的一个共同特点(有普遍性)。 普遍结论: 当电介质充满两个等势面之间的空间时, 该空间的场强等于真空时场强的 1/ r 倍。
0
6-3 电容和电容器
孤立导体的电容
导体具有储存电荷的本领 电容:孤立导体所带电量q与 其电势V 的比值。
+ +++
-
-+
+q +
-+
-+
-
有导体存在时静电场的分布与计算
基本依据: (1)利用静电平衡条件 E内 0 或 V c (2)利用电荷守恒 Qi const .
i
qi (3)利用高斯定律 E d s i S
0
(4)利用环路定理(电势、电力线的概念)
L E d l 0
电阻率很大,导电能力很差的物质,即绝缘体。
(常温下电阻率大于107欧·米) 电介质的特点: 分子中的正负电荷束缚的很紧,介质内部几 乎没有自由电荷。 置入电场中会受电场作用;反之,介质会对 电场产生影响。
有介质时的高斯定理
定义电位移矢量: D
介质中的高斯定理: 在静电场中,通过任意封闭曲 面的电位移通量等于该曲面所包围的自由电荷的代 数和。 注意:
题解-静电场中的导体和电介质
q1 '
R1
q2 ' R2
(2) :U q1 ' q2 '
40R1 40R2
q1'q2 ' q1 q2
C
q1'q2 U
'
4
0
(R1
R2 )
(3) 1 R2 ; E E1 R2
2 R1
0 E2 R1
15、
C
εrC0;W
q2 2C
q2
2 r C0
W0 εr
16、
C1
C
C1
C2
U2
U
q C
减小
E2
W2
1 2
0E2
减小
17、
W
1 2
0
r
E
2
1 2
ε
0εr
(
U12 d
)2
18、
W0
q2 2C0
d
20S
q2;
W
q2 2C'
d
20r S
q2;W
1 εr
W0
W0
1 2
C0U
2
0S
2d
U
2;
W
1 2
C'U 2
0r S
2d
U
2;W
εr W0
0 E02S
(d
y
y
r
)
r 1 W ' W0,且与x无关
22、C 23、B
24、A
W0
q2 2C0
d
20S
q2;
W q2 d q2;
2C' 20r S
W0
1 2
C0U
静电场中的导体与电介质习题课选讲例题
电荷分布的不均匀会导致导体表面的电势分布不均,从而影响周围空间的电场分布。
第电 介 质
二的 极 化
章
电介质极化的微观机制
分子极化 电介质分子在电场作用下,正负电荷中心发生相对位移,形成电偶极子。 电子极化 电介质内部电子受到电场作用,产生定向移动,形成电子极化。 离子极化 电介质中正负离子在电场作用下发生相对位移,形成离子极化。
解答
利用高斯定理和静电平衡条件,可 以求出球心处的电场强度为 $frac{Q}{4pivarepsilon_{0}R^{2 }}$。
例题2 一个无限长均匀带电圆柱体, 半径为R,带电量为Q,求圆 柱体内外的电场分布。
电介质极化的习题解析
例题3
一无限大均匀电介质平板,介电常数为ε,在垂直于平板的z 轴上施加一均匀电场E,求电介质中的极化电荷密度。
电场强度越大,电 介质极化程度越高。
温度
温度升高会使电介 质分子热运动增强,
降低极化程度。
频率
电场频率越高,电 介质极化越困难。
导体与电介质的相互作用
03
电场对导体的作用
静电感应
当导体处于电场中时,导体表面会产 生感应电荷,感应电荷产生的电场与 原电场叠加,影响导体内部和表面的 电场分布。
极化现象
电介质在电场作用下会发生极化现象, 即正负电荷中心发生相对位移,产生电 偶极矩。
导体对电场的影响
导体中的自由电荷 在电场作用下会发 生移动,形成电流, 电流产生的磁场会 对原电场产生影响, 使电场发生畸变。
导体可以屏蔽外部电场,使导体内部电场减小或 消失。
屏蔽作用
电场畸变
电场对电介质的作用
电介质在电场作用 下会发生形状和尺 寸的变化,这种现 象称为电致伸缩。
《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
第6章静电场中的导体和电介质大作业参考答案PPT课件
40r12 40rr22
r
r1 2 r 22
3.
