基于74LS192的任意进制计数器的设计
任意进制计数器的设计
任意进制计数器的设计【摘要】计数器集成芯片一般有4位二进制、8位二进制或十进制计数器,而在实际应用中,往往需要设计一个任意n进制计数器,本文给出它的设计方法和案例。
【关键词】计数器;清零一、利用反馈清零法获得计数器1 集成计数器清零方式异步清零方式:与计数脉冲cp无关,只要异步清零端出现清零信号,计数器立即被清零。
此类计数器有同步十进制加法计数器ct74ls160、同步4位二进制加法计数器ct74ls161、同步十进制加/减计数器ct74ls192、同步4位二进制加/减计数器ct74ls193等。
同步清零方式:与计数脉冲cp有关,同步清零端获得清零信号后,计数器并不立刻被清零,只是为清零创造条件,还需要再输入一个计数脉冲cp,计数器才被清零。
属于此类计数器有同步十进制加法计数器ct74ls162、同步4位二进制加法计数器ct74ls163、同步十进制加/减计数器ct74ls190、同步4位二进制加/减计数器ct74ls191等。
2 反馈清零法对于异步清零方式:应在输入第n个计数脉冲cp后,利用计数器状态sn进行译码产生清零信号加到异步清零端上,立刻使计数器清零,即实现了n计数器。
在计数器的有效循环中不包括状态sn,所以状态sn只在极短的瞬间出现称为过渡状态。
对于同步清零方式:应在输入第n-1个计数脉冲cp后,利用计数器状态sn-1进行译码产生清零信号,在输入第n个计数脉冲cp 时,计数器才被清零,回到初始零状态,从而实现n计数器。
可见同步清零没有过渡状态。
利用计数器的清零功能构成n计数器时,并行数据输入端可接任意数据,其方法如下:①写出n计数器状态的二进制代码。
异步清零方式利用状态sn,同步清零方式利用状态sn-1。
②写出反馈清零函数。
③画逻辑图。
例1 试用ct74ls160的异步清零功能构成六进制计数器。
解:①写出sn的二进制代码。
sn=s6=0110②写出反馈清零函数。
③画逻辑图。
如图1所示。
74ls192引脚图
74LS192引脚图引言在数字电子技术中,集成电路(IC)扮演着至关重要的角色。
它们通过集成了许多电子元件来实现各种电子功能。
其中,74LS192是一款常用的集成电路,广泛应用于数码逻辑设计中。
本文档将介绍74LS192集成电路的引脚图及其功能。
74LS192简介74LS192是一款四位可编程二进制同步计数器,它可以在特定时钟脉冲的控制下进行计数。
具体来说,它可以以二进制(BCD)或二进制(Binary)模式计数。
该芯片还具有清零、预设、加载和递增/递减计数的能力。
通过正确配置其引脚连接,我们可以实现各种计数需求。
74LS192引脚图下面是74LS192集成电路的引脚图:Vcc ─┐│┌────────┐ ┌────────┐ ┌────────┐ ┌─┴─┐│ CP │ │ MR │ │ PL │ │ PE ││ (6) │ │ (7) │ │ (8) │ │ (10)│└──┬─────┘ └──┬─────┘ └──┬─────┘ └──┬──┘│ │ │ ││ │ │ │┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ▼ ▲│ D │ │ C │ │ B │ ▼ ▲│ (5) │ │ (4) │ │ (3) │ │ │└───┬┘ └───┬┘ └───┬─┘ ┌───┘ └───┐│ BI/RBO │ BCD1 │ │ BCD0 ││ (9) │ (14) │ │ (13) ││ │ │ │ │┌───┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐│ G │ │ F │ │ E │ │ D │ │ C ││ (16) │ │ (15) │ │ (1) │ │ (2) │ │ (12)│└─┬───┘ └─┬───┘ └─┬─┘ └───┬─┘ └───┬─┘│ Vdd │ CARRY/BORROW │ LATCH CLOCK└───────────────┴──────────────┴───────────┘ CLOCK上述引脚图基于74LS192的DIP(双行直插式)封装。
采用74LS192设计的4、7进制计数器
