关于高等数学方法与典型例题归纳

合集下载

高等数学微积分学习方法及联系题汇总

高等数学微积分学习方法及联系题汇总

01:函数概念五要素,定义关系最核心。

02:分段函数分段点,左右运算要先行。

03:变限积分是函数,遇到之后先求导。

04:奇偶函数常遇到,对称性质不可忘。

05:单调增加与减少,先算导数正与负。

06:正反函数连续用,最后只留原变量。

07:一步不行接力棒,最终处理见分晓。

08:极限为零无穷小,乘有限仍无穷小。

09:幂指函数最复杂,指数对数一起上。

10:待定极限七类型,分层处理洛必达。

11:数列极限洛必达,必须转化连续型。

12:数列极限逢绝境,转化积分见光明。

13:无穷大比无穷大,最高阶项除上下。

14:n项相加先合并,不行估计上下界。

15:变量替换第一宝,由繁化简常找它。

16:递推数列求极限,单调有界要先证,两边极限一起上,方程之中把值找。

17:函数为零要论证,介值定理定乾坤。

18:切线斜率是导数,法线斜率负倒数。

19:可导可微互等价,它们都比连续强。

20:有理函数要运算,最简分式要先行。

21:高次三角要运算,降次处理先开路。

22;导数为零欲论证,罗尔定理负重任。

23:函数之差化导数,拉氏定理显神通。

24:导数函数合(组合)为零,辅助函数用罗尔。

25:寻找ξη无约束,柯西拉氏先后上。

26:寻找ξη有约束,两个区间用拉氏。

27:端点、驻点、非导点,函数值中定最值。

28:凸凹切线在上下,凸凹转化在拐点。

29:数字不等式难证,函数不等式先行。

30:第一换元经常用,微分公式要背透。

31:第二换元去根号,规范模式可依靠。

32:分部积分难变易,弄清u 、v 是关键。

33:变限积分双变量,先求偏导后求导。

加日志标题 34:定积分化重积分,广阔天地有作为。

35;微分方程要规范,变换,求导,函数反。

36:多元复合求偏导,锁链公式不可忘。

37:多元隐函求偏导,交叉偏导加负号。

38:多重积分的计算,累次积分是关键。

39:交换积分的顺序,先要化为重积分。

40:无穷级数不神秘,部分和后求极限。

41:正项级数判别法,比较、比值和根值。

大一高等数学知识点及例题讲解

大一高等数学知识点及例题讲解

大一高等数学知识点及例题讲解大一高等数学是大学数学课程体系中的核心部分,是数学的基础平台与突破口。

它旨在帮助学生建立数学思维模式,提高逻辑思维能力,为后续的数学学习打下坚实的基础。

本文将介绍大一高等数学的一些重要知识点,并附上相应的例题讲解,以帮助读者更好地掌握这门课程。

一、导数与微分导数是描述函数变化率的工具,它可以衡量函数曲线在某一点的切线斜率。

微分是导数的基本概念,它将函数的自变量变化量与因变量变化量之间的关系联系起来。

例题:求函数f(x) = 2x^2 - 3x + 1在点x = 2处的导数和微分。

解析:首先,求导函数f'(x):f'(x) = 4x - 3代入x = 2,得到导数f'(2) = 4 × 2 - 3 = 5接下来,求微分df(x):df(x) = f'(x)dx代入x = 2,dx = 0.1(假设)得到df(2) = 5 × 0.1 = 0.5二、极限与连续极限是研究函数在无限接近某一点的情况下的行为。

连续是指函数在定义域上没有断点或间断。

例题:计算极限lim(x→0) (1 - cosx) / x解析:将极限表达式化简后得到:li m(x→0) (1 - cosx) / x = lim(x→0) (sinx) / x由于 sinx / x 是一个已知的极限形式,即lim(x→0) sinx / x = 1所以,lim(x→0) (1 - cosx) / x = 1三、积分与微积分基本定理积分是求函数在一定区间上的面积或曲线的长度。

微积分基本定理则是导数与积分之间的关系。

例题:求函数f(x) = 2x在区间[1, 3]上的定积分。

解析:根据积分的定义,定积分可以表示为:∫[1,3] 2x dx = [x^2]1^3 = 9 - 1 = 8根据微积分基本定理,定积分可以通过原函数的求导来计算。