插入前后极板上的电荷不变, 极板间的场强不变。
E
E
d /3
插入前: U0 Ed
d
插入后:U
E2d 3
2 3U0
8
4. B板不接地:
3 4
金属板内场强为零:
A板
1
2
Q 2S
B板
3
4
Q 2S
B板接地: Q S
U
AB
Qd 0S
1 2
Q
3 4
SdS
A
You Know, The More Powerful You Will Be
19
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
20
Vq 0
1. 极板间的场强为:
a、b产生的、加上c板产生的
Ec q/20S
EabV/d
d /2 d /2
acb
V c ( E a b E c ) d /2 V /2 q /4 d 0 S
巧合!
13
三、计算题
1. 高斯定理
E2SE1S10
Sq S
E2
d 2
E1
d 2
V
E2
12q0S
2V d
Vq 0
E1
E2
d /2 d /2
acb
Vc E2 d212V2q0dS
14
或
qq1 q2
(1)
q1 q1 q 2 q2
由高斯定理两极板电荷分别为:
大学物理第6章静电场中的导体和电介质解答(精)
第六章静电场中的导体和电介质解答一、选择题1.D 2.C 3.B 4.D 5.D 6.B 7.D 8.B 二、填空题1.-q; -q 2.3.r1r22322U04. 45. 6.7.Qd2ε0S;Qdε0SλQ04πε0εrr12λ2πr;;2πε0εrrQ04πr12Q04πr22;;Q04πεr202Q1+Q22s2s8.εr; 1;εr;εr;Q1-Q2; -Q1-Q22s;Q1+Q22s三、计算题1.解:电荷重新分布后,设c板左侧面带电荷为-q1,右侧面带电荷+q2,但电荷总和不变,即 q=-q1+q2 (1)此时(可用髙斯定理证明),a板上带电荷为+q1,b板上带电荷为-q2 设c板电势为Uc,则a、c板之间电势差为U-Uc=E1d2a、c板之间电场强度大小为E1=q1ε0S⎛q1所以 U-Uc= εS⎝0⎫d⎪⎪2⎭由此得 q1=同理可得c、b板之间电势差为2ε0Sd(U-Uc) (2)Uc⎛q2= εS⎝0⎫d⎪⎪2⎭由此得 q2=2ε0Sd将(2)、(3)代入(1)化简得c板之电势为Uc=Uc (3)⎫1⎛dU+⎪ q⎪2 2εS0⎝⎭2.解:设两平行长直导线A、B,单位长度上分别带电量+λ 和 - λ ,如图所示,离Ox轴原点为x 处一点P的电场强度为λλE= +2πε0x2πε0(d-x)则两导线之间电势差为UA-UB=⎰d-aaE⋅dl=⎰d-aa[λ2πε0xa+λ2πε0(d-x)=]dxA≈=λ2πε[lnx-ln(d-x)]d-aλπεlnd-aaλπεlnda(d >>a)所以两导线单位长度的电容为 C=λUA-UB=πεlnda3. 解:(1)点电荷+q使导体球产生感应电荷±q'在球表面上。
球心O处的电场强度为±q'的电场强度E'以及点电荷+q的场强E得叠加。
即EO=E+E'由静电平衡,EO=0,若取球心O为坐标原点,则E'=-E=q4πε0rˆrˆ是从O指(r向电荷+q的单位矢量)。
静电场中的导体和电介质习题详解
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C D?解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
静电场中的导体解答
(2) 球心O点处,由球壳内表面上电荷
产生的电势. (3) 球心O点处的总电势.
a
q
r Ob
Q
图3-1
静电场中的导体
第六章 静电场中的导体与电介质
解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q,
外表面上带电荷q+Q.
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一
电荷元离O点的距离都是a,所以由这些电荷在O点产生的
电势为 U q
dq
4 0a
q
4 0a
(3) 球心O点处的总电势为分布在球壳内外表面上的电荷和
点电荷q在O点产生的电势的代数和
UO
U q U q UQq q q
4 0 r 4 0a
4 0b
a
q
r Ob
Q
q (1 1 1) Q
4 0 r a b 4 0b
图3-1
静电场中的导体
第六章 静电场中的导体与电介质
6. 假想从无限远处陆续移来微量电荷使一半径为R的 导体球带电.(1) 当球上已带有电荷q时,再将一个电荷 元dq从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q的过程中,外力共作 多少功?
