信号与系统吴大正第四版第四章课件

合集下载

信号与线性系统_吴大正_教材课件

信号与线性系统_吴大正_教材课件

s ( t ) f1 ( t ) f 2 ( t ) P ( t ) f1 ( t ) f 2 ( t )
第 1 章 信号与系统的基本概念
同样,若有两个离散信号f1(k)和f2(k),则其和信号s(k)与 积信号p(k)可表示为
s ( k ) f1 ( k ) f 2 ( k ) P ( k ) f1 ( k ) f 2 ( k )
解 一般说来,在t轴尺度保持不变的情况下,信号 f(at+b)(a≠0)的波形可以通过对信号f(t)波形的平移、翻转(若
a<0)和展缩变换得到。根据变换操作顺序不同,可用多种方法
画出f(1-2t)的波形。 (1) 按“翻转-展缩-平移”顺序。 首先将f(t)的波形进行翻 转得到如图1.3-6(b)所示的f(-t)波形。然后,以坐标原点为中心, 将f(-t)波形沿t轴压缩1/2,得到f(-2t)波形如图1.3-6(c)所示。由 于f(1-2t)可以改写为
f(-t+1)波形。最后,将f(-t+1)波形压缩1/2得到f(1-2t)的波形。
信号波形的变换过程如图1.3-7所示。
第 1 章 信号与系统的基本概念
f (t ) f (t + 1)
1 -2 -1 0 -1 1 2 t -1
1
0 -1
1
t
(a )
(b )
f (- t + 1)
f (1 - 2 ) t
第 1 章 信号与系统的基本概念
f1 (t ) A 1 f2 (t ) A f3 (t )
-2
-1
0
1
2
t
o
t
o
t0
t
-A
(a )
(b )

信号与线性系统分析 (吴大正 第四版)第四章习题答案

信号与线性系统分析 (吴大正 第四版)第四章习题答案

第四章习题4、6 求下列周期信号得基波角频率Ω与周期T。

(1) (2)(3) (4)(5) (6)4、7 用直接计算傅里叶系数得方法,求图4-15所示周期函数得傅里叶系数(三角形式或指数形式)。

图4-154、10 利用奇偶性判断图4-18示各周期信号得傅里叶系数中所含有得频率分量。

图4-184-11 某1Ω电阻两端得电压如图4-19所示,(1)求得三角形式傅里叶系数。

(2)利用(1)得结果与,求下列无穷级数之与(3)求1Ω电阻上得平均功率与电压有效值。

(4)利用(3)得结果求下列无穷级数之与图4-194、17 根据傅里叶变换对称性求下列函数得傅里叶变换(1)(2)(3)4、18 求下列信号得傅里叶变换(1) (2)(3) (4)(5)4、19 试用时域微积分性质,求图4-23示信号得频谱。

图4-234、20 若已知,试求下列函数得频谱: (1) (3) (5)(8) (9)4、21 求下列函数得傅里叶变换(1)(3)(5)4、23 试用下列方式求图4-25示信号得频谱函数(1)利用延时与线性性质(门函数得频谱可利用已知结果)。

(2)利用时域得积分定理。

(3)将瞧作门函数与冲激函数、得卷积之与。

图4-254、25 试求图4-27示周期信号得频谱函数。

图(b)中冲激函数得强度均为1。

图4-274、27 如图4-29所示信号得频谱为,求下列各值[不必求出] (1) (2)(3)图4-294、28 利用能量等式计算下列积分得值。

(1) (2)4、29 一周期为T 得周期信号,已知其指数形式得傅里叶系数为,求下列周期信号得傅里叶系数(1) (2)(3) (4)4、31 求图4-30示电路中,输出电压电路中,输出电压对输入电流得频率响应,为了能无失真得传输,试确定R1、R2得值。

图4-304、33 某LTI系统,其输入为,输出为式中a为常数,且已知,求该系统得频率响应。

4、34 某LTI系统得频率响应,若系统输入,求该系统得输出。

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)

t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1

信号与系统吴大正第四版PPT精品文档

信号与系统吴大正第四版PPT精品文档


信号与系统 电子课件
(2)零状态响应。 先求初值 yzs(0)和 。yzs(0) 将f(t)=ε(t)代入方程得
y z s ( t ) 3 y z s ( t ) 2 y z s ( t ) 2 ( t ) 6 ( t ) ( 1 )
由冲激函数匹配法知,y zs ( t应) 包含 2, ( t从) 而 y z s (在t ) t= 0处将发生跃变,即 yzs(0)。yzs(0)
.
20
第1-20页

信号与系统 电子课件
三、全响应
全响应 = 自由响应 + 强迫响应 = 零输入响应 + 零状态响应
.
21
第1-21页

信号与系统 电子课件 2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响应,称为
单位冲激响应,简称冲激响应,一般用h(t)表示。
g1(t)3g1(t)2g1(t)(t)
g1(0)g1(0)0
其特征根 11,2,其2特解为0.5,于是得:
g 1 (t) (C 1 e t C 2 e 2 t 0 .5 )(t)
又根据0-状态求得0+状态值得:g1(0)g1 (0)0
解得: C 11,C20.5
得:
g 1 (t) ( e t 0 .5 e 2 t 0 .5 )(t)
.
3
第1-3页