函数f(x) = x^2的原函数为F(x) = x^3 / 3,所以:∫[1,3] 2x dx = F(3) - F(1) = (3^3 / 3) - (1^3 / 3) = 9 - 1 = 8四、级数与收敛性级数是按照一定的规律对无穷个数进行求和的表达式。

(完整word版)高等数学经典方法与典型例题归纳

(完整word版)高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试2014年山东专升本暑期精讲班核心讲义高职高专类高等数学经典方法及典型例题归纳—经管类专业:会计学、工商管理、国际经济与贸易、电子商务—理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程2013年5月17日星期五曲天尧编写一、求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

数学归纳法经典例题及答案

数学归纳法经典例题及答案

数学归纳法经典例题及答案数学归纳法是解决数学问题中常用的一种证明方法,它基于两个基本步骤:证明基准情况和证明归纳假设,通过这两个步骤逐步推导证明,从而得到结论。

下面将介绍一些经典的数学归纳法例题及其答案。

例题一:证明1 + 2 + 3 + ... + n = n(n+1)/2,其中n∈N(自然数)。

解答:首先,我们先验证这个等式在n=1时是否成立。

当n=1时,左边等式为1,右边等式为1(1+1)/2=1,两边相等,因此基准情况成立。

其次,我们假设对于任意的k∈N,当n=k时等式成立,即1+2+3+...+k=k(k+1)/2。

接下来,我们需要证明当n=k+1时等式也成立。

根据归纳假设,我们已经知道1+2+3+...+k=k(k+1)/2,现在我们要证明1+2+3+...+k+(k+1)=(k+1)(k+2)/2。

将左边等式的前k项代入归纳假设得到:(k(k+1)/2)+(k+1)=(k+1)(k/2+1)= (k+1)(k+2)/2。

所以,当n=k+1时,等式也成立。

根据数学归纳法的原理,我们可以得出结论,对于任意的n∈N,都有1+2+3+...+n=n(n+1)/2。

例题二:证明2^n > n,其中n∈N,n>1。

解答:首先,我们验证这个不等式在n=2时是否成立。

当n=2时,左边等式为2^2=4,右边等式为2,显然不等式成立。

其次,我们假设对于任意的k∈N,当n=k时不等式成立,即2^k > k。

接下来,我们需要证明当n=k+1时不等式也成立。

根据归纳假设,我们已经知道2^k > k,现在我们要证明2^(k+1) > k+1。

我们可以将左边等式进行展开得到:2^(k+1) = 2^k * 2。

由归纳假设可知,2^k > k,所以2^(k+1) = 2^k * 2 > k * 2。

我们可以观察到当k>2时,k * 2 > k + 1,当k=2时,k * 2 = k + 1。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。

本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。

I. 无穷小量法无穷小量法是求解极限最常见的方法之一。

它的基本思想是将待求极限转化为无穷小量之间的比较。

下面通过一个例题来说明这个方法。

例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。

根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。

因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。

故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。

下面通过一个例题来说明夹逼法的思想。

例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。

然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。

也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。

根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。

故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。

下面通过一个例题来说明泰勒展开法的应用。

例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。

高等数学求极限的常用方法附例题和详解

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法一、极限的定义1、极限的保号性很重要:设A x f x x =→)(lim 0,(i)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2、极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限与0x x →的极限。

要特别注意判定极限就是否存在在:(i)数列{}的充要条件收敛于a n x 就是它的所有子数列均收敛于a 。

常用的就是其推论,即“一个数列收敛于a 的充要条件就是其奇子列与偶子列都收敛于a ”(ii)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v)两边夹挤准则(夹逼定理/夹逼原理)(vi)柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件就是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1、等价无穷小代换。

只能在乘除..时候使用。

例题略。

2、洛必达(L’ho spital)法则(大题目有时候会有暗示要您使用这个方法)它的使用有严格的使用前提。

首先必须就是X 趋近,而不就是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然就是趋近于正无穷的,不可能就是负无穷。

其次,必须就是函数的导数要存在,假如告诉f(x)、g(x),没告诉就是否可导,不可直接用洛必达法则。

另外,必须就是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况:(i)“00”“∞∞”时候直接用 (ii)“∞•0”“∞-∞”,应为无穷大与无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

