课标卷中函数图像的切线问题
高中物理的函数图像“切线斜率”应用解题

参考文献
[1]于胜寒函数图像的“切线斜率”的理解及在高中物理解题中的应用[J].中国新通信,2016,18,(23):134。
C. O点中产生的电荷强度在x轴方向中的分量为最大的状态。
D. x中的负电荷在经过B到C之间的转移过程中,电场力会首先先做正功,之后再做负功,具有这样一个先后顺序。
解题分析:φ-x图像中处于某一个位置之上的斜线斜率表示的是静电场中的电场在x方向之上的分量值,所以正确答案是A,同时O点中所对应的切线斜率数值是0,由此得知C项按答案错误。同时根据题目中所述,顺沿电场方向上的势能处于逐渐减小的状态,所以B选项阐述不对。电场做工可以表示为W=qu,由此可以得出,正确答案是D。因此最终的答案是AD。
高中物理的函数图像“切线斜率”应用解题
摘要:在高中物理课程的学习过程中,具有多种解题思路与解题方式,其中的重要知识点是切线斜率方面,在物理习题的定量分析与定性分析中都有着重要的应用空间,本文分析了在高中物理习题的讲解过程中函数图像“切线斜率”方面的应用策略,以促进同学们掌握相关的物理解题技巧,最终有效促进高中物理解题能力的提升。
例题:在具体的空间表现中静电场的电路势能φ在x轴中的具体分布情况具体如下图1所示,由这一图能够看出x轴在B点与C点之上的电场强度作用在x位置之上的分量将其具体表示成Ebx与Ecx,那么在以下的四个阐述中正确的是( )。
图1.函数图像
A. Ebx上的电场强度势能比Ecx要强。
B. Ecx上的分量方向是X轴的正方向。
函数的切线问题

函数的切线问题一、基础知识:(一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000lim x f x x f x k x ∆→+∆-=∆, 即切线斜率,由导数定义可知:()()()'0000lim x f x x f x k f x x∆→+∆-==∆。
函数图像的切线问题(可编辑修改word版)

0 0 0 00 0 0 0 0 0 x = x 0 0 0 0x 1函数图像的切线问题要点梳理归纳1. 求曲线 y =f(x)的切线方程的三种类型及其方法(1) 已知切点 P(x 0,f(x 0)),求 y =f(x)在点 P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0).(2) 已知切线的斜率为 k ,求 y =f(x)的切线方程:设切点为 P(x 0,y 0),通过方程 k =f′(x 0)解得 x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求 y =f(x)的切线方程:设切点为 P(x 0,y 0),利用导数将切线方程表示为 y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出 x 0.2. 两个函数图像的公切线函数 y=f(x)与函数 y=g(x) 存在公切线, 若切点为同一点 P(x 0,y 0),则有 Error!若切点分别为(x ,f(x )),(x ,g(x )),则有 f '(x ) = g '(x ) =f (x 1 ) -g (x 2 ) .1 12 2题型分类解析1 2- x题型一已知切线经过的点求切线方程例 1.求过点 P (2, 2) 与已知曲线 S : y = 3x - x 3 相切的切线方程. 解:点 P 不在曲线 S 上.设切点的坐标( x , y ) ,则 y = 3x - x 3,函数的导数为 y ' = 3 - 3x 2 , 切线的斜率为k = y '= 3 - 3x 2 ,∴切线方程为y - y = (3 - 3x 2 )( x - x ) , 0点 P (2, 2) 在切线上,∴2 - y = (3 - 3x 2 )(2 - x ) ,又 y = 3x - x 3 ,二者联立可得 x 0 = 1,或x 0 = 1 ± 3, 相应的斜率为k = 0 或k = -9 ± 6 32⎩ ⎨2 2 0∴切线方程为 y = 2 或 y = (-9 ± 6 3)( x - 2) + 2 .例 2. 设函数 f ( x ) = g ( x ) + x 2 ,曲线 y = g ( x ) 在点(1, g (1))处的切线方程为 y = 2x + 1,则曲线 y = f ( x ) 在点(1, f (1))处的切线方程为解析: 由切线过 (1, g (1))可得: g (1) = 3 , 所以 f (1) = g (1) + 12 = 4 , 另一方面,g ' (1) = 2 , 且f ' ( x ) =g ' ( x ) + 2x , 所以 f ' (1) = g ' (1) + 2 = 4 , 从而切线方程为:y - 4 = 4( x - 1) ⇒ y = 4x例 3. 已知直线 y = kx +1与曲线 y = x 3 + ax + b 切于点(1, 3) ,则b 的值为解析:代入(1, 3) 可得: k = 2 , f ' ( x ) = 3x 2 + a ,⎧⎪ f (1) = a + b + 1 = 3⎧a = -1 所以有⎨⎪ f ' (1) = 3 + a = 2 ,解得 ⎩b = 3题型二已知切线方程(或斜率),求切点坐标(或方程、参数)例 4.已知函数 f ( x ) = ln x + 2x ,则:(1) 在曲线 f ( x ) 上是否存在一点,在该点处的切线与直线4x - y - 2 = 0 平行 (2) 在曲线 f ( x ) 上是否存在一点,在该点处的切线与直线 x - y - 3 = 0 垂直解:设切点坐标为( x 0, y 0 ) ∴ f '(x ) = 1+ 2 x 0由切线与4x - y - 2 = 0 平行可得:f ' ( x ) = 1 + 2 = 4 ⇒ x = 1∴ y = f ⎛ 1 ⎫= ln 1 + 1 00 ⎪⎝ ⎭ 2∴切线方程为: y - 1 + ln 2 = 4 ⎛ x - 1 ⎫⇒ y = 4x - ln 2 - 12 ⎪ ⎝ ⎭0 x⎩(2)设切点坐标( x 0, y 0 ) ∴ f '(x ) = 1 x 0+ 2 ,直线 x - y - 3 = 0 的斜率为1∴ f '( x ) =1x 0 + 2 = -1 ⇒ x 0 = - 13 而 x 0 ∈(0, +∞)∴ x 0= - 1不在定义域中,舍去 3∴不存在一点,使得该点处的切线与直线 x - y - 3 = 0 垂直例 5.函数 f ( x ) = a ln x - bx 2 上一点 P (2, f (2))处的切线方程为 y = -3x + 2 ln 2 + 2 ,求a , b 的值思路:本题中求a , b 的值,考虑寻找两个等量条件进行求解, P 在直线y = -3x + 2 l n 2 + 2 上,∴ y = -3⋅ 2 + 2 l n 2 + 2 = 2 l n 2 - 4 ,即 f (2) =2ln2 - 4 ,得到a , b 的一个等量关系,在从切线斜率中得到 x = 2 的导数值,进而得到a , b 的另一个等量关系,从而求出a , b解: P 在 y = -3x + 2 ln 2 + 2 上,∴ f (2) = -3⋅ 2 + 2 ln 2 + 2 = 2 ln 2 - 4∴ f (2) = a ln 2 - 4b = 2 ln 2 - 4又因为 P 处的切线斜率为-3af ' ( x ) = a - 2bx x⎧a ln 2 - 4b = 2 ln 2 - 4 ⎧a = 2 ∴ f ' (2) = - 4b = -3 , 2 ⎪⎨ a ⎪⎩ 2- 4b = -3 ⇒ ⎨b = 1例 6.设函数 f ( x ) = x 3 - ax 2 - 9x - 1(a < 0) ,若曲线 y = 线12x + y = 6 平行,求a 的值f ( x ) 的斜率最小的切线与直思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为-12 ,进而可得导函数的0 0 ∴⎪ -最小值为-12 ,便可求出a 的值解: f ' ( x ) = 3x 2- 2ax - 9 = 3⎛x 2- ⎝2 a + 13 9 a 2 ⎫ - ⎭ 1a 2 - 9 = 3⎛ x - 3 ⎝1 ⎫2 a ⎪3 ⎭- 1 a 2 - 93∴ f ' ( x ) = f ⎛ 1 a ⎫= - 1 a 2 - 9 直线12x + y = 6 的斜率为-12 ,依题意可得:min3 ⎪ 3⎝ ⎭- 1a 2 - 9 = -12 ⇒ a = ±3 3 题型三公切线问题a < 0 ∴a = -3 例 7.若存在过点(1,0)的直线与曲线 y = x 3 和 y = ax 2 +15x - 9 都相切,则a 等于( )4A. -1 或-2521 B. 1 或C. - 7 或-25 D. - 7或76444 644思路:本题两条曲线上的切点均不知道,且曲线 y = ax 2 +15 x - 9 含有参数,所以考虑4先 从 常 系 数 的 曲 线 y = x 3 入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线y = ax 2 + 15 x - 9 求出 a 的值.设过(1,0) 的直线与曲线 y = x 3 切于点(x , x 3 ),切线方4程为 y - x 3= 3x 2( x - x 0 0) ,即 y = 3x 2 x - 2x 3 ,因为(1,0) 在切线上,所以解得: x = 00 0 0或 x = 3, 即 切 点 坐 标 为 (0,0) 或⎛ 3 , 27 ⎫ .当 切 点(0,0) 时 , 由 y = 0 与22 8 ⎪y = ax 2 + 15x - 9 相切可得4⎛ 15 ⎫2⎝ ⎭25 ⎛ 3 27 ⎫∆ = 4 ⎪ - 4a (-9) = 0 ⇒ a = - 64 ,同理,切点为 , ⎪ 解得a = -1⎝ ⎭ ⎝ 2 8 ⎭答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与 y = ax 2 +15 x - 9 求a 的过程中,由于曲线 y = ax 2 +15 x - 9 为抛物44线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的∆ = 0 来求解,减少了运算量.通过例 7,例 8 可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线) 例 8.若曲线C :y = x 2 与曲线C :y = ae x 存在公切线,则a 的最值情况为()18A. 最大值为e 224B. 最大值为e 28C. 最小值为e 24D.最小值为 e2⎧⎪ y '= 2x解析:设公切线与曲线C 切于点(x , x 2),与曲线C 切于点(x , ae x 2) ,由⎨ 可得:1 1 12 2⎧ 2x - x 2⎪⎩ y ' = ae xae x 2- x 2⎪2x = 1 1 ⇒ x = 2x - 2 2x = ae x 2 = 1 ,所以有⎨ 1 x - x 1 2 ,所以 ae x 2 = 4x - 4 , 1x - x 2 1 2 2 1 ⎪2x = ae x 2⎩ 1即 a =4( x 2 - 1) ,设 f ( x ) =4( x -1) ,则 f '( x ) =4(2 - x ) .可知 f ( x ) 在(1, 2) 单调递e x 2e xe x增,在(2, +∞) 单调递减,所以 a max = f (2) = 4e2题型四切线方程的应用例 9.已知直线 y = kx 与曲线 y = ln x 有公共点,则k 的最大值为 . 解:根据题意画出右图,由图可知,当直线和曲线相切时, k 取得最大值.设切点坐标为( x 0, y 0 ) ,则 y 0 = ln x 0, y ' = 1 x y ' x = x 0= 1,∴切线方程为 x 0y - ln x = 1( x - x ) , 原点在切线上,∴ln x = 1, x = e ∴斜率的最大值为0 0 01 .e例 10.曲线 y = e x 在点(2, e 2 )处的切线与坐标轴所围三角形的面积为()A. e 2B. 2e 2C. 4e 2D. e 2思路: f' ( x ) = e x由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ∴ f ' (2) = e 2 所以切线方程为: y - e 2 = e 2 ( x - 2) 即e 2 x - y - e 2 = 0 ,2与两坐标轴的交点坐标为(1, 0) (0, -e 2)∴ S = 1⨯1⨯ e 2= e2 2例 11.一点 P 在曲线 y = x 3 - x + 2上移动,设点 P 处切线的倾斜角为,则角的取值3范围是( ).0 2O526104826x^24a5l2ae^xx^2 a2 ae^x5542x 2⎨0 0 0 0 0 0 00 00 0 00 00 0 0 0 00 0 0A. ⎡0,⎤B. ⎡0,⎫ ⎡ 3,⎫C.⎡ 3,⎫D. ⎛3⎤⎢ 2 ⎥ ⎢ 2 ⎪ ⎢ 4⎪ ⎢ 4 ⎪ ,⎥⎣ ⎦⎣ ⎭ ⎣ ⎭⎣ ⎭⎝ 2 4 ⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来. y ' = 3x 2 - 1 ,对于曲线上任意一点 P ,斜率的范围即为导函数的值域: y ' =3x 2 - 1∈[-1, +∞) ,所以倾斜角的范围 是⎡0,⎫ ⎡ 3,⎫.答案:B ⎣⎢ 2 ⎪ ⎢ 4⎪ ⎭ ⎣ ⎭例 12.已知函数 f ( x ) = 2x 3 - 3x ,若过点 P (1, t ) 存在 3 条直线与曲线 y = 求t 的取值范围f ( x ) 相切, 思路:由于并不知道 3 条切线中是否存在以 P 为切点的切线,所以考虑先设切点( x 0 , y 0 ) ,切线斜率为k ,则满足 ⎧⎪ y = 2x 3 - 3x ,所以切线方程为 y - y = k ( x - x ) ,即⎪k = f ' ( x ) = 6x 2 - 3 0 0 ⎩0 0 y - (2x 3 - 3x ) = (6x 2- 3)( x - x ) ,代入 P (1, t ) 化简可得: t = -4x 3 + 6x 2 - 3 ,所以 若 存 在 3 条 切 线 , 则 等 价 于 方 程 t = -4x 3 + 6x 2 - 3 有 三 个 解 , 即g ( x ) = -4x 3 + 6x 2 - 3 有三个不同交点,数形结合即可解决解:设切点坐标( x 0 , y 0 ) ,切线斜率为k ,则有:y = t 与⎧⎪ y ⎨ = 2x 3 - 3x ∴ 切线方程为: y - (2x 3 - 3x ) = (6x 2 - 3)( x - x ) ⎪k = f ' ( x ) = 6x 2 - 30 0 0 0 ⎩0 0 因为切线过 P (1, t ) ,所以将 P (1, t ) 代入直线方程可得:t - (2x 3 - 3x ) = (6x 2- 3)(1 - x )⇒ t = (6x 2 - 3)(1 - x ) + (2x 3 - 3x )= 6x 2 - 3 - 6x 3 + 3x + 2x 3 - 3x = -4x 3 + 6x 2 - 30 0 极大值 极小值 所以问题等价于方程t = -4x 3 + 6x 2 - 3 ,令 g ( x ) = -4x 3 + 6x 2 - 3 即直线 y = t 与 g ( x ) = -4x 3 + 6x 2 - 3 有三个不同交点g ' ( x ) = -12x 2 + 12x = -12x ( x - 1)令 g ' ( x ) > 0 解得0 < x < 1所以 g ( x ) 在(-∞, 0) , (1, +∞) 单调递减,在(0,1) 单调递增g ( x ) = g (1) = -1, g ( x ) = g (0) = -3所以若有三个交点,则t ∈ (-3, -1)所以当t ∈ (-3, -1) 时,过点 P (1, t ) 存在 3 条直线与曲线 y =f ( x ) 相切例 13. 已知曲线 C:x 2=y ,P 为曲线 C 上横坐标为1 的点,过 P 作斜率为 k(k ≠0)的直线交 C于另一点 Q ,交 x 轴于 M ,过点 Q 且与 PQ 垂直的直线与 C 交于另一点 N ,问是否存在实数 k , 使得直线 MN 与曲线 C 相切?若存在,求出 K 的值,若不存在,说明理由.思路: 本题描述的过程较多, 可以一步步的拆解分析.点 P (1,1) , 则可求出PQ : y = kx - k + 1,从而与抛物线方程联立可解得Q (k - 1,(k - 1)2),以及 M 点坐标,从而可写出QN 的方程,再与抛物线联立得到 N 点坐标.如果从 M , N 坐标入手得到 MN 方程,再根据相切(∆ = 0) 求 k ,方法可以但计算量较大.此时可以着眼于 N 为切点,考虑抛物线 x 2 = y 本身也可视为函数 y = x 2 ,从而可以 N 为入手点先求出切线,再利用切线过 M 代入 M 点坐标求k ,计算量会相对小些.解:由 P 在抛物线上,且 P 的横坐标为 1 可解得 P (1,1)∴设 PQ : y - 1 = k ( x - 1) 化简可得: y = kx - k + 1∴ M ⎛ k - 1,0⎫k⎪ ⎝⎭⎨ y = kx - k + 1⎪ ∴⎧ y = x 2 ⎩消去 y : x 2 - kx + k - 1 = 0 ∴ x = 1, x = k - 1 ∴Q (k - 1,(k - 1)2)12设直线QN : y - (k - 1)2= - 1 ⎡⎣ x - (k - 1)⎤⎦ 即 y = (k - 1)2- 1⎡⎣ x - (k - 1)⎤⎦kk⎧ y = x 2∴ 联立方程: ⎨ y = (k - 1)2 - 1 ⎡ x - (k - 1)⎤ ⎩⎪ k ⎣ ⎦∴ x 2 + 1 x - (k - 1)⎛ k - 1 + 1 ⎫ = 0 k k ⎪⎝ ⎭∴ x ⋅ x = -(k - 1)⎛ k - 1 + 1 ⎫ ⇒ x= -⎛ k - 1 + 1 ⎫Q N k ⎪ N k ⎪⎝ ⎭ ⎝ ⎭⎛ ⎛ 1 ⎫ ⎛ 1 ⎫2 ⎫ ∴ N - k - 1 + k ⎪, k - 1 + k ⎪ ⎪ ⎝ ⎝ ⎭ ⎝ ⎭ ⎭由 y = x 2 可得: y ' = 2x∴切线 MN 的斜率k= y ' |= -2 ⎛k - 1 + 1 ⎫MNx = x Nk ⎪⎝ ⎭⎛ 1 ⎫2⎛1 ⎫ ⎡ ⎛ 1 ⎫⎤ ∴ MN : y - k - 1 + k ⎪ = -2 k - 1 + k ⎪ ⎢ x + k - 1 + k ⎪⎥⎝ ⎭ ⎝⎭ ⎣ ⎝ ⎭⎦⎛ 1 - k ⎫代入 M k ,0⎪ 得:⎝ ⎭⎛ 1 ⎫2⎛1 ⎫ ⎡ 1 ⎛1 ⎫⎤ - k - 1 + k ⎪ = -2 k - 1 + k ⎪ ⎢1 - k + k - 1 + k ⎪⎥⎝ ⎭ ⎝⎭ ⎣ ⎝ ⎭⎦∴k -1 +1= 2k ⇒k 2+k -1 = 0 ,∴k =-1 ±5 k 2小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算∆= 0 简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数 f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b 为常数,已知曲线 y=f(x)与y=g(x)在点(2,0)处有相同的切线 l.(1)求a、b 的值,并写出切线 l 的方程;(2)若方程 f(x)+g(x)=mx 有三个互不相同的实根 0、x1、x2,其中 x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数 m 的取值范围.【解答】(1)f′(x)=3x2+4ax+b,g′(x)=2x-3.由于曲线 y=f(x)与y=g(x)在点(2,0)处有相同的切线,故有 f(2)=g(2)=0,f′(2)=g′(2)=1.由此得Error!解得Error!所以 a=-2,b=5,切线 l 的方程为 x-y-2=0.(2)由(1)得f(x)=x3-4x2+5x-2,所以 f(x)+g(x)=x3-3x2+2x.依题意,方程 x(x2-3x+2-m)=0 有三个互不相同的实根 0、x1、x2,故x1、x2是方程 x2-3x+2-m=0 的两相异的实根.1所以Δ=9-4(2-m)>0,即 m>- .4又对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立.特别地,取 x=x1时,f(x1)+g(x1)-mx1<-m 成立,得 m<0.由韦达定理,可得 x1+x2=3>0,x1x2=2-m>0,故 0<x1<x2.对任意的x∈[x1,x2],有 x-x2≤0,x-x1≥0,x>0,则 f(x)+g(x)-mx=x(x-x1)(x-x2)≤0,4 4 又 f(x 1)+g(x 1)-mx 1=0,所以函数 f(x)+g(x)-mx 在 x∈[x 1,x 2]的最大值为 0.1 于是当- <m<0 时,对任意的 x∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 4 1综上,m 的取值范围是(- ,0).4 例 15.如图 3-1,有一正方形钢板 AB CD 缺损一角(图中的阴影部分),边缘线 OC 是以直线 AD 为对称轴,以线段 AD 的中点 O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来, 使剩余的部分成为一个直角梯形.若正方形的边长为 2 米,问如何画切割线 EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以 O 为原点,直线 AD 为 y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧 OC 的方程为y =ax 2(0≤x ≤2),∵点 C 的坐标为(2,1),1 ∴22a =1,a = , 4 1 故边缘线 OC 的方程为 y = x 2(0≤x ≤2), 4要使梯形 ABEF 的面积最大,则 EF 所在的直线必与抛物线1 弧 OC 相切,设切点坐标为 P (t , t 2)(0<t <2),4 1 1 t ∵y ′= x ,∴直线 EF 的方程可表示为 y - t 2= (x -t ), 2 4 21 1 1 1 即 y = tx - t 2.由此可求得 E (2,t - t 2),F (0,- t 2).∴ 2 4 4 4 1 1|AF |=|- t 2- -1 |=1- t 2,4 4 1 1 |BE |=|t - t 2- -1 |=- t 2+t +1. 设梯形 ABEF 的面积为 S (t ),则 15 5 5 S (t )=- (t -1)2+ ≤ ,∴当 t =1 时,S (t )= ,2 2 2 2故 S (t )的最大值为 2.5,此时|AF |=0.75,|BE |=1.75.答:当 AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为 2.5 m 2.解法二:以 A 为原点,直线 AD 为 y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y=ax2+1(0≤x≤2).1∵点C 的坐标为(2,2),∴22a+1=2,a=,41故边缘线OC 的方程为y=x2+1(0≤x≤2).4要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P 1(t,t2+1)(0<t<2),41 1 1∵y′=x,∴直线EF 的方程可表示为y-t2-1=t(x-t),2 4 21 1即y=tx-t2+1,2 41 1由此可求得E(2,t-t2+1),F(0,-t2+1).4 41 1∴|AF|=1-t2,|BE|=-t2+t+1,4 4设梯形ABEF 的面积为S(t),则1S(t)= |AB|·(|AF|+|BE|)21 1 1=1-t2+(-t2+t+1)=-t2+t+24 4 21 5 5=- (t-1)2+≤ .2 2 25∴当t=1 时,S(t)=,2故S(t)的最大值为 2.5.此时|AF|=0.75,|BE|=1.75.答:当AF=0.75 m,BE=1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m2.【点评】与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。
专题3-1 切线、公切线及切线法应用-(原卷版)