采用74LS192设计的4、7进制计数器《电子设计基础》课程报告设计题目:4/7进制计数器设计学生班级:通信0902学生学号:20095972学生姓名:指导教师:时间:2011. 6.24西南科技大学信息工程学院四、74283加法器每一位的进位信号送给高位作为输入信号,因此,任一位的加法运算必须在低一位的运算完成之后才能进行,这种进位方式成为串行进位,这种加法器的逻辑电路较为简单。
74283管脚图74283原理图一.电路设计及计算1.选择一个方波信号发生器作为输入信号源;CP2利用74LS192,通过清零法设计一个四进制计数器,状态图如下:0000 000101000011 00103、利用74S192通过置数法设计一个从1到7的计数器,状态图如下:0010 0011 0111 0110 0101 0100然后通过减法器在每一个状态的基础上减去一个1,从而实现一个7进制计数器。
减法器电路如图所示U774283NSUM_410SUM_313SUM_14SUM_21C49B411A412B315A314B22A23B16A15C07U8A74LS136D U9B 74LS136DU10C74LS136D U11D74LS136D GNDVCC 5V4、通过一个单刀双掷开关控制信号源,从而进行四进制和七进制之间的转换。
接4进制计数器接7进制计数器接地5、进行四进制计数时,在74LS192后面接一个7447显示译码管,将8421BCD 码转换成十进制,最后通过一个七段显示数码管来显示数据输出状态。
6、在进行七进制计数时,用40192进行置数法计数,预置数为0001,计数到1000后反馈到置数端,循环计数,后面接一个74238加法器构成的减法器,使输出显示数字在0000~0110之间计数,在经过7447译码管将其转化为十进制数0~6,从而实现七进制计数器功能。
五、原理图、仿真图及结果分析、PCB版图原理图如下所示:仿真及结果分析MULTISIM仿真图四进制波形七进制波形PCB板排布2.PCB原理图如下:PCB顶层PCB底层总结:完成这次课程设计之后,我觉得自己在电子设计过程中收获了很多,在这过程中我遇到了很多困难:在电路仿真时候,我觉得原理图是正确的,但运行不出想要的结果,我把74LS192换成了同样是计数器的74LS161,结果可以实现4、7进制的转换,于是我认为时芯片出了问题,找到老师说明了我的问题后,才知道是这个芯片本身特点,要根据它自身的性质来修改原理图;还有,接地的标号中要把Net选项选为GND,不然在PCB制作中将没有接地这一个选项出现;在PCB板制作时,要对元器件不断调整位置来使排版最佳。
基于74LS192的任意进制计数器的设计
基于74LS192的任意进制计数器的设计基于74LS192的任意进制计数器的设计【摘要】利用集成二、十进制计数器采用置数法、置零法设计任意进制计数器,分析设计方法,给出设计案例。
以集成计数器74LS192为例,运用置零法和置数法设计八进制计数器和二十四进制计数器,来讲述任意进制计数器的设计原理与基本方法。
【关键词】集成计数器;任意进制计数器的设计;置数法;置零法一、引言数字系统中的时序电路中,使用最多的电路就是计数器,计数器不仅能用于对时钟脉冲计数,还可以用于分频、定时、产生节拍脉冲和脉冲序列以及进行数字运算等。
集成计数器是运用的最为广泛的一种时序部件。
集成计数器的种类非常多样,如果按计数器中数字的编码方式分类,可分为二进制计数器,十进制计数器等。
集成计数器中,二进制和十进制计数器比较多见,对于任意进制计数器,通常利用现有的二、十进制计数器通过反馈清零或反馈置数来实现。
任意进制计数器在控制系统中经常使用,是数字电子技术教学的重点内容之一,也是学生设计性实验的难点之一,以下就以集成计数器74LS192为例,介绍在已有的计数器基础上设计任意进制计数器的方法。
二、设计依据及举例1.74LS192的管脚图74LS192是同步十进制可逆计数器,它由四个主从T触发器和一些门电路组成。
具有双时钟输入、清零、保持、并行置数、加计数、减计数等功能。
图1为74LS192的管脚图。
图1 74LS192的管脚图图1中:CLR是清零端,高电平有效;UP是递加计数脉冲输入端;DOWN是递减计数脉冲输入端;~LOAD是置数控制端,低电平有效;~CO是进位输出端;~BO是借位输出端。
ABCD是置数端口。
2.任意进制计数器M小于N的情况假定已有的是N进制计数器,需要得到的是M进制计数器。
这时就有M小于N和M大于N两种情况。