(完整word)高等数学:常微分方程的基础知识和典型例题

(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。

本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。

一、直接代入法直接代入法是求极限的最基本方法之一。

当函数在某一点连续时,可以直接将该点代入函数中来求极限。

例题1:求函数f(x) = x^2在x=2处的极限。

解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。

因此,f(x)在x=2处的极限为4。

二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。

它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。

例题2:求极限lim(x→∞) [(x+1)/x]。

解:我们可以用夹逼法来求解这个极限。

首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。

因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。

根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。

三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。

该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。

例题3:求极限lim(x→0) (sinx/x)。

解:我们可以利用极限的四则运算法则来求解这个极限。

首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。

根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

初等数学求极限的14种办法之邯郸勺丸创作一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f .2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限.要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a.经常使用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a”(ii )A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim )()((iii)A x x x x A x f x x =→=→⇔=→+-limlimlim)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握).极限)(lim 0x f x x →存在的充分需要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的办法如下:1.等价无穷小代换.只能在乘除时候使用.例题略.2.洛必达(L’hospital)法例(大题目有时候会有暗示要你使用这个办法)它的使用有严格的使用前提.首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不成能是负无穷.其次,必须是函数的导数要存在,假如告知f (x )、g (x ),没告知是否可导,不成直接用洛必达法例.另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不克不及为0.洛必达法例分为3种情况:(i )“00”“∞∞”时候直接用(ii)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了.通项之后,就能酿成(i)中的形式了.即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;)()(1)(1)(1)()(x g x f x f x g x g x f -=-(iii)“00”“∞1”“0∞”对于幂指函数,办法主要是取指数还取对数的办法,即e x f x g x g x f )(ln )()()(=,这样就能把幂上的函数移下来了,酿成“∞•0”型未定式.3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)12)!1(!!21+++++++=n xn xx n e n x x x e θ;cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m mm x m x m x x x θ ln (1+x )=x-11132)1)(1()1()1(32++-++-+-+-+n n nnn x n x n x x x θ (1+x)u =1112)1(!2)1(1+--+++++-++n n u n u n n u x x C x C x u u ux θ 以上公式对题目简化有很好帮忙4.两多项式相除:设均不为零m n b a ,,P (x )=0111a x a x a x a n n n n ++++-- ,0111)(b x b x b x b x Q m m m m ++++=--(i)⎪⎪⎪⎩⎪⎪⎪⎨⎧>∞<==∞→)(,)(,0)(,)()(lim m n m n n m b a x Q x P x n n(ii )若0)(0≠x Q ,则)()()()(00limx Q x P x Q x P x x =→ 5.无穷小与有界函数的处理办法.例题略.面对庞杂函数时候,尤其是正余弦的庞杂函数与其他函数相乘的时候,一定要注意这个办法.面对很是庞杂的函数可能只需要知道它的规模结果就出来了.6.夹逼定理:主要是应用于数列极限,常应用放缩和扩大不等式的技巧.以下面几个题目为例:(1)设0>>>c b a ,n n n n n c b a x ++=,求n n x lim ∞→解:由于a a a a a x a n n n n n ==<<∞→∞→)3(,,3lim lim 以及,由夹逼定理可知a xnn =∞→lim(2)求⎥⎦⎤⎢⎣⎡++++∞→222)2(1)1(11lim n n nn解:由nn n n n n n 1111)2(1)1(110222222=+++<++++<,以及010limlim==∞→∞→nn n 可知,原式=0 (3)求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解:由nn nn n n n n n n n n n nnn+=+++++<++++++<=++222222111121111111 ,以及11111limlimlim 2=+=+=∞→∞→∞→nnn n n n n 得,原式=17.数列极限中等比等差数列公式应用(等比数列的公比q 绝对值要小于1).例如:求()12321lim -∞→++++n n nx x x )1|(|<x .提示:先利用错位相减得办法对括号内的式子求和.8.数列极限中各项的拆分相加(可以使用待定系数法来拆分化简数列).例如:⎪⎪⎭⎫ ⎝⎛+++⨯+⨯∞→)1(1321211lim n n n =1)1(11)1(113121211lim lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+-++-+-∞→∞→n n n n n 1+n x x x 与极限相同求极限.例如:(1)已知nn a a a 12,211+==+,且已知n n a lim ∞→存在,求该极限值.解:设n n a lim ∞→=A,(显然A 0>)则AA 12+=,即0122=--A A ,解得结果并舍去负值得A=1+2(2)利用单调有界的性质.利用这种办法时一定要先证明单调性和有界性.例如设n n n n x x x x x lim ,2,,22,2121∞→-+=+==求解:(i )显然221<<x x (ii )假设,21<<-k k x x 则22221+<+<+-k k x x ,即21<<+k k x x .所以,{}n x 是单调递增数列,且有上界,收敛.设A n =∞→lim ,(显然)0>A 则A A +=2,即022=--A A 2lim =∞→n n x10.两个重要极限的应用.(i )1sin lim 0=→xx x 经常使用语含三角函数的“00” 型未定式(ii)()e x xx =+→101lim ,在“∞1”型未定式中经常使用11.还有个很是便利的办法就是当趋近于无穷大时候不合函数趋近于无穷的速度是不一样的,n n 快于n !,n !快于指数型函数n b (b为常数),指数函数快于幂函数,幂函数快于对数函数.当x 趋近无穷的时候,它们比值的极限就可一眼看出.12.换元法.这是一种技巧,对一道题目而言,不一定就只需要换元,但是换元会夹杂其中.例如:求极限xx x 2sin 2arccos limπ-→.解:设t t x t x x t sin )2cos(,00,2arccos -=+=→→-=ππ且时,则.原式=21sin 222arccos 22arccos 2sin 2limlimlim 0-=-=-=-→→→t t xx xx xxt x x ππ13.利用定积分求数列极限.例如:求极限⎪⎭⎫⎝⎛++++++∞→n n n n n 12111lim .由于ninin +=+111,所以2ln 11111111211121lim lim ==⎪⎪⎪⎪⎭⎫⎝⎛+++=⎪⎭⎫⎝⎛++++++⎰∞→∞→x n n n n n n n n n n14.利用导数的定义求“00”型未定式极限.一般都是x →0时候,份子上是“)()(a f x a f -+”的形式,看见了这种形式要注意记得利用导数的定义.(当题目中告知你m '=)(a f 告知函数在具体某一点的导数值时,基本上就是暗示一定要用导数定义)例:设)(,0)('a f a f >存在,求()nn a f n a f ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→1lim解:原式=()n a f a f n a f a f na f a f n nn a f a f n a f a f a f n a f )()()1()()1()()()()1(1)(11lim lim-+⨯-+∞→∞→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=)()(')(11)()1(lim a f a f a f na f na fee=-+。