信号与系统 电子课件
一、微分方程的经典解
微分方程的解:y(t)= yh(t)+ yp(t) 其中, y(t): 完全解。 yh(t): 齐次解。由微分方程的特征根确定。 yp(t): 特解。与激励函数的形式有关。
.
4

吴大正信号与线性系统分析第4章

吴大正信号与线性系统分析第4章
4.3 周期信号的频谱 画出 f(t)的单边振幅频谱图、相位频谱图如图 幻灯片 19
4.3 周期信号的频谱 二、周期信号频谱的特点 举例:有一幅度为 1,脉冲宽度为 的周期矩形脉冲,其周期为 T,如图所示。求频谱。 令 Sa(x)=sin(x)/x (取样函数) 幻灯片 20
4.3 周期信号的频谱 , n = 0 ,±1,±2,… Fn 为实数,可直接画成一个频谱图。设 T = 4τ画图。 特点: (1)周期信号的频谱具有谐波(离散)性。谱线位置是基频Ω的整数倍;(2)一般具有 收敛性。总趋势减小。 幻灯片 21
4.1 信号分解为正交函数 三、信号的正交分解 设有 n 个函数 1(t), 2(t),…, n(t)在区间(t1,t2)构成一个正交函数空间。 将任一函数 f(t)用这 n 个正交函数的线性组合来近似,可表示为
f(t)≈C1 1+ C2 2+…+ Cn n 如何选择各系数 Cj 使 f(t)与近似函数之间误差在区间(t1,t2)内为最小。 通常使误差的方均值(称为均方误差)最小。均方误差为 幻灯片 7
f1(t) = 1 ←→ 2πδ(ω)

g2(t) ←→ 2Sa(ω) ∴ F(jω) = 2πδ(ω) - 2Sa(ω)
-
幻灯片 33
4.5 傅里叶变换的性质
二、时移性质(Timeshifting Property)
If f (t) ←→F(jω) then where “t0” is real constant.
A= vx+ 2.5 vy+ 4 vz 矢量空间正交分解的概念可推广到信号空间,在信号空间找到若干个相互正交的 信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性组合。 幻灯片 4

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

(NEW)吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。

根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。

二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。

2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。

图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。

图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。

这里雷达接收到的目标回波信号就是延时信号。

3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。

《信号与系统 》PPT课件

《信号与系统 》PPT课件
一、系统的定义 二、系统的分类及性质
1.6 系统的描述
一、连续系统 二、离散系统
1.7 LTI系统分析方法概

二、冲激函数
点击目录 ,进入相关章节
a
10
第1-10页

信号与系统 电子教案
第一章 信号与系统
1.1 绪言
思考问题:什么是信号?什么是系统?为什么把这两 个概念联系在一起?
一、信号的概念
1. 消息(message):
第1-12页

信号与系统 电子教案
1.1 绪论
语音信号:空气压力随时间变化的函数
0
第1-13页
0.1
0.2
0.3
语音信号“你好”的波

a

0.4
13
信号与系统 电子教案
1.1 绪论
静止的单色图象:
亮度随空间位置变化的信号f(x,y)。
a
14
第1-14页

信号与系统 电子教案
1.1 绪论
静止的彩色图象:
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息,常常需要将信息转 换成便于传输和处理的信号。
信号我们并不陌生,如刚才铃 声—声信号,表示该上课了;
十字路口的红绿灯—光信号,指 挥交通;
电视机天线接受的电视信息—电 信号;
日常生活中的文字信号、图像信 号、生物电信号等等,都是信号。
a
12
编,华中科技大学出版社 • 《信号与线性系统学习指导书》张永瑞、王松林,
高等教育出版社
a
4
第1-4页