例题为用74LS192设计一个八进制计数器:在N进制的计数器的计数顺序中,使计数器的计数状态跳过N-M 的状态,。
74ls192芯片
74ls192芯片74LS192是一种技术较老的逻辑门集成电路(IC),它是一种同步可编程计数器。
该芯片可以实现四位二进制计数,并且可以通过外部的控制信号来实现不同的计数模式和功能。
74LS192具有带锁存功能的四位二进制计数器。
它包含四个独立的计数器,每个计数器都可以通过控制端进行控制。
此外,它还有一个可编程的控制端,可以用来选择计数方向(向上计数或向下计数)以及计数模式(十进制模式、二进制模式等)。
该芯片的引脚图和引脚功能如下:1. CP0 - 输入引脚,用于时钟脉冲的输入。
2. CP1 - 输入引脚,用于时钟脉冲的输入。
3. MR - 输入引脚,用于复位计数器。
4. PC0 - 输入引脚,用于选择计数模式。
5. PC1 - 输入引脚,用于选择计数模式。
6. U/D - 输入引脚,用于选择计数方向。
7. A - 输出引脚,用于输出二进制位的最低位。
8. B - 输出引脚,用于输出二进制位的次低位。
9. C - 输出引脚,用于输出二进制位的次高位。
10. D - 输出引脚,用于输出二进制位的最高位。
11. QA - 输出引脚,用于输出BCD码的最低位。
12. QB - 输出引脚,用于输出BCD码的次低位。
13. QC - 输出引脚,用于输出BCD码的次高位。
14. QD - 输出引脚,用于输出BCD码的最高位。
15. Vcc - 正电源引脚。
16. GND - 接地引脚。
74LS192的工作原理如下:首先,需要将MR引脚置低,从而使计数器复位。
然后,通过CP0和CP1引脚输入时钟信号,控制计数器的计数速度。
U/D引脚用于选择计数方向,当U/D引脚为低电平时,计数器向上计数,当U/D引脚为高电平时,计数器向下计数。
PC0和PC1引脚用于选择计数模式。
当PC1引脚为低电平,PC0引脚为高电平时,计数器工作在二进制模式下。
当PC1引脚为高电平,PC0引脚为低电平时,计数器工作在十进制模式下。
其它的PC1和PC0的组合可以实现更多的计数模式。
74Ls192
实验四触发器及其功能转换一、实验目的1、掌握基本RS、JK、D和T触发器的逻辑功能2、掌握集成触发器的逻辑功能及使用方法3、熟悉触发器之间相互转换的方法二、实验原理触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。
1、基本RS触发器图4-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。
基本RS触发器具有置“0”、置“1”和“保持”三种功能。
通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发生,表9-1为基本RS触发器的功能表。
基本RS触发器。
也可以用两个“或非门”组成,此时为高电平触发有效。
2、JK触发器在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。
本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。
引脚功能及逻辑符号如图4-2所示。
JK触发器的状态方程为Q n+1=J Q n+K Q nJ和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成“与”的关系。
Q与Q为两个互补输出端。
通常把 Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。
图4-2 74LS112双JK触发器引脚排列及逻辑符号下降沿触发JK触发器的功能如表4-2表4-2注:×— 任意态 ↓— 高到低电平跳变 ↑— 低到高电平跳变Q n (Q n )— 现态 Q n+1(Q n+1 )— 次态 φ— 不定态 JK 触发器常被用作缓冲存储器,移位寄存器和计数器。
3、D 触发器在输入信号为单端的情况下,D 触发器用起来最为方便,其状态方程为 Q n+1=D n,其输出状态的更新发生在CP 脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D 端的状态,D 触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。