解:
U q
4 0 R
dW dq U qdq
4 0R
2 0
,
2 0
所以合场强为:E0
ቤተ መጻሕፍቲ ባይዱ
2
0
,
E0
2 0
静电场中的导体
第六章 静电场中的导体与电介质
4.一空心导体球壳,其内、外半径分别为R1和R2,带 电荷q,如图所示.当球壳中心处再放一电荷为q的点电
大学物理 第6章 静电场中的导体和电介质(小结)
Q Q
静电能:
We A
Vdq
0
4
0
qdq
0
R
Q
2
8 0 R
当Q不变时,使R增大到R’=2R时,We’=We / 2 ;可见, 当R增大时,静电能减小,说明电场力对外作正功, 即帮助汽泡增大;从受力情况看,肥皂泡上每个电荷 元都受到其他电荷的电场力作用,力的方向沿半径向 外,半径增大时,电场力作正功,电场能减小。
4 0 r 4 0 r r 为该点到球心的距离. (2)球内(无论是空心与实心)的场强E=0, (内无电荷);电势不为零,等于球面上的电势。 (3)求E和V时,要将形成场的所有电荷都考虑 到,然后求矢量(E)和或代数和(V)。
2
E
及
V
例题5 有一带正电的肥皂泡,吹大到使它的半径为原 来的2 倍,问静电能有什么变化?电荷的存在对吹泡 有帮助还是有妨碍?
解(1)设q2 、 q3为外球壳内、外 层所带电荷。 由高斯定理可得:
R2 R1 D C B A 0
R3
q 2 q1
2 3
10
8
C
q2 q3 q
q3 4 3 10
8
q1
C
q2
q3
(2)各点的场强和电势 B点: q1 由高斯定理得: E B 2 4 0 rB
VB
q1 4 0 rB
q1 4 0 rB
q2 4 0 rB
q2 4 0 R 2
q3 4 0 rB
q3 4 0 R 3
练习册-第六章静电场中的导体与电介质
第六章 静电场中的导体与电介质§6-1 导体和电介质【基本内容】一、导体周围的电场导体的电结构:导体内部存在可以自由移动的电荷,即自由电子。
静电平衡状态:导体表面和内部没有电荷定向移动的状态。
1、导体的静电平衡条件(1)导体内部场强处处为零0E =v内; (2)导体表面的场强和导体表面垂直。
2、静电平衡推论(1) 静电平衡时,导体内部(宏观体积元内)无净电荷存在; (2) 静电平衡时,导体是一个等势体,其表面是一个等势面。
3、静电平衡时导体表面外侧附近的场强E σε=4、静电平衡时导体上的电荷分布(1) 实心导体:电荷只分布在导体表面。
(2)空腔导体(腔内无电荷):内表面不带电,电荷只分布在导体外表面。
(3)空腔导体(腔内电荷代数和为q ):内表面带电q -,导体外表面的电荷由电荷的守恒定律决定。
5、静电屏蔽 封闭金属壳可屏蔽外电场对内部影响,接地的金属壳可屏蔽内电场对外部的影响。
二、电介质与电场 1、电介质的极化(1)电介质的极化:在外电场作用下,电介质表面和内部出现束缚电荷的现象。
(2)极化的微观机制电介质的分类:(1)无极分子电介质——分子的正、负电荷中心重合的电介质;(2)有极分子电介质——分子的正、负电荷中心不重合的电介质。
极化的微观机制:在外电场作用下,(1)无极分子正、负电荷中心发生相对位移,形成电偶极子,产生位移极化;(2)有极分子因有电偶矩沿外电场取向,形成取向极化。
2、电介质中的电场(1)电位移矢量 D E ε=v v其中ε——电介质的介电常数,0r εεε=,r ε——电介质的相对介电常数。
(2)有电介质时的高斯定理0SD dS q ⋅=∑⎰vv Ñ,式中0q ∑指高斯面内自由电荷代数和。
【典型例题】【例6-1】 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图所示。
题解6-静电场中的导体和电介质(精)
两圆柱面之间的电势差为:
uR1 uR2
R2
E
dl
R1
R2 Q dr Q ln R2
R1 2rL 0
2 0 L R1
则圆柱形电容器的电容为
C Q 2 0 L
uab ln( R2 / R1 )
20 20 20 20
20 20 20 20
解得:
1
2
Q 2S
; 3
4
Q 2S
E
Q
2 0 S
U AB
Ed
Qd 2ε0S
B板接地
(1 2 )S Q
4 0
1 2 3 4 0 1 2 3 4 0
U q
dq
4 0a
q
4 0a
(3)球心O点处的总电势为分布在球壳内外表面上 的电荷和点电荷q在O点产生的电势的代数和
U0 Uq Uq UQq
q
q Qq
4 0r 4 0a 4 0b
q (1 1 1) Q
4 0 r a b 4 0b
q r2
r0
q q q
1 q
1q
U A U B
dr
rc 40 r 2
40 rc
q
3、 q q Q q
4 0r 4 0R1 4 0R2
Qq q
q
4、 (1 2 )S Q
3 4 0
1 2 3 4 0 1 2 3 4 0
20 20 20 20
20 20 20 20
第6章课堂讨论(静电场中的导体和电介质)
7
接地导体球半径为R,距离球心为l 例1. 接地导体球半径为 ,距离球心为 处附近有一点 电荷q,如图所示 如图所示.求 导体上感应电荷的电量 导体上感应电荷的电量. 电荷 如图所示 求:导体上感应电荷的电量 解: 接地 即