专题3-1 切线、公切线与“切线法”应用目录【题型一】“在点”切线1:有切点.......................................................................................................... 1 【题型二】“在点”切线2:无切点.......................................................................................................... 2 【题型三】“在点”切线3:双参型.......................................................................................................... 2 【题型四】“在点”切线4:分段函数切线 .............................................................................................. 3 【题型三】“过点”切线1 ......................................................................................................................... 4 【题型四】“过点”切线2:切线条数...................................................................................................... 5 【题型五】“过点”切线3:最值与范围 .................................................................................................. 5 【题型六】双函数公切线 .......................................................................................................................... 5 【题型七】三角函数的切线 ...................................................................................................................... 6 【题型八】切线与倾斜角 .......................................................................................................................... 7 【题型九】“切线法应用”题型1:直线上点到曲线距离 ...................................................................... 7 【题型十】“切线法应用”题型2:两曲线上点距离最值 ...................................................................... 8 【题型十一】“切线法应用”题型3:恒成立与存在求参 ...................................................................... 9 【题型十二】“切线法应用”题型4:零点(交点)求参 ...................................................................... 9 【题型十三】“切线法应用”题型5:等式(不等式)整数解求参 .................................................... 10 【题型十四】“切线法应用”题型6:恒等式、不等式等 .................................................................... 11 【题型十五】综合应用 ............................................................................................................................ 11 二、真题再现 ............................................................................................................................................ 12 三、模拟检测 .. (13)【题型一】“在点”切线1:有切点【典例分析】已知函数1()(3)e ln x f x ax x x -=++(其中e 为自然对数的底数)的图象在(1,(1))f 处的切线的斜率为8,则实数a 的值为( )A .1B .2C .eD .31.已知函数2()2(1)f x x xf =-',则曲线()y f x =在点(2,(2))f 处的切线方程为( ) A .680x y --= B .680x y -+= C .680x y ++= D .680x y +-=2.已知函数()(0)xf x e ax a =+<在0x =处的切线与两坐标轴围成的三角形面积为14,则实数a 的值为( ) A .1 B .1- C .3- D .33.已知函数()()212f x x f x '=-+,则()f x 的图象在点()()22f ,处的切线的斜率为( ) A .-3 B .3 C .-5 D .5【题型二】“在点”切线2:无切点【典例分析】已知四条直线1:l y x =,2:32l y x =-,3:32l y x =+,从这三条直线中任取两条,这两条直线都与函数3()f x x =的图象相切的概率为( )A .16B .13C .12D .23【变式演练】1.以下曲线与直线e e y x =-相切的是( ) A .221x y +=B .e x y =C .e ln x y x =D .21e 2y x =2.若曲线e x y a x =+与y =2x +1相切,则实数a =( ) A .1 B .2 C .3 D .43.直线12y x b =-与曲线1ln 2y x x =-+相切,则b 的值为( )A .2B .-2C .-1D .1【题型三】“在点”切线3:双参型【典例分析】已知,a b 为正实数,直线y x a =-与曲线()ln y x b =+相切,则11a b+的最小值为( ) A .2 B .4C .5D .6【变式演练】1.若曲线3y x ax =+在点(1,(1))f 处的切线方程为6y x m =-,则m =( ) A .3 B .3- C .2 D .2-2.已知函数()2ln f x ax b x =-在点()()1,1f 处的切线为1y =,则a b +的值为( ) A .1 B .2 C .3 D .43.已知函数2()ln f x a x bx =-的图象在1x =处与直线12y =-相切,则函数()f x 在[]1,e 上的最大值为( )A .1-B .0C .12- D .1【题型四】“在点”切线4:分段函数切线【典例分析】已知函数2(2),0()3(),0f x x x f xg x x ⎧->⎪=⎨⎪<⎩图像关于原点对称,则()f x 在1x =-处的切线方程为( )A .320x y -+=B .320x y --=C .340x y ++=D .340x y +-=【变式演练】1.已知函数()()ln 1,0,0x x f x kx x ⎧+>=⎨≤⎩,曲线()y f x =与直线1ln 222x y =-+有且仅有一个交点,则实数k 的取值范围为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .[)1,+∞2.已知函数()f x 满足()(),11ln 1,1ax a x f x x x +≤-⎧+=⎨+>-⎩函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为( ) A .1,0e ⎛⎫- ⎪⎝⎭B .10,e ⎛⎫ ⎪⎝⎭C .11,e e ⎛⎫- ⎪⎝⎭D .1,e ∞⎛⎫+ ⎪⎝⎭3.已知函数2,0()1,0x x a x f x x x⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点A B 、,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是___________.【题型三】“过点”切线1【典例分析】设01x >,曲线()ln 32f x a x x a =-+在点()0,0P x 处的切线经过点()0,2e ,则0a x +=( ) A .eBCD .2e【变式演练】1.写出a 的一个值,使得直线0x ay a +-=是曲线sin xy x=的切线,则a =______.2.已知直线(R)y ax a =∈与曲线ln y x =相交于两点,则a 的取值范围是___________3.函数2()e x f x =过原点的切线方程是_______.【题型四】“过点”切线2:切线条数【典例分析】若过点(),s t 可以作曲线ln y x =的两条切线,则( )A .ln s t >B .ln s t <C .ln t s <D .ln t s >【变式演练】1.已知函数()()1e xf x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( )A .24,0e ⎛⎫- ⎪⎝⎭ B .242,e e ⎛⎫- ⎪⎝⎭ C .36,2e e ⎛⎫- ⎪⎝⎭D .36,0e ⎛⎫- ⎪⎝⎭2.若过点(,)m n 可以作曲线2log y x =的两条切线,则( )A .2log m n >B .2log n m >C .2log m n <D .2log n m <3.过点()0,b 作曲线e x y =的切线有且只有两条,则b 的取值范围为( ) A .()0,1B .(),1-∞C .(],1-∞D .(]0,1【题型五】“过点”切线3:最值与范围【典例分析】已知函数()e xf x b =+的一条切线为y ax a =+,则ab 的最小值为( )A .12e- B .C .12eD【变式演练】1.已知曲线()|ln |f x x =在点()()11,x f x 与()()22,x f x 处的切线互相垂直且相交于点()00,P x y ,则( ) A .121x x ⋅=-B .12⋅=x x eC .1202x x x +=D .0122=+x x x2.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.3.过直线1y x =-上一点P 可以作曲线()ln f x x x =-的两条切线,则点P 横坐标t 的取值范围为( ) A .01t << B .1t e <<C .0t e <<D .11t e<<【题型六】双函数公切线【典例分析】若函数1()33(0)f x x x x =+->的图象与函数()e xg x tx =的图象有公切线l ,且直线l 与直线122y x =-+互相垂直,则实数t =( )A .1e B .2e C .1e 或D .1e 或【变式演练】1.若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( )A .e 2B .eCD .2e2.若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则k =( ) A .2 B .4 C .2e D .2e -3..若曲线ln y x =与曲线:y =2x -k 有公切线,则实数k 的最大值为( )A .78+1ln22B .78-1ln22C .12+1ln22D .121ln22-【题型七】三角函数的切线【典例分析】函数()2cos 2sin f x x x x =-在πx =处的切线在y 轴上的截距为( )A .2π2π-B .2πC .2π2-D .22ππ22π--【变式演练】1.设函数321()(1)sin 3f x x a x a x =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线斜率为( )A .3B .2C .1D .122.过曲线cos y x =上一点1,32P π⎛⎫⎪⎝⎭且与曲线在P 点处的切线垂直的直线的方程为( )A .2203x π-=B .212032x y π+--=C.2203x π-= D .212032x y π--+=3.已知函数()3sin 4cos f x x x =-,则曲线()y f x =在点()()0,0f 处的切线方程为( ) A .34y x =- B .0y = C .4y =- D .43y x =-+【题型八】切线与倾斜角【典例分析】设点P是曲线32y x =-+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【变式演练】1.函数()2ln 1sin y x x=++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310B .±310C .35D .±352.已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( ) A .)⎡⎣ B .)⎡⎣C .(,-∞D .(-∞3.已知M 是曲线()21ln 12y x x a x =++-上的任一点,若曲线在M 点处的切线的倾斜角均是不小于4π的锐角,则实数a 的取值范围是( ) A .[)2,+∞ B .[)4,+∞C .(],2-∞D .(],4-∞【题型九】“切线法应用”题型1:直线上点到曲线距离【典例分析】已知111ln 20x x y --+=,22252ln 20x y +--=,则()()221212x x y y -+-的最小值为( ) A B C .95D .165【变式演练】1.曲线e x y =上到直线e y x =12的点的个数为( ) A .4 B .3 C .2 D .12.曲线ln y x =上的点到直线2y x =+的最短距离是( )A.B C D3.已知实数a ,b ,c ,d 满足:2e 111a a cb d --==-,其中e 是自然对数的底数,则22()()ac bd -+-的最小值是( ) A .7 B .8 C .9 D .10【题型十】“切线法应用”题型2:两曲线上点距离最值【典例分析】设P 为曲线e x y =上一点,Q 为曲线ln y x =上一点,则|PQ |的最小值为( )AB .1CD .2【提分秘籍】基本规律两曲线最短距离数学思想,可以借鉴如下“双飞燕”思维图【变式演练】1.已知函数43e x y -=的图象与函数ln(1)14x y --=的图象关于某一条直线l 对称,若P ,Q 分别为它们上的两个动点,则这两点之间距离的最小值为______.2.已知点P 为曲线ln exy =上的动点,O 为坐标原点.当OP 最小时,直线OP 恰好与曲线ln y a x =相切,则实数a =___.3.若12,x x R ∈,则()()212212e e x x x x -+-的最小值是 A .1B .2C .3D .4【题型十一】“切线法应用”题型3:恒成立与存在求参【典例分析】已知函数()0,ln ,0,x f x x x x ⎧=⎨>⎪⎩,若关于x 的不等式()e f x ax >-(e 是自然对数的底数)在R 上恒成立,则a 的取值范围是( )A .21e 1,3e 2⎡⎤-⎢⎥⎣⎦ B .21e 1,3e 2⎛⎫-⎪⎝⎭ C .21e ,22e ⎡⎤-⎢⎥⎣⎦ D .21e ,22e ⎛⎫- ⎪⎝⎭【变式演练】1.已知函数()2e 2xf x ax ax =++在()0,x ∈+∞上有最小值,则实数a 的取值范围为( )A .1,2⎛⎫+∞ ⎪⎝⎭B .e 1,22⎛⎫-- ⎪⎝⎭C .()1,0-D .1,2⎛⎫-∞- ⎪⎝⎭2.已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣ B .)⎡⎣C .(,-∞D .(-∞3.若曲线e x y =过点(2,0)-的切线恒在函数212()e 31e e x f x a x x ⎛⎫=-+-+- ⎪⎝⎭的图象的上方,则实数a 的取值范围是__________.【题型十二】“切线法应用”题型4:零点(交点)求参【典例分析】若函数()ln 1f x x ax =-+有3个零点,则实数a 的取值范围是( ) A .()0,1 B .(]0,1 C .()1,1- D .()()1,00,1-【变式演练】1.已知函数()22,01,0x x x f x x x⎧-≥⎪=⎨<⎪⎩,若函数()()g x f x x m =-+恰有三个零点,则实数m 的取值范围是( )A .()1,2(,0]4-∞-⋃-B .()12,0,,4⎛⎫+∞⋃ ⎪⎝⎭C .[)12,0,4⎛⎤--⋃+∞ ⎥⎝⎦D .[)1,20,4⎛⎫⋃+∞ ⎪⎝⎭2.已知函数()eln ||f x x x a =--,2[1,e ]x ∈.若()y f x =的图象与x 轴有且仅有两个交点,则实数a 的取值范围是( ) A .[1,e] B .(0,e]C .2[1,e 2e]-D .2(0,e 2e]-3.函数234,2()log (1),2x x f x x x ⎧-≤=⎨->⎩,()3g x kx k =-,若函数()f x 与()g x 的图象有三个交点,则实数k 的取值范围为( )A .6,0)B .6,0)C .(2,0)-D .6,0)【题型十三】“切线法应用”题型5:等式(不等式)整数解求参【典例分析】已知函数()()1ln f x kx x x =+-,若()0≤f x 有且只有两个整数解,则k 的取值范围是( ) A .ln 5ln 2,3010⎛⎤ ⎥⎝⎦ B .ln 5ln 2,3010⎛⎫⎪⎝⎭ C .ln 2ln 3,1012⎛⎤⎥⎝⎦ D .ln 2ln 3,1012⎛⎫⎪⎝⎭ 【变式演练】1.已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是( )A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭2..已知不等式ln (1)2ln 2++<x x x k x 的解集中仅有2个整数,则实数k 的取值范围是( )A .340,ln 43⎛⎫ ⎪⎝⎭B .342ln ,ln 2433⎛⎫ ⎪⎝⎭C .2ln 2,3⎡⎫+∞⎪⎢⎣⎭D .342ln ,ln 2433⎡⎫⎪⎢⎣⎭3.若关于x 的不等式()()1e 21x a x x ->-(其中1a ≥-),有且只有两个整数解,则实数a 的取值范围是( ) A .235,43e ⎛⎤- ⎥⎝⎦B .31,2e ⎛⎤- ⎥⎝⎦C .235,43e ⎛⎤-- ⎥⎝⎦D .235,2e 3e ⎛⎤-- ⎥⎝⎦【题型十四】“切线法应用”题型6:恒等式、不等式等【典例分析】已知直线()R y ax a =∈与曲线ln y x =相交于11(,)M x y 、22(,)N x y 两点,若12x x <,则下列结论错误的是( ) A .10e x <<B .122e x x +>C .21y >D .122y y +<【变式演练】1.已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为______.2.若直线l 与函数()e xf x =,()lng x x =的图象分别相切于点()()11,A x f x ,()()22,B x g x ,则1212x x x x -+=______.3.若曲线ln y x =在点()11,P x y 处的切线与曲线x y e =相切于点()22,Q x y ,则12111x x x ++=-__________.【题型十五】综合应用【典例分析】过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e e m -<<B .250e m -<<C .10em -<< D .e m <【变式演练】1.已知函数()2ln ,021,0x x f x x x x ⎧>=⎨+-≤⎩,若方程()1f x ax =-有且仅有三个实数解,则实数a 的取值范围为( )A .01a <<B .02a <<C .1a >D .2a >2.已知函数()ln f x x =,()1g x ax =+,若存在01x e≥使得()()00f x g x =-,则实数a 的取值范围是( )A .212,e e ⎡⎤-⎢⎥⎣⎦B .21,2e e ⎡⎤-⎢⎥⎣⎦C .21,2e e ⎡⎤⎢⎥⎣⎦D .21,2e e ⎡⎤⎢⎥⎣⎦3.已知方程cos (0)xk k x=>有且仅有两个不同的实数解θ,()ϕθϕ>,则以下有关两根关系的结论正确的是A .cos sin ϕϕθ=B .sin cos ϕϕθ=-C .cos cos θθϕ=D .sin sin θθϕ=-1.若过点(),a b 可以作曲线e xy =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b << 2021年全国新高考I 卷数学试题2.若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +122020年全国统一高考数学试卷(理科)(新课标①)3.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+ 2020年全国统一高考数学试卷(理科)(新课标①)4.曲线212x y x -=+在点()1,3--处的切线方程为__________.2021年全国高考甲卷数学(理)试题5.曲线cos 2xy x =-在点()0,1处的切线方程为__________.2019年天津市高考数学试卷(文科)6.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==- B .,1a e b == C .1,1a e b -== D .1,1a e b -==- 2019年全国统一高考数学试卷(理科)(新课标①)7.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x = 2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)8.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.2019年江苏省高考数学试卷9.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 2019年江苏省高考数学试卷10.设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则①PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞) D .(1,+∞) 2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)11.已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 2021年全国新高考II 卷数学试题1.函数()ln f x x ax =+存在与直线20x y -=平行的切线,则实数a 的取值范围是( ) A .(,2]-∞B .11,22,2e e ∞⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭C .()2,+∞D .()0,∞+2.如图所示,函数()y f x =的图像在点P 处的切线方程是210y x =-+,则()()44f f +'的值为( )A .0B .1C .-1D .23.曲线213ln 2y x x =-在点P 处的切线与直线220x y +-=垂直,则点P 的横坐标为( ) A .e B .1 C .3 D .2e4.已知函数()sin f x x x =+.曲线()y f x =在点,33f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为( )A .223y x π=-B .223y x π=-C .3y x π=-+D .3y x π=-+5.函数2ln(1)cos y x x =++的图象在0x =处的切线对应的倾斜角为α,则cos2=α( )A .310B .310±C .35D .35.6.已知0a >,0b >,直线y x b =+与曲线e x a y -=相切,则41a b+的最小值是( )A .6B .7C .8D .97.若过点(1,2)可作曲线3y x ax =+的三条切线,则实数a 的取值范围是( ) A .(3,1)-- B .(2,1)-- C .(1,2) D .(1,3)8.曲线2ln y x =上的点到直线2ln20x y -+=的最短距离是( ) A.2 B .2ln2-C .ln2D9.已知过原点的直线与函数()e ,0ln ,0x x f x x x -⎧≤=⎨>⎩的图像有两个公共点,则该直线斜率的取值范围( )A .()1,e e ⎧⎫-∞-⎨⎬⎩⎭B .{}1e 0,e ⎛⎫- ⎪⎝⎭C .1e,e ⎧⎫-⎨⎬⎩⎭D .()1,e 0,e ⎛⎫-∞- ⎪⎝⎭10.已知曲线()1f x x=-在点()()1,1f --处的切线l 与曲线()ln g x a x =相切,则实数a 所在的区间为(ln 20.69≈,ln5 1.61≈)( )A .()2,3B .()3,4C .()4,5D .()5,611.已知函数2ln ()2x f x x x =-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( )A B C D12.已知曲线()ln()1(1)=-+>f x mx nx m 的一条切线为直线:210l x y -+=,则mn 的最小值为________. 江西省抚州市七校联考2021-2022学年高二下学期期中考试数学(理)试题13.若对0x ∀>,关于x 的不等式21ln 12mx mx x x +-≥+恒成立,则整数m 的最小值为___________.14.已知a ,b 为正实数,若对任意的()0,x ∈+∞,都有ln ax b x -≥成立,则2ba的最大值是______.15.设函数()()sin 12sin 223f x x x αα--=+-(R α∈)图象在点(1,()1f )处切线为l ,则l 的倾斜角θ的最小值是( ) A .4πB .3π C .56π D .34π16..已知函数()21f x x =+,()ln g x x =,若曲线()y f x =与()y g x =的公切线与曲线()y f x =切于点()11,x y ,则()211ln 2x x -=___________.。
2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(曲线的切线方程)重点讲解与练习考点一 求切线的方程【方法总结】求曲线切线方程的步骤(1)求曲线在点P (x 0,y 0)处的切线方程的步骤第一步,求出函数y =f (x )在点x =x 0处的导数值f ′(x 0),即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率; 第二步,由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)ꞏ(x -x 0).(2)求曲线过点P (x 0,y 0)的切线方程的步骤第一步,设出切点坐标P ′(x 1,f (x 1));第二步,写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1);第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程.注意:在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.【例题选讲】[例1](1) (2021ꞏ全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. (2) (2020ꞏ全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1(3) (2018ꞏ全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x(4) (2020ꞏ全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .(6) (2021ꞏ新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)(8) (2019ꞏ江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.(9)设函数f (x )=x 3+(a -1)ꞏx 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( ) A .18 B .14 C .12 D .1(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 2.函数f (x )=e x +1x 在x =1处的切线方程为 .3.(2019ꞏ全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.4.曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=05.(2019ꞏ全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=06.(2019ꞏ天津)曲线y =cos x -x 2(0,1)处的切线方程为________.7.已知f (x )=x ⎝⎛⎭⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 . 8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________. 9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =111.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________. 12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1413.已知曲线y =133+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.14.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.15.(2021ꞏ全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.考点二 求参数的值(范围)【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上.【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .(3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .(4)(2019ꞏ全国Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1 (5)设曲线y =x +1x -2在点(1,-2)处的切线与直线ax +by +c =0垂直,则a b =( ) A .13 B .-13 C .3 D .-3(6)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.(7)已知函数f (x )=x +a 2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 . (8)关于x 的方程2|x +a |=e x 有3个不同的实数解,则实数a 的取值范围为________.【对点训练】1.若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________.2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .33.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 .6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.参考答案【例题选讲】[例1](1) (2021ꞏ全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________. 答案 5x -y +2=0 解析 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2) (2020ꞏ全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1答案 B 解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1)=4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.(3) (2018ꞏ全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x答案 D 解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .(4) (2020ꞏ全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.答案 2x -y =0 解析 设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x +1,所以切线的斜率为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+lnx ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.(6) (2021ꞏ新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D 解析 根据y =e x 图象特征,y =e x 是下凸函数,又过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .故选D .(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)答案 C 解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1,∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上,∴y 0=x 30-x 0+3,∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3.∴切点P 为(1,3)或(-1,3).(8) (2019ꞏ江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.答案 (e ,1) 解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m (x -m ).又切线过点(-e ,-1),所以有n +1=1m (m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1).(9)设函数f (x )=x 3+(a -1)ꞏx 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .答案 (0,0) 解析 ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0,∴切点P (x 0,f (x 0))的坐标为(0,0).(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A .18B .14C .12D .1答案 B 解析 ∵y =x -1x +1,∴y ′=(x +1)-(x -1)(x +1)2=2 x +1 2,∴k =y ′|x =0=2,∴切线方程为y +1=2(x -0),即y =2x -1,令x =0,得y =-1;令y =0,得x =12,故所求的面积为12×1×12=14.(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 . 答案 2 解析 设曲线在点P (x 0,y 0)(x 0>0)处的切线与直线x -y -2=0平行,则0|x x y '==12x x x x 0=⎛⎫- ⎪⎝⎭=2x 0-1x 0=1.∴x 0=1,y 0=1,则P (1,1),则曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离d =|1-1-2|12+(-1)2=2. 【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 1.答案 C 解析 y ′=3x 2-3,∴y ′≥-3,∴tan α≥-3,又α∈[0,π),故α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π,故 选C .2.函数f (x )=e x +1x 在x =1处的切线方程为 .2.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1,又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1,即切线方程为y -(e +1)=(e -1)(x -1),即y =(e -1)x +2.3.(2019ꞏ全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.3.答案 y =3x 解析 y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为y =3x .4.曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=04.答案 D 解析 因为f (x )=1-2ln x x f ′(x )=-3+2ln x x 2.又f (1)=1,且f ′(1)=-3,故所求切线方 程为y -1=-3(x -1),即3x +y -4=0.5.(2019ꞏ全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .x -y -π-1=0B .2x -y -2π-1=0C .2x +y -2π+1=0D .x +y -π+1=05.答案 C 解析 设y =f (x )=2sin x +cos x ,则f ′(x )=2cos x -sin x ,∴f ′(π)=-2,∴曲线在点(π,-1)处的切线方程为y -(-1)=-2(x -π),即2x +y -2π+1=0.故选C .6.(2019ꞏ天津)曲线y =cos x -x 2(0,1)处的切线方程为________.6.答案 y =-12x +1 解析 y ′=-sin x -12,将x =0代入,可得切线斜率为-12.所以切线方程为y -1=-12x ,即y =-12x +1.7.已知f (x )=x ⎝⎛⎭⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 . 7.答案 2x -y =0 解析 ∵f (x )为奇函数,∴f (-1)+f (1)=0,即e +a e -1e -a e =0,解得a =1,f (x )=x ⎝⎛⎭⎫e x +1e x ,∴f ′(x )=⎝⎛⎭⎫e x +1e x +x ⎝⎛⎭⎫e x -1e x ,∴曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,∴曲线y =f (x )在x =0处的切线的方程为2x -y =0.8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________.8.答案 3x -3y +2=0或12x -3y -16=0 解析 设切点坐标为⎝⎛⎭⎫x 0,13x 30,由y ′=⎝⎛⎭⎫13x 3′=x 2,得y ′|x =x 0 =x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝⎛⎭⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2,解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4.故所求的切线方程是y -83=x -2或y -83=4(x -2),即3x -3y +2=0或12x -3y -16=0.9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 9.答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =110.答案 A 解析 因为f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,所以f ′(x )=2f ′⎝⎛⎭⎫12x -2+f (1)x .令x =12得f ′⎝⎛⎭⎫12=2f ′⎝⎛⎭⎫12 ×12-2+2f (1),即f (1)=1.又f (1)=f ′⎝⎛⎭⎫12-2,所以f ′⎝⎛⎭⎫12=3,所以f ′(1)=2f ′⎝⎛⎭⎫12-2+f (1)=6-2+1=5.所以曲线在点(1,f (1))处的切线方程为y -1=5(x -1),即5x -y -4=0.11.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________.11.答案 y =x 12 021 解析 函数f (x )=ln(1+x ),则f ′(x )=11+x,f ′(0)=1,f (0)=0,∴切线方程为y =x .∴ ln2 022-ln2 021=ln ⎝⎛⎭⎫1+12 021=f ⎝⎛⎭⎫12 021,根据以直代曲,x =12 021也非常接近切点x =0.∴可以将x =12 021代入切线近似代替f ⎝⎛⎭⎫12 021,即f ⎝⎛⎭⎫12 021≈12 021. 12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1412.答案 D 解析 f ′(x )=1+1x ,则f ′(1)=2,故曲线f (x )=x +ln x 在点(1,1)处的切线方程为y -1=2(x-1),即y =2x -1,此切线与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,则切线与坐标轴围成的三角形的面积为12×1×12=14,故选D .13.已知曲线y =133+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.13.解析 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20ꞏx -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.14.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.14.解析 (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +b x 2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6. 15.(2021ꞏ全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.15.解析 (1)由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,Δ≤0,f ′(x )≥0在R 上恒成立,所以f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增, 在⎝ ⎛⎭⎪⎫1-1-3a 3,1+1-3a 3上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增. (2)记曲线y =f (x )过坐标原点的切线为l ,切点为P (x 0,x 30-x 20+ax 0+1).因为f ′(x 0)=3x 20-2x 0+a ,所以切线l 的方程为y -(x 30-x 20+ax 0+1)=(3x 20-2x 0+a )(x -x 0).由l 过坐标原点,得2x 30-x 20-1=0,解得x 0=1,所以切线l 的方程为y =(1+a )x .由⎩⎪⎨⎪⎧y =(1+a )x ,y =x 3-x 2+ax +1解得⎩⎪⎨⎪⎧x =1,y =1+a 或⎩⎪⎨⎪⎧x =-1,y =-1-a . 所以曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,1+a )和(-1,-1-a ). 考点二 求参数的值(范围)【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上.【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.答案 13 解析 f ′(x )=3ax 2+1x ,则f ′(1)=3a +1=2,解得a =13.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .答案 [2,+∞) 解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x ≥24x ꞏ1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). (3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .答案 0 解析 依题意得f ′(x )=a x +3bx 2,于是有⎩⎪⎨⎪⎧ f (1)=-1,f ′(1)=1+10-1,即⎩⎪⎨⎪⎧ b =-1,a +3b =-2,解得⎩⎪⎨⎪⎧a =1,b =-1,2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .32.答案 D 解析 ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D .3.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)3.答案 C 解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验点(1,3),(-1,3)均不在直线y =2x -1上,故选C .4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .4.答案 (-∞,2) 解析 由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x 2,所以a 的取值范围是(-∞,2).5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 . 5.答案 2 解析 f ′(x )=cos x +x ꞏ(-sin x )+a cos x =(1+a )cos x -x sin x ,∴f ′(0)=1+a =3,∴a =2. 6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________. 6.答案 -1 -3 解析 由题意得f ′(x )=3x 2+a ,则由切线方程得⎩⎪⎨⎪⎧f (1)=1+a +b =2×1-5,f ′(1)=3+a =2,解得a = -1,b =-3.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.7.答案 2 解析 f ′(x )=a +3x 2,f ′(1)=a +3,f (1)=a -3,故f (x )的图象在点(1,a -3)处的切线方程为y-(a -3)=(a +3)(x -1),又切线过点(2,4),所以4-(a -3)=a +3,解得a =2.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e8.答案 C 解析 y =e x 的导数为y ′=e x ,则曲线y =e x 在x =0处的切线斜率k =1,则曲线y =e x 在x=0处的切线方程为y -1=x ,即y =x +1.设y =x +1与y =ln x +b 相切的切点为(m ,m +1).又y ′=1x ,则1m =1,解得m =1.所以切点坐标为(1,2),则2=b +ln 1,得b =2.9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 9.答案 1 解析 y ′=e x (ax +1+a ),所以y ′|x =0=1+a ,则曲线y =(ax +1)e x 在(0,1)处的切线方程为y=(1+a )x +1,又切线与x 轴的交点为⎝⎛⎭⎫-12,0,所以0=(1+a )×⎝⎛⎭⎫-12+1,解得a =1. 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .10.答案 -274 解析 设切点坐标为(t ,2t 3+at +a ),∵y ′=6x 2+a ,∴6t 2+a =2t 3+at +a t +1,即4t 3+6t 2=0,解得t =0或t =-32,∵|MA |=|MB |,∴两切线的斜率互为相反数,即2a +6×⎝⎛⎭⎫-322=0,解得a =-274.11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.答案 A 解析 因为曲线C :f (x )=x 3-3x ,所以f ′(x )=3x 2-3.设直线l 与曲线C 相切,且切点的横坐标为x 0,则切线方程为y =(3x 20-3)x -2x 30,所以⎩⎨⎧ 3x 20-3=a ,2x 30=3a ,解得⎩⎨⎧ x 0=3,a =6或⎩⎨⎧ x 0=-32,a =-34,所以a =6是直线l 与曲线C 相切的充分不必要条件,故选A .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.12.解析 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′min =-1,y =53,∴斜率最小的切线过点⎝⎛⎭⎫2,53,斜率k =-1,∴切线方程为y -53=-1×(x -2),即3x +3y -11=0.(2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.13.解析 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1. (2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 14.解析 (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即曲线C 上任意一点处的切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k (k ≠0),则由题意并结合(1)中结论可知⎩⎪⎨⎪⎧ k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1, 则-1≤x 2-4x +3<0或x 2-4x +3≥1,解得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
函数中切线的概念及性质