数电quartus用74LS192设计3X8和6X4的计数器
一、用74LS192设计3X8的计数器。
分析:可以采用置数法。
置数方面:由于74LS192是异步置数的十进制计数器,对于第一片,当B1A1通过一个与非门接到置数端时,一旦计数到B1A1=11,则立刻被置数成00,故11的状态只在极短的时间出现,可以忽略。
则第一片的输出以00,01,10状态循环出现。
同理,第二片D1通过一个非门,可实现000,001,010,011,100,101,110,111循环计数。
级联方面:要使第一片每计三个脉冲,第二片计数一次,则可以将B1通过非门接到第二片的CP时钟脉冲输入端,则当B1A1由10变00时,B1的变化使得第二片的CP时钟脉冲输入端产生一个有效跳变缘,此时计数一次。
由此可以用QuartusII7.2软件设计出电路图如下:
仿真结果的波形图如下
由波形图可知,每来三个脉冲,B1A1循环一次,而C2B2A2计数一次,24个脉冲过后,B1A1和C2B2A2均被置数成0,由此可知,用74LS192设计3X8的计数器成功。
二、用74LS192设计6X4的计数器。
分析:用74LS192设计6X4的计数器和设计3X8的计数器相似,只需在置数端和级联端按需求改变一下即可。
由此可以用QuartusII7.2软件设计出电路图如下:
仿真结果的波形图如下
由波形图可知,每来六个脉冲,C1B1A1循环一次,而B2A2计数一次,24个脉冲过后,C1B1A1和B2A2均被置数成0,由此可知,用74LS192设计6X4的计数器成功。
74ls192按键显示电路设计总结
74ls192按键显示电路设计总结
74ls192是一款常用于按键显示的集成电路,其主要功能是将按键输入的数字信号转换为BCD码输出,以便在数码管上显示。
下面是74ls192按键显示电路设计的总结:
1.按键电路设计
按键电路主要是将输入的数字信号转换为二进制信号输入到74ls192中。
设计中可以使用多个按键,将每个按键连接到一个编码器上,将编码器的输出连接到74ls192的输入引脚上。
在按键电路设计中,需要注意保护电路和按键的灵敏度。
2.74ls192电路设计
74ls192集成电路为四位二进制同步上升计数器,可以将二进制输入信号转换为BCD码输出。
在电路设计中,74ls192的各个引脚需要连接好,同时根据实际需要设置时钟信号、清零信号和使能信号。
3.数码管驱动电路设计
数码管驱动电路主要用于将74ls192输出的BCD码信号转换为驱动数码管的控制信号。
设计中需要选择适应的数码管驱动芯片,根据74ls192的输出信号控制数码管的显示。
4.供电电路设计
电路中需要使用适当的电源供电,设计中需要注意选择合适的电源,保证电路的正常工作。
此外,还要根据实际需要设计电路的保护电路,维护电路的稳定性和可靠性。
总之,74ls192按键显示电路设计需要注重各个方面的细节,保证电路的正常运行和可靠性。
设计前需要仔细考虑电路的需求,选择适合的元器件和器件参数,同时在设计过程中遵循相关的设计规范和国家法律法规的要求。
74ls192简介及简单应用
74LS192简介及简单应用
目录
74LS192简介 (1)
74LS192基本参数 (2)
74LS192引脚名称及功能介绍 (2)
74LS192功能表 (3)
74LS192简单应用(两位计数器设计) (3)
74LS192简介
74LS192是同步增/减十进制计数器。
芯片具有独立的增计数和减计数控制端口,在任意一种计数模式(增计数或减计数)中,都可以进行另外一种计数,也就是说增计数和减计数可以在同一个电路中进行。
芯片的输出随着输入端口的高低电平的变化而变化。
该芯片具有双列直插以及贴片等形式的封装。
该芯片的俯视图如图1所示。
图1
增计数引脚以及减计数引脚的输入电平为该芯片提供了时钟输入,该芯片无需额外的时钟逻辑信号输入,因此使用该芯片可以简化外围电路。
该芯片可以从外部载入数据,并从该数据开始计数因此该芯片可以用于可编程的计数器设计电路中。
1。
基于74LS192的任意进制加法计数器的设计
described above have great value of reference to electronics lovers to design related counter.