V = 0
R
o
感应电量为Q 设:感应电量为 , 感应电量为 由导体是个等势体知, 由导体是个等势体知,
注意:导体接地仅仅意味着电势为零, 注意:导体接地仅仅意味着电势为零,而不一定是 3 导体上的电荷为零。 导体上的电荷为零。
静电场中有电介质存在时有关问题计算. 二、静电场中有电介质存在时有关问题计算 1、根据场的叠加原理,首先理解自由电荷和极化(束 、根据场的叠加原理,首先理解自由电荷和极化( 电荷在场中某点的总场强; 缚)电荷在场中某点的总场强; 2、当电场具有适当对称性时,应用有介质时的高斯定 、当电场具有适当对称性时, 理求场强,方法与上一章相同,关系式为: 理求场强,方法与上一章相同,关系式为:
9
由高斯定理,空间的电场: 由高斯定理,空间的电场:
空腔与小球之间
空腔金属内
E1 =
q 4πε 0 r 2
Q+q
q
−q
R2 R1 r
E2 = 0 q+Q E3 = 4πε 0 r 2
空腔外部
小球的电势
r r R1 r r R2 r r ∞ r r R1 Vr = ∫ E ⋅ dl = ∫ E1 ⋅ dl + ∫ E2 ⋅ dl + ∫ E3 ⋅ dl = ∫
1 ε E2 = 1 DE we = 2 2
W = ∫ wedV = ∫
ε0εr E
2
2
dV
6
注意:基本步骤为: 注意:基本步骤为: 1)根据电荷分布,求出电场分布; )根据电荷分布,求出电场分布; 2)选取合适的体积微元 在dV中各点的场强值相 )选取合适的体积微元dV,在 中各点的场强值相 通常在球对称电场中, 等.通常在球对称电场中,取薄球壳为体积微元 通常在球对称电场中 );在轴对称的电场中 (dV=4πr2dr);在轴对称的电场中,取薄圆柱壳为 );在轴对称的电场中, 体积微元( 体积微元(dV=2 πrldr ); 3)按能量公式,正确确定积分上下限,计算出结果 按能量公式,正确确定积分上下限,计算出结果. 按能量公式
习题课(静电场中的导体和电介质)
习题课(静电场中的导体和电介质)1、半径为R 1的导体球带正电Q 1其内外半径分别为R 2和R 3,球壳带正电Q 2(1)此带电系统的场强分布;(2)球的电势U 1和球壳的电势U 2; (3)球与球壳的电势差;(4)若用导线将球和球壳相连,U 1和U 2解:(1)电量均匀分布在球面上,即R 1球面电量为Q 1,R 2球面电量为-Q 1,R 3球面电量为Q 1+Q 2 ,利用均匀带电球面在空间任一点场强的结果和场强叠加原理,可求得场强分布为: r < R 1: E 1 = 0; R 1 < r <R 2 : E 2 = Q 1/4πε0r 2; R 2 < r < R 3 : E 3 = 0 r > R 3: E 4 = (Q 1+Q 2)/4πε0r 2(2) 30214243R Q Q dr E U Rπε+==⎰∞dr E dr E dr E U R R R R R ⎰⎰⎰∞++=332214321302121014)11(4R Q Q R R Q πεπε++-=(3) )11(421012112R R Q U U U -=-=πε (4) 3021214R Q Q U U πε+== 2、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr (1)介质层内外的场强大小;(2)介质层内外的电势; (3)金属球的电势;(4)电场的总能量; (5)解:(1)电量Q 均匀分布在半径为a r的球面为高斯面,利用高斯定理可求得场强分布 r < a : E 1 = 0; a < r < b : 2024rQ E r επε=; r > b : rQ E 034πε=(2) r > b : rQ dr E U r0334πε==⎰∞a < r <b : b Q b r Q dr E dr E U r bb r 003224)11(4πεεπε+-=+=⎰⎰∞r < a : b Q b a Q dr E dr E dr E U r bb a a r 0032114)11(4πεεπε+-=++=⎰⎰⎰∞(3)金属球的电势等于U 1(4)abb a a Q dV E dV E W r r b r baεπεεεεε022302208)(2121+-=+=⎰⎰∞ (5)ba a ab U Q C r r +-==εεπε014 3、在半径为R 的导体球壳薄壁附近与球心相距为d(d >R)的P 点处,放一点电荷q ,求:(1)球壳表面感应电荷在的球心O 处产生电势和场强; (2)空腔内任一点的电势和场强; (3)若将球壳接地,计算球壳表面感应电荷的总电量。
第6章 静电场中的导体与介质
第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。
2.理解电容的定义,掌握典型电容器电容的计算方法。
3.了解电介质极化的微观机制,理解电介质对静电场的影响。
掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。
4.理解静电场能量的概念,能计算一些对称情况下的电场能量。