函数中切线的概念及性质切线是解析几何中的重要概念,用于描述曲线在某一点处的局部特性。
切线与曲线的切点处相切,并且在该点附近近似代表曲线的变化情况。
在数学中,切线经常应用于函数的求导和微分等问题中。
下面我将详细介绍切线的定义、性质以及一些具体的应用。
1. 切线的定义:对于一条曲线C,取其上一点P(x0, y0)。
如果存在一个直线L,使得曲线C与直线L在点P处相切,并且曲线C与直线L在点P处的切线方向与曲线在该点处的切线方向相同,那么直线L就称为曲线C在点P处的切线。
2. 切线的性质:(1)切线与曲线在切点处相切;(2)切线是通过曲线上的一点的一次线性逼近;(3)切线与曲线在切点上切线方向相同。
3. 切线的求法:对于给定的函数y=f(x),我们要求其在点P(x0, y0)处的切线。
有以下步骤:(1)计算函数在点P处的斜率,即求导数f'(x0);(2)使用点斜式方程(y-y0) = f'(x0)(x-x0)得到切线的方程。
4. 切线的几何意义:切线可以近似地描述曲线在某一点的变化情况,即切线的斜率可以表示曲线在该点处的变化速率。
切线还可以与曲线的图像相切,便于我们研究曲线的局部性质。
5. 切线与导数的关系:函数在某一点的导数恰好是函数在该点处的切线的斜率。
因此,求导数的过程实质上是求曲线在各个点处的切线的斜率。
6. 切线的应用:(1)求曲线的近似值:由于切线可以近似替代曲线,所以我们可以通过求解切线的问题来近似地求解曲线的问题。
(2)求函数的变化率:函数在某一点的切线的斜率可以表示函数在该点处的变化率,从而可以帮助我们研究函数的增减性、极值、趋势等问题。
(3)求最优解:对于一些优化问题,我们可以通过研究曲线的切线来找到函数极值的位置,从而得到函数的最优解。
总之,切线是解析几何中的重要概念,用于描述曲线在某一点处的局部特性。
切线的定义、性质以及与导数的关系有助于我们深入理解曲线变化的情况,并在数学、物理等领域中有广泛的应用。
函数切线问题的解法探究