Key words:counter;74LS192;digital circuit
计数器是应用十分广泛的时序电路.不仅可 以进 行时钟脉冲的计数 ,还可以应用于定时、分频 ,产生节 拍脉冲及实现其它逻辑功能 ,是任何数字仪表乃至数 字 系统 中不 可缺 少 的组成 部 分 .近年 来 ,广 大学 者 做了很多计数器设计相关的研究 ,对计数器的设计方 法也 做 过介 绍 ,可 惜不 够全 面 ,而且 涉 及 74LS192 的相 关 论文 数量 较少 .74LS192是 一 种 双 时 钟 集 成 十 进制 同步可逆计数器 ,是数 字系统设计 中常用 的器 件 .本文 分别 用 反 馈 归零 法 、反 馈 置 数 法 以及 进 位输 出端设计 了基于 74LS192的小 容量任 意进制加法计 数器 (此后简称 N进制加法计数器 ),并用反馈归零 法设计 了一种 计 数 长 度 为 68的大 容 量 加 法 计 数 器 . 文 中介 绍 的设 计 方 法 对 广 大 电 子爱 好 者 设 计 相 关 计 数器具有很好的参考价值 ,对高校电气信息类的学生
中为减 少 连线 大多 数 选 择 悬 空 .用 LD ,则 D ,~D 必 须 都接 0.见l 2 D3 CR
B p Co
中规模十进制计数器74LS192(或CC40192)
中规模十进制计数器74LS192(或CC40192)3、中规模十进制计数器74LS192(或CC40192)74LS192是同步十进制可逆计数器,它具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如下所示:图14-4 74LS192的引脚排列及逻辑符号(a)引脚排列 (b) 逻辑符号图中:(LD)为置数端,为加计数端,为减计数端,(CO)为非同步进PLCPCPTCUDU 位输出端 (BO)为非同步借位输出端,P0(D)、P1、P2、P3为计数器输入端,(CR)MRTC0D为清除端,Q0、Q1、Q2、Q3为数据输出端。
计数器及其应用(设计性)一、实验目的1(学习集成触发器构成计数器的方法。
2(掌握中规模集成计数器的使用方法及功能侧试方法。
3(用集成电路计数器构成1,N分频器。
二、实验预习要求1(复习计数器电路工作原理。
2(预习中规模集成电路计数器74LS192的逻辑功能及使用方法。
3(复习实现任意进制计数的方法。
三、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数(计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。
计数器种类较多,按构成计数器中的多触发、器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器:根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等。
本实验主要研究中规模十进制计数器74LS192的功能及应用。
1. 74LS192的主要原理(1)74LS192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其逻辑符号及引脚排列如图4-1所示。
图4—1 74LS192逻辑符号及引脚排列图中:CPU—加计数端 CP一减计数端 /LD一置数端 CR一清零端 /CO一非同D 步进位输出端/BO一非同步借位输出端 D0、 D1、D2、 D3一数据输入端 Q0、Q1、Q2、Q3一数据输出端74LS192功能如下表4—1:(1)清零(CR)令CR=1,其它输入端状态为任意态,,记录Q3Q2Q1Q0的状态和译码显示的数值。
数字电路的仿真设计与实验——74LS92设计59进制计数
数字电路的仿真设计与实验——74LS92设计59进制计数一、实验目的1. 理解74LS192芯片的功能及其在计数器设计中的应用。
2. 掌握如何使用数字逻辑仿真软件进行电路设计和仿真。