二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。
1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。
② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。
(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。
2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。
(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。
(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章静电场中的导体和电介质一、选择题1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一种情况?[ ] (A) 对球壳内外电场无影响(B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图(D) 球壳内电场不变, 球壳外电场改变2. 当一个导体带电时, 下列陈述中正确的是[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表面的电势相等(D) 导体内的场强大小和电势均是不为零的常数4. 当一个带电导体达到静电平衡时[ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高T6-1-5图5. 一点电荷q放在一无限大导体平面附近, 相距d, 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A)qq(B) - (C) q (D) -q 226. 在一个绝缘的导体球壳的中心放一点电荷q, 则球壳内、外表面上电荷均匀分布.若使q偏离球心, 则表面电荷分布情况为[ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m, 小球半径为n, 当静电平衡后, 两球表面的电荷密度之比σ m/σ n 为mnm2n2[ ] (A) (B) (C) 2 (D) 2nmnm8. 真空中有两块面积相同的金属板, 甲板带电q, 乙板带电Q.现将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) -q+Qq+Q(D) 22T6-1-8图9. 在带电量为+q的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q/3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq测得它所受力为F.若考虑到q不是足够小, 则此时F/q比P点未放q时的场强[ ] (A) 小 (B) 大(C) 相等 (D) 大小不能确定10. 在一个带电量为Q的大导体附近的P点, 置一试验电荷q, 实验T6-1-10图 q11. 有一负电荷靠近一个不带电的孤立导体, 则导体内场强大小将[ ] (A) 不变 (B) 增大 (C) 减小 (D) 其变化不能确定12. 一个带正电的小球放入一个带等量异号电荷、半径为R的球壳中.在距球心为r(r<R)处的电场与放入小球前相比将 q[ ] (A) 放入前后场强相同(B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 T6-1-12图 (D) 无法判定13. 真空中有一组带电导体, 其中某一导体表面处电荷面密度为σ, 该表面附近的场强大小E=σ/ε0, 其中E是[ ] (A) 该处无穷小面元上电荷产生的场(B) 该导体上全部电荷在该处产生的场(C) 这一组导体的所有电荷在该处产生的场(D) 以上说法都不对14. 设无穷远处电势为零, 半径为R的导体球带电后其电势为U, 则球外离球心距离为r处的电场强度大小为UURUR2U[ ] (A) (B) (C) (D) rRr2r3其场强为E0, 电位移为D0; 而当两极间充满相对介电常数为εr的各向同性均匀电介质时, 其间场强为E, 电位移为D, 则有关系[ ] (A) E=E0/εr,D=D0 (B) E=E0,D=D0 (C) E=E0/εr,D=D0/εr T6-1-15图(D) E=E0,D=εrD015. 一平行板电容器始终与一端电压恒定的电源相连.当此电容器两极间为真空时,16. 一空气平行板电容器接上电源后, 在不断开电源的情况下浸入媒油中, 则极板间的电场强度大小E和电位移大小D的变化情况为[ ] (A) E和D均减小 (B) E和D均增大 (C) E不变, D减小 (D) E不变, D增大17. 