高中数学解题方法归纳与经典例题解析(PDF版)

高中数学解题方法归纳与经典例题解析(PDF版)

ACB D41A CB D41α6043ACBDOxy高中数学解题方法归纳与经典例题解析解法一:直接运算法(数量积公式、向量的加法)CDAB AC AB CD AC AB AD AB ⋅+⋅=+⋅=⋅)(60cos ||||4360cos ||||43CB AB AC AB CB AB AC AB +=⋅+⋅=142144432144=⨯⨯⨯+⨯⨯.解法二:三角函数法(余弦定理法)由余弦定理,得13213423460cos 222222=⨯⨯⨯-+=⋅⋅-+= CD AC CD AC AD 13=⇒AD 132713421)13(42cos 222222=⨯⨯-+=⋅-+=AD AB BD AD AB α141327134cos ||||=⨯⨯==⋅∴αAD AB AD AB .解法三:建立坐标系法取BC 的中点为O ,建立平面直角坐标系xOy 如图所示:)32,0(A ,)0,2(-B ,)0,1(-D )32,2(--=AB ,)32,1(--=AD 1432()32()1(22121=-⨯-+-⨯-=+=⋅⇒y y x x AD AB .◆◇方法解读◇◆解法一:直接运算法是解决此类题型最常规的方法之一,应用此方法要求熟悉向量的基本运算法则,掌握平行四边形法则和三角形法则,只有基本功扎实了,才能如鱼得水。