3. 学习如何根据需求设计特定进制的计数器。
4. 增强对数字电路设计的实际操作能力和问题解决能力。
二、预习要求1. 数字逻辑基础:了解数字电路的基本概念,包括逻辑门、触发器等。
2. 计数器的工作原理:熟悉不同类型计数器的工作机制,特别是同步计数器。
3. 74LS192芯片资料:阅读74LS192的数据手册,了解其功能、引脚配置及工作模式。
4. 仿真软件操作:熟悉所选数字逻辑仿真软件的基本操作和电路搭建方法。
5. 进制转换:复习不同进制之间的转换方法,特别是十进制与任意进制之间的转换。
三、实验仪器与设备四、实验内容1、用192串行进位法构成59进制计数器DCD_HEX_ORANGE五、注意事项1. 仔细检查电路连接:确保所有连接正确无误,避免短路或开路的情况发生。
2. 逐步验证电路:在完成整个电路设计之前,先对各个模块进行单独测试,确保每个部分都能正常工作。
3. 观察波形和输出:使用虚拟仪器观察计数器的输出波形和状态,以验证计数器是否按照预期工作。
4. 记录实验数据:在实验过程中,记录关键数据和观察结果,以便后续分析和报告撰写。
5. 安全第一:虽然在仿真环境中进行实验,但仍需遵守实验室的安全规程,保持专注和谨慎。
六、思考与感悟1. 理论与实践相结合:通过将理论知识应用于实际电路设计中,我更加深刻地理解了计数器的工作原理和设计方法。
2. 细节决定成败:在电路设计中,每一个小的细节都可能影响最终的结果。
因此,细心和耐心是成功的关键。
3. 创新思维:在设计59进制计数器的过程中,我尝试了不同的设计方案,这让我意识到创新思维在解决问题时的重要性。
74ls192构成六进制计数器连接方法
74ls192构成六进制计数器连接方法
我们要使用74LS192芯片来制作一个六进制计数器。
首先,我们需要了解74LS192芯片的特性以及如何使用它来构建六进制计数器。
74LS192是一个双BCD(二进制编码的十进制)计数器,这意味着它可以同时计数到9(0000到1001)并保持其状态。
为了将其转换为六进制计数器,我们需要将74LS192的输出连接到适当的逻辑门或芯片,以便在计数到5时产生进位信号。
以下是一个简单的步骤,说明如何将74LS192连接为六进制计数器:
1. 将74LS192的Q0、Q1和Q2连接到适当的显示设备,如LEDs,以显示当前的计数值。
2. 将74LS192的进位输出(CO)连接到下一级的74LS192的时钟输入(CP)。
3. 将74LS192的清零输入(CLR)连接到适当的信号,以便在需要时重置计数器。
4. 将74LS192的异步置数输入(LD)连接到适当的信号,以便在需要时将计数器设置为特定的值。
5. 将74LS192的时钟输入(CP)连接到适当的时钟源,以便在每个时钟周期内递增计数器的值。
现在我们已经了解了如何连接74LS192以构建六进制计数器,我们可以开始进行实际的连接。
根据上述步骤和连接关系,我们可以开始构建六进制计数器的电路。
请注意,这只是一个概念性的连接方案,实际连接可能因具体的硬件和需求而有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于74LS192的任意进制计数器的设计
【摘要】利用集成二、十进制计数器采用置数法、置零法设计任意进制计数器,分析设计方法,给出设计案例。
以集成计数器74LS192为例,运用置零法和置数法设计八进制计数器和二十四进制计数器,来讲述任意进制计数器的设计原理与基本方法。
【关键词】集成计数器;任意进制计数器的设计;置数法;置零法
一、引言
数字系统中的时序电路中,使用最多的电路就是计数器,计数器不仅能用于对时钟脉冲计数,还可以用于分频、定时、产生节拍脉冲和脉冲序列以及进行数字运算等。
集成计数器是运用的最为广泛的一种时序部件。
集成计数器的种类非常多样,如果按计数器中数字的编码方式分类,可分为二进制计数器,十进制计数器等。
集成计数器中,二进制和十进制计数器比较多见,对于任意进制计数器,通常利用现有的二、十进制计数器通过反馈清零或反馈置数来实现。