把一个带正电的导体B靠近一个不带电的绝缘导体A时, 导体A的电势将[ ] (A) 升高 (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后[ ] (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等19. 在无穷大的平板A上均匀分布正电荷, 面电荷密度为σ,不带净电荷的大导体平板B, 则A板与B板间的电势差是σd[] (A)(B)2ε0σd(C)(D)3ε0σdε0ε0dσT6-1-19图20. 导体壳内有点电荷q, 壳外有点电荷Q, 导体壳不接地.当Q值改变时, 下列关于壳内任意一点的电势和任意两点的电势差的说法中正确的是[ ] (A) 电势改变, 电势差不变(B) 电势不变, 电势差改变(C) 电势和电势差都不变 (D) 电势和电势差都改变 T6-1-20图21. 两绝缘导体A、B带等量异号电荷.现将第三个不带电的导体C插入A、B之间, 但不与A、B接触, 则A、B间的电势差将[ ] (A) 增大 (B) 减小(C) 不变 (D) 如何变化不能确定T6-1-21图22. 两个薄金属同心球壳, 半径分别为R和r (R>r), 若分别带上电量为Q和q的电荷, 此时二者的电势分别为U和V.现用导线将二球壳连起来, 则它们的电势为[ ] (A) U (B) V (C) U+V (D)1(U+V) 2T6-1-22图23. 就有极分子电介质和无极分子电介质的极化现象而论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同24. 一平行板电容器中充满相对电容率为εr的各向同性均匀电介质.已知电介质表面极化电荷面密度为±σ', 则极化电荷在电容器中产生的电场强度大小为T6-1-24图σ'[ ] (A)ε0σ'(B)2ε0σ'(C)ε0εrσ'(D)εr25. 一导体球外充满相对电容率为εr的均匀电介质, 若测得导体表面附近场强为E, 则导体球面上的自由电荷面密度σ为[ ] (A) ε0E (B) ε0εrE (C) εrE (D) (ε0εr-εr)E27. 在一点电荷产生的电场中, 以点电荷处为球心作一球形封闭高斯面, 电场中有一块对球心不对称的电介质, 则 [ ] (A) 高斯定理成立,并可用其求出封闭面上各点的场强(B) 即使电介质对称分布, 高斯定理也不成立 (C) 高斯定理成立, 但不能用其求出封闭面上各点的电场强度 (D) 高斯定理不成立 T6-1-26图28. 在某静电场中作一封闭曲面S.若有D⋅dS=0, 则S面内必定s[ ] (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零29. 关于介质中的高斯定理[ ] (A) 高斯面的D通量仅与面内的自由电荷的代数和有关(B) 高斯面上处处D为零, 则高斯面内必不存在自由电荷(C) 高斯面的D通量由面内的自由电荷和束缚电荷共同决定(D) 高斯面内不包围自由电荷时, 高斯面上各点电位移矢量D为零sD⋅dS=∑q0, 下列说法中正确的是30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起自正电荷, 止于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平行 (C) 电位移线只出现在有电介质的空间(D) 起自正自由电荷, 止于负自由电荷, 任何两条电位移线不相交31. 两个半径相同的金属球, 一个为空心, 另一个为实心.把两者各自孤立时的电容值加以比较, 有[ ] (A) 空心球电容值大 (B) 实心球电容值大 (C) 两球容值相等 (D) 大小关系无法确定32. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对33. n只具有相同电容的电容器, 并联后接在电压为∆U的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V和系统的电场能W [ ] (A) V=n∆U,W增大(B) V=n∆U,W不变(C) V=n∆U,W 减小 (D) V=1∆U,W不变 n34. 把一充电的电容器与一未充电的电容器并联.如果两电容器的电容一样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减小 (D) 如何变化不能确定35. 平行板电容器的极板面积为S, 两极板间的间距为d, 极板间介质电容率为ε.现对极板充电Q, 则两极间的电势差为[ ] (A) 0 (B)QdQdQd (C) (D) εS2εS4εS36. 一平行板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平行板电容器的极板间距拉大, 将会发生什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增大(C) 两极间的场强减小 (D) 电容器储存的能量不变38. 