解法二:三角函数法是利用正弦定理、余弦定理、面积公式以及射影定理等公式结合向量运算规律求解,综合性较强,要求熟悉掌握解三角形的有关知识。

在一定程度上也是解题不错的方法。

解法三:建立坐标系法是解决此题的一大亮点,通过建立平面直角坐标系使问题转化为向量的坐标运算,很大程度上减少了运算过程和难度,是同学们应当理解并掌握的解题方法。

解法一:函数图像法323442==a ,524=b 由x y 4=的图像与性质知:ba >⇒>⇒>5232445232①323442==a ,3231525==c 由)1(>=a a y x 的图像与性质知:a 值越大函数图像越靠近y 轴a c >⇒>⇒323245②综上所述,得b a c >>.解法二:与特殊值比较法b a b a >>⇒⎪⎭⎪⎬⎫=<===>=222242225554523334①()c a c a c a <⇒<<⇒⎪⎭⎪⎬⎫=<==<=22225222313313334②综上所述,得b a c >>.解法三:假设法(反证法)①假设b a >,则126151552153452342424242=>⇒⎪⎪⎭⎫ ⎝⎛>⎪⎪⎭⎫ ⎝⎛⇒>,假设成立ba >∴②假设c a >,则251625225225243313343134>⇒>⇒⎪⎪⎭⎫⎝⎛>⎪⎪⎭⎫ ⎝⎛⇒>,假设不成立ca <∴综上所述,得b ac >>.◆◇方法解读◇◆解法一:函数图像法是解决比较大小题型的常用方法之一,此类题型一般都考察我们对指数函数、对数函数及幂函数的图像和性质的理解及掌握情况,因此要求同学们一定要熟悉掌握基本初等函数的有关图像与性质,做到融会贯通,灵活应用。

高等数学极限求解方法(共7篇)

高等数学极限求解方法(共7篇)

高等数学极限求解方法(共7篇)以下是网友分享的关于高等数学极限求解方法的资料7篇,希望对您有所帮助,就爱阅读感谢您的支持。

高等数学求极限的方法篇1对于求解极限的方法可以归结为以下几类: (1)常用等价无穷小记住以下常用等价无穷小-例1 求极限limx →0x (1-cos x ) 【解】原式=x →0 =x →0=x →01==x →02例2 求下列极限1+cos x 2x() -1x (I)w =lim (II ) w =limx →0x →0ln(1+2x 3)4(2)等价无穷小的性质定理:有限个无穷小的代数和仍为无穷小. 定理:有界函数与无穷小的乘积是无穷小. 推论:常数与无穷小的乘积是无穷小. 推论:有限个无穷小的乘积也是无穷小.1【解】lim =0 , lim sin 为有界量,∴原式=0x →0x →0x【注】本题也可以利用常用的等价无穷小公式.(3)常用的极限sin x x sin x x lim =lim =1 lim =0 lim 极限不存在x →0x →0x →∞x →∞x sin x x sin x11x ln(1+x )lim(1+) =lim(1+x ) x =e lim =1x →∞x →0x →0x xlim =1 lim =1n →∞n →∞11例4 求w=lim(+2x ) xx →∞x(4)极限存在的两个准则(1)夹逼准则如果数列{x n },{y n }及{z n }满足下列条件:(1)y n ≤x n ≤z n (n =1, 2,3,...) ;(2)li m y n =lim z n =a , 那么数列{x n }的极限存在,且lim x n =a .n →∞n →∞n →∞(2)单调有界准则单调有界数列必有极限.(5)极限的定义(6)洛必达法则【解】(7)变量替换11方法2 w =lim(+2x ) x =e A ,而x →∞x01t1(t +2-1) x =1/t 0A =lim(+2x -1) −−−→lim −−→lim(1+2t ln 2) =1+l n 2, x →∞x t →0t →0t 故w =e 1+ln 2=2e(8)泰勒公式高等数学中极限的求解方法篇2龙源期刊网高等数学中极限的求解方法作者:曲波来源:《速读下旬》2014年第05期摘要:本文介绍了利用两个重要极限、无穷小量代换、洛比达法则、等求极限的方法,并结合具体的例子,指出了在解题过程中常遇见的一些问题。

高中数学21种解题方法及例题

高中数学21种解题方法及例题

高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。

掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。

本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。

【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。

2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。

3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。

【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。

5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。

6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。

【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。

8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。

9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。

【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。

11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。

12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。

【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。

14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)

⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。

常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。

只能在乘除..时候使⽤。

例题略。

2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。

⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。

另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。

其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。

本文将介绍求极限的常用方法,并提供相应的例题和详解。

一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。

具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。

2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。

3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。

则可以得到 lim[f(x)] = lim[g(x)] = A。

下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。

解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。

则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。

二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。

具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。

其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。

高等数学基本知识点及例题(第2学期)

高等数学基本知识点及例题(第2学期)

高等数学基本知识点及例题一、导数与积分公式表导数公式:12221()0,(ln )(),()ln ()(tan )sec ,(cot )csc (sec )sec tan ,(csc )csc cot 11(arcsin )(arctan )1a a x x x x C x xx ax a a a e e x x x x x x x x x xx x x -''=='''===''==-''=⋅=-⋅''==+,基本积分表:12222d (1),d ,d ,1ln 1d 1d ln ,ln 2sin d cos ,cos d sin ,sec d tan ,csc d cot tan d ln cos ,cot d ln sin d arcsin ,a x axx xx a x x C a a x C e x e C a a x a xx x C Cx a a x a x x x x C x x x C x x x C x x x C x x x C x x x C xxC a +=+≠-=+=+++=+=+--=-+=+=+=-+=-+=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰221arctan xC a a a x =++⎰重要定积分公式:2(21)!!,(2)!!sin (21)!!(2)!!2d nn nis odd n x x n n is even n ππ-⎧⎪⎪=⎨-⎪⎪⎩⎰,第一单元 空间解析几何与向量代数1.空间直角坐标系设1111(,,)M x y z 和2222(,,)M x y z 为空间两点,则两点间的距离: d 使12M M MM λ=的分点M 的坐标为: 121212,,111x x y y z z x y z λλλλλλ+++===+++. 2.向量的模、方向余弦、单位向量向量(,,)x y z a a a a =的模: 2x a a a =+向量(,,)x yz a a a a=的方向余弦: cos a αβ==222cos cos cos cos 1γαβγ=++=且.与a 同方向的单位向量: 0(cos ,cos ,cos )aa aαβγ==. 例1 设1(2,3,5)F =-,2(5,1,3)F =-,3(1,2,4)F =-.这三个力作用于点(1,1,1)P ,它们的合力为F=PQ ,求:(1)点Q 的坐标.(2)PQ 的大小.(3)PQ 的方向余弦. 解:(1)123(251,312,534)(2,2,2)F F F F =++=-++--++=-.设点Q 的坐标为(),,x y z ,则12,12,12x y z -=--=-=,故点Q 的坐标为()1,3,3-. (2)||23PQ =(3)cos cos αβγ===3.数量积、向量积、混合积、向量的投影数量积: cos ||Pr ||Pr a x x y y z z b a b a b a j b b j a a b a b a b θ⋅=⋅===++,是一个数量.