任意进制计数器在控制系统中经常使用,是数字电子技术教学的重点内容之一,也是学生设计性实验的难点之一,以下就以集成计数器74LS192为例,介绍在已有的计数器基础上设计任意进制计数器的方法。
二、设计依据及举例
1.74LS192的管脚图
74LS192是同步十进制可逆计数器,它由四个主从T触发器和一些门电路组成。
具有双时钟输入、清零、保持、并行置数、加计数、减计数等功能。
图1为74LS192的管脚图。
图1 74LS192的管脚图
图1中:CLR是清零端,高电平有效;UP是递加计数脉冲输入端;DOWN是递减计数脉冲输入端;~LOAD是置数控制端,低电平有效;~CO是进位输出端;~BO是借位输出端。
ABCD是置数端口。
2.任意进制计数器M小于N的情况
假定已有的是N进制计数器,需要得到的是M进制计数器。
这时就有M小于N和M大于N两种情况。
例题为用74LS192设计一个八进制计数器:
在N进制的计数器的计数顺序中,使计数器的计数状态跳过N-M的状态,
就可以得到M进制计数器,如例,74LS192是一个十进制计数器,如想得到八进制计数器,输出状态QAQBQCQD需要从0000—1110状态,跳过0001及1001这两个状态。
实现跳跃的方法有置零法和置数法这两个方法。
置零法的方式为在输入第M个计数脉冲CP后,利用计数器当前的输出状态SM进行译码产生清零信号加到清零端上,使计数器清零,即实现了M进制计数器。
在计数器的有效循环中不包括状态SM,所以状态SM只在极短的时间内出现称为过渡状态。
对于本例题来说,在输入第八个时钟脉冲后,当前的输出状态QAQBQCQD为0001,通过计数器输出端QD的高电平信号给CLR清零端,将计数器置零,回到0000状态。
根据以上原理设计出的逻辑图如图2所示。
图2
置数法方式为通过给计数器置入某个数值的方法跳跃N-M的状态,从而获得M进制计数器,这种方法适用于有预置数功能的集成计数器。
对于本例题来说,QAQBQCQD=0001状态与非门译码产生~LOAD=0的低电平信号,下一个时钟脉冲信号到来时将置数端ABCD=0000状态置入,跳过0001及1001这两个状态因而就实现了八进制。
设计出的逻辑图如图3所示。
图3
3.任意进制计数器M大于N的情况
例题为用74LS192设计一个24进制的计数器。
设计任意进制计数器M大于N的情况时必须要使用两个以上的N进制集成电路进行组合来完成M进制计数器的设计,各个集成电路之间的连接方式可分为串行进位,并行进位,整体置零,整体置数等几种方法。
图4
整体置零法就是将两片N进制计数器级联成大于M进制的计数器,然后在计数器输出到达M状态时,通过输出状态译码出清零信号同时送达两个计数器的清零端,使两个计数器同时清零,从而实现M进制,此方法类似于M小于N 的置零法原理。
对于74LS192来说,就是在两片集成计数器输出端QAQBQCQD 到达0010(第一片低位)0100(第二片高位)状态时,译出清零信号同时送到两个计数器的清零端。
根据以上设计原理设计出下面的逻辑电路图(图4)。
整体置数法的工作原理等同于M小于N的置数法原理,首先就是将两片N 进制计数器联成大于M进制的计数器,然后选定所设计的M进制状态,译码出置数端的有效工作信号,使N进制计数器置入置数输入端规定的信号,跳过剩余的不用的状态,从而实现M进制。
用整体置数法使两片74LS192完成24进制的设计方法可以参考M小于N的置数法以及以上的设计例题。
三、结束语
对于有置数端的集成计数器置数法和置零法均可使用,有的集成计数器只有清零端,这时就要认真考虑怎样将清零信号送达清零端。
在数字电子技术的学习中,要深入了解集成电路的工作原理,充分理解集成电路的功能表,就可能灵活应用集成电路,给我们的学习带来最大的帮助,完成准确高效的电路设计。
参考文献
[1]阎石.数字电子技术基础[M].5版.北京:高等教育出版社,2006.
[2]林涛.巨永锋.任意进制计数器设计方法[J].现代电子技术,2008.。