函数切线问题的解法探究一、导数的几何意义对于函数f(x),在其中一点x=a处的导数f'(a)表示函数在该点的切线斜率。
也就是说,如果在点a处存在切线,那么切线的斜率就是函数在该点的导数。
我们知道,切线是曲线在该点附近的一条直线,具有与曲线相切的性质。
通过求函数在其中一点的导数,我们可以得到该点处的切线斜率,从而确定切线的位置。
根据导数的定义公式f'(x) = lim (h→0) [f(x+h) - f(x)]/h,我们可以求得函数在任意一点的导数。
二、切线问题的解决步骤解决函数切线问题的一般步骤如下:1.求函数的导数首先,我们需要求得给定函数f(x)的导数f'(x)。
导数的计算可以通过直接求解导数的定义公式,或者运用导数的性质(如常数因子法则、和法则、差法则、乘积法则、商法则等)来求解。
这一步是解决函数切线问题的关键,因为只有求得导数,才能确定函数在特定点的切线斜率。
2.确定切点找到切线的第一步是确定切点的坐标。
通常,切点的x坐标可以从题目中给出,然后我们可以利用这个值来求出切点的y坐标。
计算切线的切点坐标可以帮助我们更好地理解切线的位置。
3.求切线方程已知切点和切线的斜率,我们可以通过切线的斜截式方程来求出切线的方程。
切线的斜率已经通过导数得到,我们可以用导数的值代入斜截式方程的斜率,再代入切点的坐标,即可得到切线方程。
4.分析问题得到切线方程之后,我们可以通过与给定的函数对比分析切线的性质。
比如,两条曲线在切点处的斜率是否相等,两条曲线在切点处是否相切等问题。
这些问题可以通过切线方程和给定函数的关系来解决。
总之,函数切线问题是高中数学中重要的一部分,它通过导数的几何意义和性质来帮助我们解决函数与曲线的关系问题。
我们需要掌握导数的定义和导数的计算方法,熟练掌握运用导数的性质,才能解决函数切线问题。
2024高中数学切线方程新高考题