向量积: ,sin xy z x y zij k c a b a a a c a b b b b θ=⨯==⋅表示以,a b 为邻边的平行四边形面积.混合积: []()[][]xy zxy z x yza a a abc abc b b b bca cab c c c =⨯⋅=== 向量的投影: Pr a a bj b a ⋅=. 两向量之间的夹角: cos a b a b a b θ++=例2 设(2,1,1),(1,3,1)a b =-=-,求与b a、均垂直的单位向量.解: 211(2,3,7)131i j ka b ⨯=-=--,与b a 、均垂直的单位向量为12,3,7)||37e a b c a b ⨯=±=±-⨯. 例3 设向量(2,3,1)(1,2,3)(2,1,2)a b c =-=-=、、,向量d 与b a,均垂直,且在向量.14d c,求向量上的投影是解:()7(1,1,1)d a b λλ=⨯=--,7Pr (1,1,1)(2,1,2)14||3c c jd d c λ=⋅=--⋅=,得6λ=-, 于是42(1,1,1)d =---.例 4 设3a b +与75a b -垂直, 4a b -与72a b -垂直,求a 与b 之间的夹角. 解: 由3a b +与75a b -垂直,有(3)(75)0a b a b +⋅-=,即2716150a a b b +⋅-=, 又由4a b -与72a b -垂直,有(4)(72)0a b a b -⋅-=,即273080a a b b -⋅+=.两式联立,可得22,2b a b a a b =⋅=⋅,从而a b =,所以1cos 2a b a bθ⋅==,即3πθ=.4.平面方程0000000()()()0{,,},(,,)A x x B y y C z z n A B C M x y z -+-+-==点法式:,其中0Ax By Cz D +++=一般方程:截距式方程:1y x z a b c++= 例5 求过点(1,0,1)-且平行于向量(2,1,0),(1,1,1)a b ==-的平面方程.解:取平面的法向量210(1,2,3)111i j kn a b =⨯==---,又平面过点(1,0,1)-,故所求平面方程为(1)23(1)0x y z ---+=,即2340x y z ---=.例6 求过直线L :5040,x y z x z ++=⎧⎨-+=⎩且与平面π:48120x y z --+=成4π角的平面方程.解:过L 的平面束方程为5(4)0,x y z x z λ+++-+=即:(1)5(1)40,x y z λλλ+++-+=其法向量{1,5,1}n λλ=+-,又{1,4,8}n π=--11cos4n n n n π⋅==,34λ=-.所求平面为:207120x y z ++-=.5.空间直线方程对称式:000x x y y z z m n p---==,{,,}s m n p = 参数式:000x x mty y nt z z pt=+⎧⎪=+⎨⎪=+⎩一般式: 1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩例7 求过点(2,4,0)且与直线1210:320x z L y z +-=⎧⎨--=⎩平行的直线L 的方程.解:直线1L 的方向向量为1102(2,3,1)013i j ks ==--,由于L 与1L 平行,可取直线L 的方向向量1(2,3,1)s s ==-,又直线L 过点(2,4,0),故所求直线L 的方程为24231x y z--==-. 6.空间曲线的投影一般方程:(,,)0(,,)0,F x y zG x y z =⎧⎨=⎩消去,,x y z 得在三个坐标面上的投影曲线(注:需联立坐标面方程,如0z =).例8 求曲线222221(1)(1)1,x y x y z ⎧+=⎪⎨+-+-=⎪⎩在yoz 面上的投影曲线.解:消去x 得投影柱面方程:22220z z y --+=,故曲线在yoz 面上的投影曲线为:222200z z y x ⎧--+=⎨=⎩. 例9.求上半锥面z (01z ≤≤)在三个坐标面上的投影区域. 解:投影区域分别为:xoy 面:221x y +≤;xoz 面:,01z x z z -≤≤≤≤ yoz 面:,0 1.z y z z -≤≤≤≤7.常见二次曲面方程球面:如2222x y z a ++=; 椭球面:2222221y x z a b c++=; 圆柱面:如222x y a +=;圆锥面:如222z x y =+;抛物面:如22()z a x y =+单叶双曲面:2222221y x z a b c +-=(a b =时为旋转面);双叶双曲面: 2222221y x z a b c-+=-(a c =时为旋转面);双曲抛物面:如22;z x y z xy =-=例10 xoz 面上的直线1x z =-绕z 轴旋转而成的圆锥面的方程是 . (C)(A)221x y z +=- (B)2221x y z ++= (C)222(1)x y z +=- (D)222(1)x y z +=+.第二单元:多元函数微分法及应用1. 多元函数连续、可微与偏导数存在之间的关系连续可微两个偏导数存在例1函数(,)f x y 在点00,)x y (处连续是函数(,)f x y 在点00,)x y (处的两个偏导数存在的( D )条件。