真空中带电的导体球面和带电的导体球体, 若它们的半径和所带的电量都相等, 则球面的静电能W1与球体的静电能W2之间的关系为[ ] (A) W1>W2 (B) W1=W2 (C) W1<W2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增大为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B) 11倍 (C) 4倍 (D) 倍 2240. 一空气平板电容器, 充电后把电源断开, 这时电容器中储存的能量为W0.然后在两极板间充满相对电容率为εr的各向同性均匀电介质, 则该电容器中储存的能量W为W[ ] (A) W=εrW0 (B) W=0εr(C) W=(εr+1)W0 (D) W=W041. 一平行板电容器, 两板间距为d, 与一电池联接时, 相互作用力为F.若将电池断T6-1-40图开, 极间距离增大到3d, 则其相互作用力变为 FF[ ] (A) (B)3F (C) (D) 不变 3942. 金属圆锥体带正电时, 其圆锥表面[ ] (A) 顶点处电势最高(B) 顶点处场强最大(C) 顶点处电势最低(D) 表面附近场强处处相等T6-1-42图43. 平板电容器与电源相连, 现把两板间距拉大, 则[ ] (A) 电容量增大(B) 电场强度增大(C) 带电量增大(D) 电容量、带电量及两板间场强都减小T6-1-43图入电容器的两极板之间.则插入前后, 电容C、场强E和极板上的电荷面密度σ的变化情况为 44. 空气平行板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插σ不变 (B) C增大, E不变, σ增大 (C) C不变, E增大, σ不变 (D) C增大, E 增大, σ增大 [ ] (A) C不变, E不变,T6-1-44图45. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C、电压U和电场能量W的变化为[ ] (A) C增大, U减小, W减小(B) C增大, U不变, W增大(C) C减小, U不变, W减小(D) C减小, U减小, W减小46. 一空气平行板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.比较充入电介质前后的情形, 以下四个物理量的变化情况为[ ] (A)(B)(C)(D)E增大, C增大, ∆U增大, W增大 E减小, C增大, ∆U 减小, W减小 E减小, C增大, ∆U 增大, W减小 E增大, C减小, ∆U 减小, W增大47. 平行板电容器两极板(可看作无限大平板)间的相互作用力F与两极板间电压∆U的关系是:1 ∆U12 (C) F∝∆U (D) F∝ ∆U2[ ] (A) F∝∆U (B) F∝48. 在中性导体球壳内、外分别放置点电荷q和Q, 当q在壳内空间任意移动时, Q 所受合力的大小[ ] (A) 不变 (B) 减小(C) 增大 (D) 与q、Q距离有关49. 在水平干燥的玻璃板上, 放两个大小不同的小钢球, 且小球上带的电量比大球上电量多.发现两球被静电作用力排开时, 小球跑得较快, 这是由于[ ] (A) 小球受到的斥力较大(B) 大球受到的斥力较大(C) 两球受到的斥力大小相等, 但大球惯性大 T6-1-49图 (D) 以上说法都不对50. 一带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球面、外球面电势相等(B) 球内、内球面、外球面电场强度大小相等 (C) 球壳内电场强度为零,球心处场强不为零 (D) 球壳为等势体, 球心处电势为零51. 如果在平行板电容器的两极板间平行地插入一块与极板面积相等的电介质板, 则由于电介质的插入及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减小, 但与电介质板的位置无关 (B) 使电容减小, 且与电介质板的位置有关(C) 使电容增大, 但与电介质板的位置无关(D) 使电容增大, 且与电介质板的位置有关 T6-1-51图52. 一均匀带电Q的球体外, 罩一个内、外半径分别为r和R的同心金属球壳. 若以无限远处为电势零点, 则在金属球壳r<R'<R的区域内[ ] (A) E=0, U=0 (B) E=0, U≠0(C) E≠0, U≠0(D)E≠0, U=053. 把A、B两块不带电的导体放在一带正电导体的电场中,如T6-1-52图T6-1-53图所示,设无限远处为电势零点,A的电势为UA,B的电势为UB,则[ ] (A) UB > UA≠0 (B) UB > UA = 0(C) UB = UA二、填空题(D) UB < UAT6-1-53图1. 两金属球壳A和B中心相距l,原来都不带电.现在两球壳中分别放置点电荷q和Q,则电荷Q作用在q上的电力大小为F = A,此时,电荷Q作用在q上的电力大小是.ACBT6-2-1图 T6-2-2图2. 在T6-2-2图所示的导体腔C中,放置两个导体A和B,最初它们均不带电.现设法使导体A带上正电,则这三个导体电势的大小关系为.3. 半径为r的导体球原来不带电.在离球心为R (R>r)的地方放一个点电荷q, 则该导体球的电势等于.4. 