2024高中数学切线方程新高考题高中数学切线方程是高中数学中的重要内容之一,也是高考数学考试的重点内容之一。
切线方程的相关知识对于高中数学的学习和高考的考试都具有重要意义。
下面我们将针对2024高中数学切线方程的新高考题进行详细讲解。
在解答这个高中数学切线方程的新高考题之前,我们首先需要了解切线的定义和性质。
在数学中,切线是指与曲线仅有一个公共点,并且在这个点处的切线与曲线相切。
切线方程的求解可以通过求切点和切线斜率来进行。
接下来我们开始解答2024高中数学切线方程的新高考题。
题目如下:已知函数f(x)在点x=3处的切线方程为2x-y+5=0,求f(x)在点x=3处的函数值及切线的斜率。
解题步骤如下:第一步:确定切点坐标根据题目中已知的切线方程2x-y+5=0,可以得到切点的横坐标x=3,将其代入切线方程中,解方程可得切点的纵坐标y的值。
将x=3代入切线方程2x-y+5=0中,得到2*3-y+5=0,化简得到y=11。
因此,切点的坐标为(3,11)。
第二步:求切线的斜率切线的斜率可以通过求导数来得到。
根据切线的定义,切线的斜率等于曲线在切点处的导数值。
已知函数f(x)在点x=3处的切线方程为2x-y+5=0,可以看出切线的斜率为2。
因此,在点x=3处的切线的斜率为2。
第三步:求函数值求函数f(x)在点x=3处的函数值,可以通过将x=3代入函数f(x)的表达式中进行计算。
由于题目中没有给出函数f(x)的具体表达式,我们无法直接求得函数值。
但是我们可以通过已知的切点坐标(3,11)来推断函数的形式。
由切线方程2x-y+5=0可以得到y=2x+5。
因此,我们可以推测函数f(x)的表达式为f(x)=2x+5。
将x=3代入函数f(x)的表达式中,得到f(3)=2*3+5=11。
因此,函数f(x)在点x=3处的函数值为11。
综上所述,根据题目给出的切线方程2x-y+5=0,我们求得了函数f(x)在点x=3处的函数值为11和切线的斜率为2。
(完整版)函数图像的切线问题

函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′(x 0)=g ′(x 0),f (x 0)=g (x 0).若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,Q 点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭Q 直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <Q 3a ∴=- 题型三 公切线问题例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线)例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e 解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae ⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e -=,设()()41xx f x e -=,则()()'42xx fx e -=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e==例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U .答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=-- ()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出K 的值,若不存在,说明理由.思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些. 解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k =----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根. 所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2. 对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0. 于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 综上,m 的取值范围是⎝ ⎛⎭⎪⎫-14,0. 例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14, 故边缘线OC 的方程为y =14x 2(0≤x ≤2), 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ), 即y =12tx -14t 2.由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2,F ⎝⎛⎭⎪⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52, 故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14, 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2). 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ), 即y =12tx -14t 2+1,由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2+1,F ⎝ ⎛⎭⎪⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1, 设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |) =1-14t 2+⎝ ⎛⎭⎪⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52. ∴当t =1时,S (t )=52, 故S (t )的最大值为2.5.此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。
函数图像的切线问题(最新整理)

设切点为 P(x0,y0),利用导数将切线方程表示为 y-f(x0)=f′(x0)(x-x0),再将
A(s,t)代入求出 x0. 2.两个函数图像的公切线
函数 y=f(x)与函数 y=g(x) 存在公切线,
若切点为同一点 P(x0,y0),则有 Error!
若切点分别为(x1,f(x1)),(x2,g(x2)),则有
y
kx
与曲线
y
l8n
x
有公共点,则
k
6
的最大值为
15 5
30
20 10
.
解:根据题8意画出右图,由图可知,当直线和曲线相切时, k 取8 得最大值.
设切点坐标为 x0,
y0
,则
y0
ln
x0
,
y
'
1 x
y ' 1 ,切线方程为
x 10x0
x0
y
ln
x0
1 x0
(x
x0 ) ,原点在切线上,ln
x0
4
A. 1 或 25 64
B. 1 或 21 4
C. 7 或 25 4 64
D. 7 或 7 4
思路:本题两条曲线上的切点均不知道,且曲线 y ax2 15 x 9 含有参数,所以考虑 4
先 从 常 系 数 的 曲 线 y x3入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线
1, x0
e12
斜率的最大值为
1
.
e
例 10.曲线 y ex 在点 2, e2 处的切线与坐标轴所围三角形的面积为( )
A. e2
B. 2e2
C. 4e2
e2
D.
3_切线问题典型剖析