大学高等数学 第三章典型例题及小结

大学高等数学  第三章典型例题及小结
有且仅有一个小于1 的 例1. 证明方程 正实根 . 证: 1) 存在性 . 5 设 f ( x) x 5 x 1, 则 f (x) 在 [0 , 1 ] 连续 , 且 由零点定理知存在 x0 (0 ,1) , 使
f ( x0 ) 0, 即方程有小于 1 的正根
2) 唯一性 .
f (x) 在以 x0 , x1 为端点的区间满足罗尔定理条件 , 在 x0 , x1 之间
证明 e x (ax 2 bx c ) 0 至多有三个实根 证 记
f ( x ) e x (ax2 bx c )
直接证明有困难,采用反证法
设 f ( x ) 0 有四个实根 x1 x2 x3 x4
记 f ( x ) e (ax bx c ) 连续、可导 对 f ( x ) 在[ x1 , x2 ],[ x2 , x3 ],[ x3 , x4 ] 用罗尔定理得
x ln(1 x) x ( x 0) . 例3. 证明不等式 1 x 证: 设 f (t ) ln(1 t ) ,
中值定理条件, 因此应有

因为

例4. 设
至少存在一点 证: 结论可变形为 使
证明
设 F ( x) x 2 , 则 f ( x) , F ( x) 在 [0, 1] 上满足柯西中值 定理条件, 因此在 ( 0 , 1 ) 内至少存在一点 , 使
x
lim
x2 x
2
x 1
lim
x
1 1 1 1 2

思考: 如何求 lim
2
arctan n
1 n
n
( n 为正整数) ?
例3. 求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于高等数学方法与典型例题归纳Company number:【0089WT-8898YT-W8CCB-BUUT-202108】2014年山东省普通高等教育专升本考试2014年山东专升本暑期精讲班核心讲义高职高专类高等数学经典方法及典型例题归纳—经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程2013年5月17日星期五 曲天尧 编写一、求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

主要考第二个重要极限。

例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X1+,最后凑指数部分。

【解】2221212112111lim 121lim 11lim e x x x x x x x xx x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫⎝⎛-++∞→xx a x a x ,求a 。

5.用等价无穷小量代换求极限【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -,()abx ax x x b~11,21~cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。

例7:求极限0ln(1)lim1cos x x x x →+=-【解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.例8:求极限x xx x 30tan sin lim -→【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→x x x x x x x x x x6.用洛必达法则求极限例9:求极限220)sin 1ln(2cos ln lim x x x x +-→【说明】∞∞或0型的极限,可通过罗必塔法则来求。

【解】220)sin 1ln(2cos ln lim x x x x +-→x x xx x x 2sin 12sin 2cos 2sin 2lim 20+--=→ 【注】许多变动上显的积分表示的极限,常用洛必达法则求解例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x【解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xxxx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f7.用对数恒等式求)()(lim x g x f 极限例11:极限xx x 20)]1ln(1[lim ++→【解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lime eexx xx x x ==+++→→【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -因为例12:求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解1】 原式2cos ln 331limx x x ex +⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x →+⎛⎫ ⎪⎝⎭= 【解2】 原式2cos ln 331limx x x ex +⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭= 8.利用Taylor 公式求极限例13 求极限 ) 0 ( ,2lim 20>-+-→a xa a x x x . 【解】 ) (ln 2ln 1222ln x a x a x ea ax x +++==,) (ln 2ln 1222x a x a x ax++-=-;∴ a x x a x x a a x x x x 22222020ln ) (ln lim 2lim=+=-+→-→ . 例14 求极限011lim (cot )x x x x→-.【解】 00111sin cos lim (cot )lim sin x x x x x x x x x x x→→--= 333011()()12!3!lim 3x x x x ο→-+==.9.数列极限转化成函数极限求解例15:极限21sin lim n n n n ⎪⎭⎫ ⎝⎛∞→【说明】这是∞1形式的的数列极限,由于数列极限不能使用洛必达法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。

【解】考虑辅助极限611sin 11011sin 222lim lim 1sin lim -⎪⎪⎭⎫ ⎝⎛-→⎪⎭⎫ ⎝⎛-+∞→+∞→===⎪⎭⎫ ⎝⎛+e eex x y y y y x x x x x x所以,6121sin lim -∞→=⎪⎭⎫ ⎝⎛e n n n n10.n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法(1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n 【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。

⎰=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→10)(211lim dx x f n n f n f n f n n 【解】原式=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+∞→222112111111lim n n n n n n 例17:极限⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 【说明】(1)该题遇上一题类似,但是不能凑成⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→n n f n f n f n n 211lim 的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。

【解】⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 因为11211122222+≤++++++≤+n n nn n n nn n又 nn nn +∞→2lim11lim2=+=∞→n n n所以 ⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim =1 11.单调有界数列的极限问题例18:设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即lim 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 61sin 01sin 110032221lim lim sin 1lim --→⎪⎭⎫⎝⎛-→→===⎪⎭⎫ ⎝⎛+++e ee x x xx x x x x x x xx (使用了洛必达法则)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭. 二、常见不定积分的求解方法的讨论0. 引言不定积分是《高等数学》中的一个重要内容,它是定积分、广义积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础,要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是常见不定积分的解法。

相关文档
最新文档