金属球壳的内外半径分别r和R, 其中心置一点电荷q, 则金属球壳的电势为.T6-2-4图d处 (d < R) 固定一电量为+q的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O处的电势为.T6-2-5图5. 一个未带电的空腔导体球壳内半径为R.在腔内离球心的距离为6. T6-2-6图所示的11张金属箔片平行排列,奇数箔联在一起作为电容器的一极,偶数箔联在一起作为电容器的另一极.如果每张箔片的面积都是S,相邻两箔片间的距离为d,箔片间都是空气.忽略边缘效应,此电容器的电容为C = .T6-2-6图 T6-2-7图7. T6-2-7图中所示电容器的电容C1、C2、C3已知,C4的值可调.当C4的值调节到A、B两点的电势相等时,C4=.8. 位于边长为l的正三角形三个顶点上的点电荷电荷量分别为q、2q和-4q,这个系统的静电能为.9. 有一半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为.10. 电荷q均匀分布在内外半径分别为R1和R2的球壳体内,这个电荷体系的电势能为,电场能为.11. 一平行板空气电容器, 极板面积为S, 间距为d, 接在电源上并保持电压恒定为U.若将极板距离拉开一倍, 则电容器中的静电能改变量为. 12. 有一半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为.三、计算题1. 真空中一导体球A原来不带电.现将一点电荷q 移到距导体球A的中心距离为r处,此时,导体球的电势是多少?2. 真空中一带电的导体球A半径为R.现将一点电荷q 移到距导体球A的中心距离为r处,测得此时导体球的电势为零.求此导体球所带的电荷量.qT6-3-1图3. 一盖革-米勒计数管,由半径为0.1mm的长直金属丝和套在它外面的同轴金属圆筒构成,圆筒的半径为10mm.金属丝与圆筒之间充以氩气和乙醇蒸汽,其电场强度最大值为4.3⨯10V⋅m-1. 忽略边缘效应,试问金属丝与圆筒间的电压最大不能超过多少?64. 设有一电荷面密度为σ0(>0)放置一块原来不带电,有一定厚度的金属板,不计边缘效应, (1)板两面的电荷分布;(2) 把金属板接地,金属板两面的电荷又将如何分布T6-3-4图6. 一平行板电容器两极板的面积都是S,其间充有N它们的电容率分别为ε1、ε2、ε3、εN,厚度分别为d1、d2、d3、 dN.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所示,一球形电容器由半径为R1的导体球和与它同心的半径为R2的导体球壳组成.导体球与球壳之间一半是空气,另一半充有电容率为ε的均匀介质.求此电容器的电容.T6-3-6图 T6-3-8图8. 静电天平的原理如T6-3-8图所示:面积为S、相距x的空气平行板电容器下板固定,上板接到天平的一端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放入天平另一端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U, 问此物的质量是多少?9. 两块面积相同的大金属平板A、B, 平行放置,板面积为S,相距d, d远小于平板的线度.今在A,B板之间插入另外一面积相同,厚度为l的金属板,三板平行.求 A、B之间的电容.10. 真空中两个同心的金属薄球壳,内外球壳的半径分别为R1和R2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容又是多大? 11. 已知一均匀带电球体(非导体)的半径为R,带电量为q.如果球体内外介质的电容率均近似为ε,在半径为多大的球面空间内的电场能量为其总能量的一半? 12. 半径为R的雨点带有电量q.现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“无限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. 一面积为S、间隔为d的平板电容器,最初极板间为空气,在对其充电±q以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪儿去了?14. 一种利用电容器控制绝缘油液面的装置示意如T6-3-14图,平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连.当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a,油的相对电容率为εr,试求此电容器等效相对电容率与液面高度h的关系.15. 如T6-3-15入一电矩为图所示,在场强为E的均匀电场中,静止地放p、转动惯量为J的电偶极子.若电矩 p与场强E 之间的夹角θ 很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到 p与E 方向一致时所经历的最短时间.T6-3-14图T6-3-15图 10。