切线问题典型剖析【思维突破】1.按照过一点求切线方程的一般步骤,设切点、求斜率得切线方程、点代入,将切线的条数问题转化为方程解的个数问题;是否存在切线转化为方程有无解的问题.2.有时也可考虑相切为“临界状态”,利用参数的几何意义确定参数的取值范围.【典例分析】例1(2022·全国新高考Ⅰ卷·15)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是___________.【答案】(,4)(0,)-∞-⋃+∞【解析】易知曲线不过原点,故0a ≠设切点为()000,()x x x a e +,则切线的斜率为000()(1)x f x x a e '=++所以切线方程为00000()(1))(x x y x a e x a x e x -++=-+又因为切线过原点,所以00000()(1())x x x a e x a e x +++--=即2000x ax a -=+又因为切线有两条,故上方程有两不等实根所以204a a ∆=+>,解得4a <-0a >所以a 的取值范围是(,4)(0,)-∞-⋃+∞.例2(2022·江苏南京一中学情调研模拟检测·8)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是()A.1ln ,2e ⎛⎫+∞ ⎪⎝⎭B.()1,-+∞C.()1,+∞ D.()2,ln +∞【答案】B【分析】由于2()g x x x a =++中要求0x <,故考虑当=0x 时的公切线所对应的实数a 的值为临界值,当a 增大时,抛物线沿直线1=2x -上移,公切线与2()g x x x a =++相切的切点左移,横坐标减小,故所求大于此时a 的临界值.【解析】先求当=0x 时,曲线2()g x x x a =++的切线方程∵()21g x x '=+,(0)1g '=∴曲线2()g x x x a =++的切线在=0x 处的切线方程为y a x -=,即y x a=+再求当曲线()ln f x x =与直线y x a =+相切时(即直线y x a =+为公切线)a 的值设曲线()ln f x x =与直线y x a =+相切时切点为()00,ln x x 则由导数的几何意义得()0011f x x '==,解得01x =,切点为()1,0将()1,0代入y x a =+得1a =-∵当a 增大时,抛物线2()g x x x a =++沿直线1=2x -上移,公切线与2()g x x x a =++相切的切点左移,横坐标减小,即切点的横坐标小于0∴故所求a 大于此时a 的值,即1a >-.例3(2022·全国甲卷·文20改编)已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线,则实数a 的取值范围是.【答案】[)1,-+∞【分析一】由于2()g x x a =+中a 的几何意义为截距,故只需求出3()f x x x =-、2()g x x a =+相切时a 的值,将2()g x x a =+图象往上平移,即a 增大,即为所求.【分析二】设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【解析一】设公切点为()3000x x x -,则32000200+312x x x a x x ⎧-=⎪⎨-=⎪⎩,解之得011a x =-⎧⎨=⎩或052713a x ⎧=⎪⎪⎨⎪=-⎪⎩(不符合题意,舍去)故a 的取值范围为[)1,-+∞.【解析二】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.例4(2022·江苏南通期末·16)已知函数3()2f x x ax =-,若a ∈R 时,直线(2)y k x =-与曲线()y f x =相切,且满足条件的k 的值有且只有3个,则a 的取值范围为_________.【答案】(0,8)【分析】利用过点(2,0)的曲线的切线有3条,构造函数,借助函数有3个零点求解作答.【解析】由3()2f x x ax =-求导得:2()6f x x a '=-,设直线(2)y k x =-与曲线()y f x =相切的切点为3(,2)t t at -,于是得2()6k f t t a '==-,且32(2)t at k t -=-,则32k t =,显然函数32t 在R 上单调递增,因直线(2)y k x =-与曲线()y f x =相切的k 的值有且只有3个,则有直线(2)y k x =-与曲线()y f x =相切的切点横坐标t 值有且只有3个,即方程2362a t t =-有3个不等实根,令32()26g t t t a =-+,求导得:2()6126(2)g t t t t t '=-=-,当0t <或2t >时,()0g t '>,当02t <<时,()0g t '<,即函数()g t 在(,0)-∞,(2,)+∞上递增,在(0,2)上递减,当0=t 时,()g t 取得极大值(0)=g a ,当2t =时,()g t 取得极小值(2)8g a =-,方程2362a t t =-有3个不等实根,当且仅当函数()g t 有3个不同的零点,因此080a a >⎧⎨-<⎩,解得08a <<,所以a 的取值范围为(0,8).故答案为(0,8).例5若函数2()1f x x =+的图象与曲线C:()21(0)x g x a e a =⋅+>存在公共切线,则实数a 的取值范围为A .220,e ⎛⎤ ⎝⎦B .240,e ⎛⎤ ⎥⎝⎦C .21,e ⎡⎫+∞⎪⎢⎣⎭D .23,e ⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】本道题结合存在公共切线,建立切线方程,结合待定系数法,建立等式,构造新函数,将切线问题转化为交点问题,计算a 的范围,即可.【解析】设函数()f x 的切点为()200,1x x +,该切线斜率02k x =,所以切线方程为20021y x x x =-+,()g x 的切点为()11,21x x ae +,所以切线方程为111`12221x x x y ae x ae x ae =-++,由于该两切线方程为同一方程,利用待定系数法,可得111200122,1221x x x x ae x ae x ae =-+=-+,解得1001,22x x ae x x ==-得到新方程为1122x x ae -=,构造函数()()()2,1x h x e t x x a ==-解得()21x e x a=-,表示()h x 与()t x 存在着共同的交点,而()t x 过定点()1,0,得到()h x 过()1,0的切线方程,设切点为()22,x x e ,则()21x y e x =-,该切点在该直线上,代入,得到()2221x xe e x =-,解得22x =,所以直线斜率为2k e =,要使得()h x 与()t x 存在着交点,则22k e a =≤,结合0a >,所以a 的取值范围为220,e ⎛⎤⎥⎝⎦,故选A .例6(2021·全国Ⅰ卷)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a<B .e b a>C .0e ba <<D .0e ab <<【答案】D【分析】结合已知条件,利用导数的几何意义将问题转化成函数的交点问题,然后通过构造新函数,并求出新函数的单调区间以及最值,利用数形结合的方法即可求解.【解析】设切点()00,x y ,00y >,因为'e x y =,即00'|e x x x y ==,则切线方程为0e ()x y b x a -=-,由()00000e exx y b x a y ⎧-=-⎪⎨=⎪⎩得()00e 1x x a b -+=,则由题意知,关于0x 的方程()00e 1x x a b -+=有两个不同的解.设()()e 1xf x x a =-+,则()e (1)e e ()x x x f x x a x a '=-+-=--,由()0f x '=得x a =,所以当x a <时,()0f x '>,()f x 在(,)a -∞上单调递增;当x a >时,()0f x '<,()f x 在()a +∞上单调递减,所以()f x 的最大值为()f a =()e 1e 0a aa a -+=>,当x a <时,0a x ->,所以()0f x >,当x →-∞时,()0f x →;当x →+∞时,()f x →-∞,故()f x的图像如下图所示:故0e a b <<.故选:D .【巩固训练】1.过定点()1,P e 作曲线()0xy ae a =>的切线,恰有2条,则实数a 的取值范围是______.2.若函数()ln f x x =与函数2()2(0)g x x x a x =++<有公切线,则实数a 的取值范围是()A .1(ln,)2e+∞B .(1,)-+∞C .(1,)+∞D .(ln 2,)-+∞3.若存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最大值是()AB .2eC.D .24.若过点()1,P m 可以作三条直线与曲线:xC y xe =相切,则m 的取值范围是()A .25,0e ⎛⎫-⎪⎝⎭B .25,e e ⎛⎫-⎪⎝⎭C .()0,∞+D .231,ee ⎛⎫-- ⎪⎝⎭5.已知函数2()f x ax =,()g x lnx =,若曲线()y f x =与()y g x =有两条公切线,则实数a 的取值范围是.6.若曲线21C y x =:与曲线2(0)xe C y a a=>:存在公共切线,则实数a 的取值范围为.7.已知函数32()31f x x x =+-,若过点(1,)P m 可作曲线()y f x =的三条切线,则实数m 的取值范围是.8.已知函数3()f x x ax =+,若过点(1,1)P 只有一条直线与曲线()y f x =相切,则实数a 的取值范围是.【答案或提示】1.【答案】()1,+∞【分析】设切点为00(,)x x ae ,利用导数几何意义求得切线方程为00(1)x y ae x x =-+,由题意知00(2)x e a e x =-在02x ≠上有两个不同解,构造()(2)x eg x e x =-且2x ≠,利用导数研究单调性及值域,进而确定a 的范围.【解析】由x y ae '=,若切点为00(,)x x ae ,则00x y k ae '==>,∴切线方程为00(1)xy ae x x =-+,又()1,P e 在切线上,∴00(2)xae x e -=,即00(2)x ea e x =-在02x ≠上有两个不同解,令()(2)x e g x e x =-,即原问题转化为()g x 与y a =有两个交点,而2(1)()(2)x e x g x e x -'=-,(1)当2x >时,()0g x '>,()g x 递增,且lim ()0x g x -→+∞→,(2)当21x >>时,()0g x '>,()g x 递增;当1x <时,()0g x '<,()g x 递减;∴()()11g x g ≥=,又lim ()x g x →-∞→+∞,12x <<时()0>g x 且2lim ()x g x -→→+∞,∴要使00(2)x ea e x =-在02x ≠上有两个不同解,即()1,a ∈+∞.故答案为:()1,+∞点评:作为填空题,本着“小题小做”的策略,只需先求出点()1,P e 在曲线()0xy ae a =>上时a 的值为1a =,此时,过点()1,P e 曲线的切线洽有一条,从形上看,当a 增大时,切线就有两条,故答案为1a >.2.【答案】A【解析】设公切线与函数()ln f x x =切于点111(ln )(0)A x x x >,,则切线方程为1111ln ()-=-y x x x x ;设公切线与函数2()2g x x x a =++切于点22222(2)(0)B x x x a x ,++<,则切线方程为22222(2)2(1)()y x x a x x x -++=+-,所以有2121212(1)ln 1x x x x a⎧=+⎪⎨⎪-=-+⎩,∵210x x <<,∴1102x <<.又2211111111ln 11ln 2124a x x x x ⎛⎫⎛⎫=+--=-+-- ⎪ ⎪⎝⎭⎝⎭,令11t x =,∴2102ln 4t a t t t ,<<=--.设21()ln (02)4h t t t t t =--<<,则211(1)3()1022t h t t t t--=--'=<,∴()h t 在(0,2)上为减函数,则1()(2)ln 21ln 2h t h e >=--=,∴1ln2a e ⎛⎫∈+∞ ⎪⎝⎭,故选A .3.【答案】C【解析】存在实数,a b ,使不等式212ln 2e x ax b x e ≤+≤+对一切正数x 都成立,要求a 的最大值,临界条件即为直线y ax b =+恰为函数21()=2ln ,()2f x e xg x x e =+的公切线.设()=2ln f x e x 的切点为111(,)(0)x y x >,122()=,e e f x a x x '∴=.设21()2g x x e =+的切点为222(,)(0)x y x >,2()g x x a x '=∴=,,所以21212=,2ea x x x e x =∴=.由题得21221212112ln 22,2ln 30e x x ee a x x x x x --==∴+-=-.设111212()2ln 3(0)eh x x x x =+->,所以211331112424()x e e h x x x x -'=-=,所以函数11212()2ln 3eh x x x =+-在上单调递减,在)+∞单调递增.又22ln 3=1+23=0eh e=--,当1x →+∞时,11212()2ln 30eh x x x =+->,所以方程另外一个零点一定大于.,所以max a==.故选:C.4.【答案】A【解析】设切点为()00,M x y ,∵e xy x =,∴()1e xy x '=+,∴M 处的切线斜率()001e xk x =+,则过点P 的切线方程为()()00001e e x xy x x x x =+-+,代入点P 的坐标,化简得()02001e xm x x =-++,∵过点()1,P m 可以作三条直线与曲线:e xC y x =相切,∴方程()02001e xm x x =-++有三个不等实根.令()()21e xf x x x =-++,求导得到()()22e xf x x x '=--+,可知()f x 在(),2-∞-上单调递减,在()2,1-上单调递增,在()1,+¥上单调递减,如图所示,故()20f m -<<,即250e m -<<.故选:A.5.【答案】1(2e,)+∞【解析一】根据二次函数和代数函数的性质得:当()()f x g x >时,曲线()y f x =与()y g x =有两条公切线,即2ax lnx >在(0,)+∞上恒成立,即2lnxa x >在(0,)+∞上恒成立,设2()lnx h x x =,312()lnx h x x -'=,令312()0lnxh x x -'==,x =即12max h h e ==,因此,12a e>,【解析二】取两个函数相切的临界条件:2000012ax lnx ax x⎧=⎪⎨=⎪⎩,解得0x =12a e =,由此可知,若两条曲线具有两条公切线时,12a e>,故a 的取值范围是1(2e,)+∞.6.【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭【提示】取对数转化为曲线2ln y x =与直线ln y x a =-有交点,临界状态是相切.7.【答案】()5,3-【解答】设切点为0(x ,32031)x x +-切线斜率为:2000()36k f x x x '==+∴切线方程为:3220000(31)(36)()y x x x x x x -+-=+-①又切线过点(1,)P m ,带入①化简为:300261m x x =-+-令y m =与3000()261h x x x =-+-(1)5h -=-,h (1)3=,(0)1h =-;200()66h x x '=-+,令01()01h x x '=⇒=-,21x =;0()h x 在(,1)-∞-,(1,)+∞单调递减,(1,1)-上单调递增;过点(1,)P m 可作曲线()y f x =的三条切线,即存在三个0x ,也即是y m =与()h x 有三个交点.故如图所知:53m -<<.118.【答案】()(),01,-∞⋃+∞【解析】设过点(1,1)P 的直线与曲线()y f x =相切于点0(x ,0)y ,则3000y x ax =+,且切线斜率为200()3f x x a '=+,所以切线方程为2000(3)()y y x a x x -=+-.因此3200001()(3)(1)x ax x a x -+=+-,整理得32002310x x a -+-=.设32()231g x x x a =-+-,则“过点(1,1)P 只有一条直线与曲线()y f x =相切”等价于“()g x 只有一个零点”.2()666(1)g x x x x x '=-=-.当x 变化时,()g x 与()g x '的变化情况如下:x(,0)-∞0(0,1)1(1,)+∞()f x '+0-0+()f x 1a - a - 所以,(0)1g a =-是()g x 的极大值,g (1)a =-是()g x 的极小值.当()g x 只有一个零点时,有(0)10g a =-<或g (1)0a =->,解得1a >或0a <.因此当过点(1,1)P 只有一条直线与曲线()y f x =相切时,a 的取值范围是1a >或0a <.。
切线分析及应用

切线分析及应用切线是数学中一个重要的概念,它在解析几何、微积分以及物理学等领域都有广泛的应用。
切线分析可以帮助我们更好地理解曲线的性质和行为,并且可以在实际问题中提供有用的信息和解决途径。
本文将围绕切线的定义、性质、应用以及解决实际问题的方法进行探讨。
首先,我们来回顾一下切线的定义。
给定一个函数f(x),如果存在一点(x0, f(x0)),使得函数图像在该点处的切线通过该点且与函数图像在该点处的斜率相同,那么这条通过点(x0, f(x0))的直线就是函数f(x)在该点处的切线。
切线的斜率等于函数在该点处的导数。
切线的性质也是我们学习切线分析的基础。
首先,切线与函数图像相切于该点,意味着切线与函数曲线在该点处有且仅有一个公共点。
其次,切线在该点处与函数曲线的切点以及切线的斜率都能够提供关于函数在该点的信息。
通过切线的斜率,我们可以判断函数在该点的增减性以及函数的导数值。
通过切线与函数曲线的切点的坐标,我们可以得到函数在该点的函数值。
因此,切线不仅提供了函数在某点的局部行为的信息,还能够提供关于函数图像的整体信息。
接下来,我们来看一下切线的应用。
在几何学中,切线可以用于求解曲线与曲线之间的位置关系。
例如,给定两条曲线的方程,我们可以通过求解两条曲线的切线方程,来判断两条曲线在某点是否相切、相交或者相离。
在物理学中,切线被广泛地应用于描述物体运动的速度和加速度。
例如,在直角坐标系中,如果一个物体的位置随时间变化可以由一个函数f(x)描述,那么物体的速度可以通过求导数f'(x)得到。
物体在某时刻的瞬时速度可以通过绘制曲线f(x)在该点的切线,求解切线斜率来获得。
同样地,物体在某时刻的加速度可以通过二阶导数f''(x)求解。
利用切线的性质,我们可以得到物体在不同时刻的速度和加速度的变化规律。
切线的应用还可以延伸到其他领域。
在工程学中,我们可以利用切线来分析物体的结构强度和刚度。
通过绘制载荷-变形曲线,并求解曲线上某点的切线斜率,我们可以得到物体在该点的应力和应变。
新高考视角下的导数新授课:切线问题专题研究

新高考背景下的切线问题研究一.基本原理1. 用导数的几何意义求曲线的切线方程的方法步骤: ①求出切点00(,())x f x 的坐标;②求出函数()y f x =在点0x 处的导数0()f x ' ③得切线方程00()()()y f x f x x x '-=- 2. 求过点A 处切线方程方法如下:设切点为00(,)P x y ,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,∵过点(,)A m n ,∴000()()n y f x m x '-=-然后解出0x 的值,0x 有几个值,就有几条切线. 3.若函数)(x f y =的图象在点),(11y x A 处的切线与函数)(x g y =的图象在点),(22y x B 处的切线相同(公切线),则等价于)(x f 的图象在点A 处的切线:))(()(11'1x x x f x f y -=-与)(x g 的图象在点B 处的切线:))(()(22'2x x x g x g y -=-重合.进一步等价于下列方程组有解:⎪⎩⎪⎨⎧⋅-=⋅-=)()()()()()(2'221'112'1'x g x x g x f x x f x g x f . 4.若动点C 为函数)(x f y =图象上任一点,直线l 与)(x f y =图象相离,则C 到l 距离的最小值为函数)(x f y =图象在点C 处的切线与l 平行时产生,故此时最小距离即为切点到直线l 的距离.5.切线不等式求解双参数恒成立问题,分离性常见的两个不等式:(1)与xe 有关:0,1≥+≥x x e x;0,≥≥x ex e x.(2)与x ln 有关:0,ln 1>≥-x x x几何解释:凸函数的图象上切线总在图象的下方;几何解释:凹函数的切线总在的上方; 可以看到,分离性是导数中切线放缩的理论依据. 二.典例分析例1.已知直线21y x =-与曲线ln(3)y x t =+相切,则实数t 的值为__________. 解析:依题意,设切点坐标为00(,ln(3))x x t +,由ln(3)y x t =+求导得:33y x t'=+,于是得000323ln(3)21x t x t x ⎧=⎪+⎨⎪+=-⎩,即00332321ln 2x t x ⎧+=⎪⎪⎨⎪=+⎪⎩,解得:33ln 22t =-,所以实数t 的值为33ln 22-. 故答案为:33ln 22-例2.(2021新高考1卷)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<解析:在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线xy e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==, 由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D. 例3.(2022新高考1卷)若曲线()e =+x y x a 有两条过坐标原点的切线,则a 的取值范围是____________.解析:易得曲线不过原点,设切点为()000,()e +x x x a ,则切线斜率为:000'()(1)e =++x f x x a .可得切线方程为00000()e (1)e ()-+=++-x x y x a x a x x ,又切线过原点,可得00000()e (1)e -+=-++x x x a x x a ,化简得0020=-+a ax x ,又切线有两条,即方程有两不等实根,由判别式042>+=∆a a ,得4<-a ,或0>a .例4.若过点()(),0a b a >可以作曲线e x y x =的三条切线,则() A .0e b a b << B .e 0a a b -<<C .20e 4a b <<+D .()24e 0a b -+<<解析:由题可得()1e xy x '=+,设切点()00,ex x x ,则()00000e 1e x x x bx x a-+=-,整理得()0200e x xax a b --=-,由题意知关于0x 的方程()0200e x x ax a b --=-有三个不同的解,设()()2e x f x x ax a =--,()()()2e x x x f x a '=+-,由0fx ,得2x =-或x a =,又0a >,所以当2x <-时,0f x,()f x 单调递增,当2x a -<<时,0fx,()f x 单调递减,当x a >时0f x,()f x 单调递增,当x →-∞时()0f x →,当x →+∞时,()f x →+∞,且()242eaf +-=,()e 0a f a a =-<,函数()f x 的大致图像如图所示,因为()f x 的图像与直线y b =-有三个交点,所以240ea b +<-<,即()24e 0a b -+<<. 故选:D.例5.(2022浙江卷)设函数()ln (0)2ef x x x x=+>. (1)求()f x 的单调区间;(2)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-)(a 1(1)2ae<-;解析:证明:设经过点(,)a b 的直线与函数()f x 的图象相切时切点坐标为000(,)2ex lnx x +, 则切线方程为0000:()()2yl lnx f x x x x -='-,2001()2e f x x x '=-+,∴切线l的方程为020001()102e ex y lnx x x x -+-++-=, 020001()102e ea b lnx x x x ∴-+-++-=, 令21()()12e eg x a b lnx x x x=-+-+++-,(0)x >, 曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b , ∴函数()g x 有三个不同的零点,322311()()()()e e x e x a g x a x x x x x --'=--+=, a e >,x e ∴<,或x a >时,()0g x '>,()g x 单调递增,e x a <<时,()0g x '<,()g x 单调递减,从而()g x g =极大值)(e 0>,()g x g =极小值)(a 0<,∴102a b e -+>①,且02e lna b a+-<②, 由②得b f -)(a 02e b lna a =-->,由①有12ab e<+, b f -)(a 2e b lna a =--,∴要证明b f -)(a 1(1)2ae<-, 只需证明11(1)222a e a lna e a e +--<-,即322e lna a +>, 令h )(a 2e lna a =+,则2212()022e a eh a a a a -'=-=>,h ∴(a )在 ()e,+∞上单调递增, h ∴)(a h >)(e 32=,b f ∴-)(a 1(1)2a e <-,综上,若a e >,则0b f <-)(a 1(1)2ae<-. 例6.若曲线与曲线存在公切线,则的最值情况为( )A .最大值为B .最大值为C .最小值为D .最小值为解析:设公切线与曲线1C 切于点()211,x x,与曲线2C切于点()22,x x ae,由''2xy x y ae⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e-=,设()()41xx f x e-=,则()()'42xx fx e-=,可知()f x 在()1,2单调递21x y C =:xae y C =:2a 28e 24e 28e 24e增,在()2,+∞单调递减,所以()max 242a f e ==例7.(2015年新课标卷)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a =_______ 解析:'11y x=+,所以'1|2x y ==,切线方程为()12121y x y x -=-⇒=-,联立方程()22212021y x ax ax y ax a x =-⎧⎪⇒++=⎨=+++⎪⎩,从而由相切可得:2808a a a ∆=-=⇒= 例8.已知函数1()e ln x f x x -=+,则过点(,)a b 恰能作曲线()y f x =的两条切线的充分条件可以是( ) A .211b a =-> B .211b a =-< C .21()a b f a -<<D .211b a <--由1()e ln x f x x -=+,得11()e (0)x f x x x-'=+>,设切点为0100(,e ln )x x x -+,则切线的斜率为0101e x k x -=+,所以有00110001e ln e ()x x x b x a x --⎛⎫+-=+- ⎪⎝⎭,整理得010000e (1)ln 10(0)x ax a x b x x ----++-=>,由题意可知此方程有且恰有两个解, 令1()e (1)ln 1(0)x a g x x a x b x x -=---++->,11(1)e (11)ln11121a g ab b a -=---++-=+-,112211()e ()()e (0)x x a g x x a x a x x x x --⎛⎫'=--+=--> ⎪⎝⎭,令121()e (0)x F x x x -=->,则132()e 0(0)x F x x x-'=+>>,所以()F x 在(0,)+∞上递增,因为11(1)e 10F -=-=, 所以当01x <<时,()0<F x ,当1x >时,()0F x >, ①当1211a -<-<,即01a <<时,当0x a <<时,()0g x '>,则()g x 递增,当1<<a x 时,()0g x '<,则()g x 递减,当1x >时,()0g x '>,则()g x 递增, 所以只要()0g a =或(1)0g =,即1e ln ()a b a f a -=+=或21(1,1)b a =-∈-;②当211a -≤-,即0a ≤时,当01x <<时,()0g x '<,则()g x 递减,当1x >时,()0g x '>,则()g x 递增,所以只要(1)0<g ,即21b a <-,而211a -≤-;③当211a ->,即1a >时,当01x <<时,()0g x '>,则()g x 递增,当1x a <<时,()0g x '<,则()g x 递减,当x a >时,()0g x '>,则()g x 递增, 当x a =时,1()e ln a g a b a -=--,所以只要(1)0g =或()0g a =,由(1)0g =,得211b a =->,由()0g a =得1e ln ()a b a f a -=+=; ④当1a =时,121()(1)e 0x g x x x -⎛⎫'=--> ⎪⎝⎭,所以()g x 在(0,)+∞上递增,所以函数至多有一个零点,不合题意;综上:0a ≤时,211b a <-≤-;01a <<时,1e ln ()a b a f a -=+=或21(1,1)b a =-∈-;1a >时,211b a =->或1e ln ()a b a f a -=+=,故A 正确,B 错误,C 错误,D 正确.故选:AD.例9.已知函数()ln a xf x b x =+在1x =处的切线方程为220x y --=.(1)求()f x 的解析式;(2)求函数()f x 图象上的点到直线230x y -+=的距离的最小值.解析:(1)∵函数()ln a xf x b x =+,∴()f x 的定义域为()0,∞+,()()21ln a x f x x-'=, ∴()f x 在1x =处切线的斜率为()12k f a '===,由切线方程可知切点为()1,0,而切点也在函数()f x 图象上,解得0b =,∴()f x 的解析式为()2ln xf x x=; (2)由于直线220x y --=与直线230x y -+=平行,直线220x y --=与函数()2ln x f x x=在()1,0处相切,所以切点()1,0到直线230x y -+=的距离最小,最小值为d =故函数()f x 图象上的点到直线230x y -+=例11.设点P 在曲线2()2ln f x x x =-上,Q 在直线32y x =-上,则PQ 的最小值=________. 解析:函数2()2ln f x x x =-的定义域为(0,)+∞,求导得1()4f x x x'=-,当曲线在点P 处的切线与直线32y x =-平行时,PQ 最小,最小值为切线与直线之间的距离,即切点到直线的距离.设(,)P m n ,由导数的几何意义,可得143m m -=,解得11,4m m ==-(舍去),故切点为(1,2)P ,点P 到直线32y x =-的距离d ==,所以PQ例10.若直线y ax b =+和()ln f x x =的图象相切,则a b +的最小值为________. 解析:解法1:设y ax b =+和()f x 的图象相切于点()()000,ln 0P x x x >, 因为()1f x x'=,所以()f x 的图象在点P 处的切线方程为()0001ln y x x x x -=-,即001ln 1y x x x =+-,从而01a x =,0ln 1b x =-,所以001ln 1a b x x +=+-, 设()()1ln 10x x x x ϕ=+->,则()22111x x x x xϕ-=-+=',所以()01x x ϕ'>⇔>, ()001x x ϕ'<⇔<<,故()x ϕ在()0,1上,在()1,+∞上,从而()()min 01x ϕϕ==,所以a b +的最小值为0.解法2:如图,a b +表示切线y ax b =+上横坐标为1的点的纵坐标,易得()f x 在1x =处的切线方程为1y x =-,对于这条切线,()110a b +=+-=,而对于其它切线,显然切线上横坐标为1的点M 必在x 轴的上方,所以0a b +>,故a b +的最小值为0.下面把上述问题一般化到恒成立,其实可以看到临界条件还是相切时产生. 例11.已知直线y kx b =+是曲线x y e x =+的一条切线,则k b +的最大值是________. 解析:设切点为(),a a e a +,()1x x e x e +=+',所以切线方程为()()()1a a y e a e x a -+=+-,整理得:()()11a a x y e a e ++--,所以1a k e =+,()1a b a e =-,从而()21a k b a e +=-+,设()()()21a f a a e a =-+∈R ,则()()1a f a a e '=-,所以()01f a a '>⇔<,()01f a a '<⇔>,从而()f a 在(1),-∞上,在(1,,)+∞上,故()()max 11f a f e ==+,即k b +的最大值为1e +.例12.已知函数()ln f x x =,2()1g x ax bx =++,其中,a b ∈R .(1)当0a =时,直线()y g x =与函数()y f x =的图象相切,求b 的值; (2)当0a ≠时,若对任意0x >,都有()()f x g x ≤恒成立,求ba的最小值.解析:()()f x g x ≤恒成立,转化为ln 1ax b x x≤-+对任意0x >恒成立,即等价于 )]([1ln a b x a x x --≤-,故只需使得a b -最大即可,即函数xx x h 1ln )(-=的切线横截距最大,那么当e x =时取得,故ba的最小值为e -.。
切线问题的解题技巧

切线问题的解题技巧
切线问题是高中圆锥曲线考试中常见的问题之一,通常需要一定的技巧和方法来解决。
以下是一些解决切线问题的常用技巧:
1. 利用三角形面积公式和椭圆切线方程的关系,可以快速求出椭圆上点的横坐标或纵坐标。
2. 利用椭圆的焦点三角形面积公式和椭圆的离心率的关系,可以快速求出椭圆上点的横坐标或纵坐标。
3. 利用椭圆的中点弦公式和椭圆的切线斜率的关系,可以快速求出椭圆上点的横坐标或纵坐标。
4. 利用抛物线的焦点弦公式和抛物线的切线斜率的关系,可以快速求出抛物线上点的横坐标或纵坐标。
5. 利用圆锥曲线的基本性质,例如离心率、截距、中点弦等,可以方便地求解圆锥曲线上的点。
6. 对于一些复杂的切线问题,可以利用仿射变换的方法将其转化为简单的问题,从而方便求解。
以上是解决切线问题的常用技巧,在高中圆锥曲线考试中,考生需要熟练掌握这些技巧,并能够灵活运用来解决各种切线问题。
同时,考生还需要具备扎实的数学基础知识和较强的思维能力,才能更好地应对高中圆锥曲线考试。
函数图像切线问题“大盘点”

61转化为图ba3.filial)4。
时,屮^b - ab > a > 0,62 - 4ac W 0.2020年第10期中学数学研究函数图像切线问题“大盘点”问题转化为已知[f > a > °,求叩+。
的I 戻-4ac W 0, b _ a最小值.记z = a +b+c ,这类似于线性规划中的问题.b - a我们知道,高中阶段所学的线性规划只涉及两个变量,这里有三个变量,想法减少变量.考虑到条件[]>a>0,和目标函数z = a :b + c 的结构特1沪-4ac W 0 b _ a点,对条件中上式和目标函数的分子分母分别除以a ,对条件中的下式同除以/.问题又转化为:在约束条件'—> l,a > 0,‘ a 2下,求目标函数转化为z =(―)-4—^0a ac+ —i —的最小值•令2 =力,£ = y,则问题转a aM= 1 +斗,表达式斗相当于X - 1 X - 1满足约束条件中的点M(X ,y)到定点A(l, -2)的 斜率% = 斗.于是把问题转化成在约束条件下的X - 1斜率问题,就可以借鉴线性规划的思想解决问题.条件I / > x,如图1阴影部分所示,当过点L 2 - 4y W 04(1, - 2)的动直线与曲线/二4y (久> 1)相切时,直线斜率% = £最小.1设过点A(l, -2)的直线\y + 2 = ^(% - 1)即 y = kx -仏+ 2),代入方程尤$ = 4y(%> 1),整理得%彳-4kx +4仏+ 2) = 0,4 二 16斥—16仏 +2)二 16仏-2)仏 + 1)二 0,由于力> 0,此时%二2,即斜率% = Z 半最小值为2.所以目标函数zX - 11 +% : y 最小值为3.即原问题所求的最小值是3.% - 1取得最小值是3.当然,本题转化后,还可以利用基本不等式求 解.由[兀>1'知 4y %2 (^X > 1),Z = 1 +lx 2 - 4y W 0y + 2 1 久彳 + 8 1 ( i 9 c 、rn^1+4(ITTy = 1+T^-1+^TT +2)M3,取等号条件是% = 4.所以a + c 最小值为b - a 综上所见,本题解题过程是依据给定的条件和要解决的问题,运用等价转化、换元、化归等数学思 想方法,把有关约束条件和目标函数用逻辑关系恰 当地表示出来,再借鉴规划思想求目标函数的最优值•我们在教学中适当向学生加以介绍,不仅可很好地激发学生思维灵活性和创造性、提升学生解题能力,还能使学生体会到知识迁移的美妙、问题化归的 魅力.江苏省;;栗水高级中学导数的几何意义就是曲线在该点处切线的斜率.用导数的几何意义研究曲线切线的有关问题是 导数最基本的应用,也是近年高考的一个热点.本文(211200) 方金宝以2019年的高考试题为例进行剖析,力求揭示此类试题的考查形式,探索它们的求解策略.题型一:求切线方程下,求目标函数zx 一 4y W 0并且进一步可求出,当6化为:在约束条件亠尹最小值.X - 1• 62 •中学数学研究2020年第10期例1(2019年全国I 卷理科13题)曲线y =3(/ +%)『在点(0,0)处的切线方程为________.解:y ,= 3 (2% + 1 )e * + 3 (/ + %)e * =3(/ +3% + l)e\/.曲线在点(0,0)处切线的斜率% = 3,■■-切线方程为y = 3%.A解:当直线力+y = 0平移到与曲线y = x + —x相切位置时,切点Q 即为点P 到直线力+y =0的距离最小点,此时Q 点到直线% +y = 0的距离即为点4P 到直线x+y = 0的距离的最小值.由y' =1-4x=-1,得% =Q(-Q 舍),y =3Q,即切点 Q(Q,3Q) Q 到x+y = 0的距离为匹兰仝亘 =4,712 + I 2.•.点P 到直线x+y = 0的距离的最小值是4.点评:很多曲线上的动点到直线距离的最值问题都可以用数形结合思想,把它转化为切线切点到 直线的距离,当然本题也可以使用公式法结合基本不等式来处理.题型四公切线证明例6 (2019年全国D 卷理科20题)已知函数(1)讨论函数/(%)的单调性,并证明函数/(%)有且只有两个零点;例2 (2019年江苏卷11题)在平面直角坐标系xOy 中,点4在曲线y = lru;上,且该曲线在点4处 的切线2经过点(-e, -l)(e 为自然对数的底数), 则点A 的坐标是_________•解:设点 A(x 0,y 0),则 y 0 = lnx 0.又y' = 当%=Xg 时,y'=丄,点4在曲线y = In%上的切线为y兀0-y 0 =丄仏 ~*x o),即 y -In^o = —-1,代入点(-e, 兀0兀0_ 1),得- 1 - \nx G = 一- _ 1,即 %o lru;o = e.兀o考查函数 H(x) = xlnx,当% e (0,1)时,7/(%)<0;当 % e (1, +OQ )时,H(%) >0,且 H\x) = In%+ 1,当%〉1时,有H f (x)〉0,从而刃(先)单调递增,注意到H(e)二e,故%。
新课标高中数学人教A版选择性必修第一二三册疑难突破〖求曲线的切线〗

求曲线的切线讲解1.曲线f()在点P(0,f(0))处的切线方程:(1)点(0,f(0))为切点;(2)切线斜率=f′(0);(3)切线方程为-f(0)=f′(0)(-0).2.曲线f()过点P(0,f(0))的切线方程:(1)该点可能是切点,也可能不是切点;(2)如果点P不是切点,则切线可能不止一条,切线条数与切点个数有关;(3)求切线方程的一般步骤:①设出切点(1,f(1));②求出函数=f()在点(1,f(1))处的导数f′(1);③写出切线方程:-f(1)=f′(1)(-1),将(0,f(0))代入,求得1;④将1代入切线方程,化简得切线方程.3.注意:(1)直线与曲线C有唯一公共点时,直线不一定是曲线的切线,如图中的直线1.(2)当直线与曲线C有不止一个公共点时,直线也可能是曲线C的切线,如图中的直线2,N是切点.例题 已知曲线=31433x +.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.思路点拨(1)先求出=31433x +的导函数′,再将=2代入′求得切线的斜率,最后求切线方程;(2)先求出切点坐标,再求切线方程.解析 (1)由题意得,()33014143333lim x x x x y x∆→⎛⎫+∆+-+ ⎪⎝⎭'∆= ()()232013lim x x x x x x x ∆→⋅∆+∆+∆∆=()22201lim 3x x x x x x ∆→⎡⎤+⋅∆+∆⎢⎥⎣⎦==. ∵点P (2,4)在曲线=31433x +上,∴在点P (2,4)处的切线斜率为′|=2=22=4,∴曲线在点P (2,4)处的切线方程为-4=4(-2),即4--4=0.(2)设曲线=31433x +与过点P (2,4)的切线相切于点3001433A x x ⎛⎫+ ⎪⎝⎭,,则切线的斜率为020x x y x '==,∴切线方程为()320001433y x x x x ⎛⎫-+- ⎪⎝⎭=, 即23002433y x x x ⋅-+=, ∵点P (2,4)在切线上,2300244233x x -+∴=, 即3200340x x -+=,∴322000440x x x +-+=, 即20x (0+1)-4(0+1)(0-1)=0,∴(0+1)(0-2)2=0,解得0=-1或0=2,故所求的切线方程为-+2=0或4--4=0.易错警示求过点(0,0)的切线方程,如果点在已知曲线上,容易认为该点就是切点进行求解而造成失误.求曲线的切线方程.首先要区分是“在某点”还是“过某点”.如果是“过某点”,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图像切线问题的解答
一、高考考点分析
函数图像的切线问题,是高考的高频考点,从2014年到2018年,每年都有切线的考题出现。
虽然题目的难度不大,但在新课教学或者练习中,有关切线的问题,却似乎是一个难啃的骨头,正确率总是不高。
问题的关键是没有弄清楚题目背后的知识,及解答问题的思维方法。
二、问题解决
(一)知识准备及思想方法
函数图像切线问题,考查的是导数的几何意义,及直线的方程,还有方程(组)的数学思想方法。
首先是导数的几何意义。
导数的几何意义为:曲线()f x 在点00(,)P x y 处切线的斜率等于函数()f x 在0x 处的导数值0'()f x ,即0'()k f x =(简记)。
这样就有了切线的斜率,还有切点00(,)P x y 。
如果是未知,就有符号表示出来。
其次,在必修2直线一章,我们学习了五种形式的直线方程,但其实,最常用的就是点斜式方程,即00()y y k x x -=-。
在解决函数切线问题中,也常用这个形式的方程。
最后,我们思考解决问题,要有方程的思想(求什么,设什么,列关于什么的方程)。
在这里多啰嗦一下,大家不要认为只有出现数字才能解答题目,出现了符号就束手无措了,在出现符号时,要根据题目做处理,哪些看成已知,哪些看成未知——也就是符号的思想。
(二)解答流程
1、斜率:0'()k f x =求解或列方程;
2、切点:00()y y k x x -=-(或斜率坐标公式)或00()y f x =求解或列方程。
三、高考试题展示
1、(2018年1卷,6)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()
y f x =在点()00,处的切线方程为( )
A .2y x =-
B .y x =-
C .2y x =
D .y x =
分析:()f x 为奇函数,由特值法(1)(1)f f -=-得1a =,
3()f x x x ∴=+。
求导,得2'()31f x x =+,∴斜率'(0)1k f ==,又 切点为()00,,由点斜式,得切线方程为
y x =。
2、(2018年2卷,13)曲线2ln y x =在点(1,0)处的切线方程为__________.
答案:22y x =-
3、(2018年3卷,21题第1问)已知函数21()e x
ax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程。
分析:函数解析式中有字母,害怕符号的考生,肯定是见光死,哪里还知道此题不过是纸老虎一只,仍是熟悉的味道熟悉的配方!!!。
按照方法,先求导,得2(21)2()e
x ax a x f x -+-+'=,从而斜率k =(0)2f '=(与符号a 完全没有关系,有没有!!!)。
再由点斜式,得曲线()y f x =在点(0,1)-处的切线方程是210x y --=.
4、(2018年3卷@理科,14)曲线(1)x
y ax e =+在点()01,处的切线的斜率为2-,则a =________.
分析:这不是2014年1卷(文)切线试题的翻版吗?由'(0)2k f ==-,即可得3a =-。
5、(2017年1卷,14)曲线21y x x =+
在点(1,2)处的切线方程为_________________________.
答案:10x y -+=
6、(2016年3卷,16)已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程式_______________________。
分析:根据偶函数图像关于y 轴对称,先求出曲线()y f x =在点(1,2)-处的切线斜率。
0x ≤时,求导得1'()1x f x e --=--,∴ 曲线在点(1,2)-处的切线斜率为'(1)2f -=-,从而曲线在点点(1,2)处的切线斜率2k =,切线方程为2y x =。
7、(2015年1卷,14)已知函数()31f x ax x =++的图像在点()()
1,1f 的处的切线过点()2,7,则 a = .
分析:切点为(1,2)a +,求导得2'()31f x ax =+,则切线斜率'(1)31k f a ==+,再由斜率坐标公式,27512
a k a +-==--,315a a ∴+=-,1a ∴=。
8、(2015年2卷,16)已知曲线ln y x x =+在点()1,1 处的切线与曲线
()221y ax a x =+++ 相切,则a = .
分析:曲线ln y x x =+在点()1,1 处的切线方程为21y x =-,再与二次函数联立方程组,由判别式∆=0,得8a =(舍去0a =,0a =是直线啊,有听过直线与直线相切的吗!!!)。
此题特别容易出现增根。
9、(2014年1卷,21)设函数()()21ln 12a f x a x x bx a -=+
-≠,曲线()()()11y f x f =在点,处的切线斜率为0。
(1)求b ; 分析:求导可得:'()(1)a f x a x b x
=+--,从而斜率'(1)0f =,即可得1b =。
10、(2014年2卷,21)已知函数32()32f x x x ax =-++,曲线()y
f x =在点(0,2)
处的切线与x 轴交点的横坐标为2-.(1)求a ; 分析:解法与上面第4题一样。
x 轴交点的横坐标为2-,即交点坐标为(2,0)-,求导
得2'()36f x x x a =-+, 从而斜率20'(0)10(2)
k f a -====--。
三、解题的思考
做完上面10道高考题,是否觉得函数切线的高考题都是孪生的?不同的题目,相同的套路——理解清楚考点,和解答题目的思维方法,就可轻松拿下此类题目!
很多参考书上,或者教学时,会把切线的题目分为很多类型。
其实大可不必理会,我们按照上面的解答流程来,就可以了。
下面看一道套路似乎不同的题目:
11、(2017年广州一模)设函数()32f x x ax =+,若曲线()=y f x 在点()()00,P x f x 处的切线方程为0+=x y ,则点P 的坐标为( )
(A) ()0,0 (B) ()1,1- (C) ()1,1- (D) ()1,1-或()1,1-
分析:咋一看,此题跟上面高考题不一样。
也确实有点不一样,上面的高考题含有的未知量(符号、变量)不多,一般就是1个;这道题目一共有3个变量,解析式有1个,a 切点坐标中有两个(横、纵坐标)。
不过解答的套路还是那个套路,没有变。
既然这么多变量,我们需用方程的方法。
含有3个未知量,我们需要列出3个方程。
如下:求导,得
2'()32f x x ax =+,则2000'()321k f x x ax ==+=-(由斜率得到第1个方程),将切
点00(,)x y 代入曲线和切线中,得32000y x ax =+和00y x =-(由切点得到第2、3个方程),
然后联立方程组,可得。
答案:D 。
当然,此题是选择题,可由选项代入检验排除。
方程(组)的方法,会助力我们解题题目。