信号与系统 电子教案
信号与系统的应用领域
通信 控制 电 类 信号处理 信号检测

信号和线性系统分析(吴大正第四版)第四章习题答案解析

信号和线性系统分析(吴大正第四版)第四章习题答案解析

第四章习题4.6求下列周期信号的基波角频率Ω和周期T解 ⑴角频率为Ω = IOO rad∕s,周期丁=盲=p÷ξ ⑵角频率为I fi=号■rad∕s,周期= 4 s(3) 角频率为Ω = 2 rad 倉,周期T = ~ = Tr S (4) 角频率为Q =兀rad∕ s,周期T=^ = 2 sΩ(5) 角频率为 Ω — rad∕s*周期 T=-^ = 8 s4 12⑹角频率为C =話rad∕s,周期T = -jy = 60 s4.7用直接计算傅里叶系数的方法, 求图4-15所示周期函数 的傅里叶系数(三角形式或指数形式)(1) e j100t(2) cos[,t - 3)](3) cos(2t) sin(4t) ⑷ cos(2 兀 t) +cos(3πt) +cos(5 兀 t)(5)π π cos( t) sin( t)2 4(6)JEJITEcos( t) cos( t) cos( t)2 35-2 -1 O 12 3 r(IJ)图4-15f>~ 十解 ⑴周期T = 4,1Ω = Y =亍r 则有H ,4⅛ - 1 ≤ r ≤ 4⅛+ 1/⑺=II∣07 4⅛ + 1 < r < 4⅛ + 3由此可得-Tu rt = ~∖ ' τ fit) cost nΩt)dt= -∣^∣ /(f)cos(^ψ^)df J- J —⅛ 乙-.:—2 I(2}周期丁=2・0 =年=兀,则有由此可得1 + e -jrhr2π( I - √ )所含有的频率分量)dr =2 J -[2『亍=Wl f(t)sm(ττΩt)dt =1 J -T2——SInnπ (才),= om 小山(竽)出ISin(Jrt) 9fm=! 0,2⅛ ≤ r ≤ 2⅛ + 12⅛ + 1 < r < 2⅛ + 2F ri ]ft1 Γl=TJV Cf)^dr =⅛J r ∣/(r)e-7iβ,dr — -7- Sin(^f)e -dr -I ZJV4.10利用奇偶性判断图4-18示各周期信号的傅里叶系数中扣 =O* ± 1 * + 2・・图 4-18解 (1)由旳⑺的波形可矩Λ<r) =√√-n =-∕l (f ⊂f)亠 IU Jr = f(t)cos( riΩt )df 则有丿 丁人 ,jj = 0.1,2,-[仇=0"[J =盘?=应丄=*" =QE=仇=仏=*八=0 则∕√r)的傅里叶级数中含有的频率分量为奇次余弦波亠 (2)由f 2(t)的波形可知则有— ■ ??f(t)s}n(tιΩt )d r ⅛ =A rz fl , J Tni JJO则f 2(t)的傅里叶级数中含有的频率分量为正弦波*(3)由 f 3(t)的波形可⅛l∕3<f) = f 3(~r)则有Γ⅛ = 0, n/(z)cos( fiΩt >d;(4)% 4召=亍即ΛG)的傅里叶级数中含有的频率分量为偶次余弦波* 由/<(0的波形可知,人⑺为奇谐函数■即fdι) =一 fZ 土 £)b 2 = h A = b 6 =・*・=0则有 U即人")的傅里叶级数中只含有奇次谐波•包括正弦波和余弦披"4-11 求u(t)的三角形式傅里叶系数。

信号与线性系统分析--吴大正课件

信号与线性系统分析--吴大正课件
解答
第 18 页
解答
(1)sin2t是周期信号,其角频率和周期分别为 ω1= 2 rad/s , T1= 2π/ ω1= πs
cos3t是周期信号,其角频率和周期分别为 ω2= 3 rad/s , T2= 2π/ ω2= (2π/3) s
由于T1/T2= 3/2为有理数,故f1(t)为周期信号,其周期为 T1和T2的最小公倍数2π。 (2) cos2t 和sinπt的周期分别为T1= πs, T2= 2 s,由于 T1/T2为无理数,故f2(t)为非周期信号。
28k4xk15xk2消去xk得yk2yk13yk24fk15fk2xkfk2xk13xk2系统的特性系统的分析方法16系统的特性与分析方法一系统的特性连续系统与离散系统动态系统与即时系统但输入单输出与多输入多输出系统线性系统与非线性系统时不变与时变系统因果系统与非因果系统稳定系统与不稳定系统常用分类方法
按所具有的时间特性划分:
确定信号和随机信号; 连续信号和离散信号;
周期信号和非周其信号; 能量信号和功率信号;
一维信号和多维信号; 因果信号与反因果信号;
实信号与复信号;
左边信号与右边信号。
第 11 页
1. 确定信号和随机信号
•确定性信号:可用确定的时间函数表示的信号:f(t)
但实际传输的信号是不确定的,常受 到各种干扰及噪声的影响。 •随机信号: 取值具有不确定性的信号: 电子系统中的起伏热噪声、雷电干扰信号。 •伪随机信号:貌似随机而遵循严格规律产生的信号: 伪随机码。
第 19 页
离散周期信号举例1
例 判断正弦序列f(k) = sin(βk)是否为周期信号,若是, 确定其周期。
解 f (k) = sin(βk) = sin(βk + 2mπ) , m = 0,±1,±2,…

吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解-第3~4章【圣才出品】

吴大正《信号与线性系统分析》(第4版)笔记和课后习题(含考研真题)详解-第3~4章【圣才出品】

①建立系统的差分方程;
②特征值→求零输入响应 yzi(k); ③单位样值响应→利用卷积和求零状态响应 yzs(k)=h(k)*f(k);
④全响应 y(k)=yzi(k)+yzs(k)。
三、零输入响应和零状态响应 1.零输入响应 yzi(k) 激励为零时,仅由系统的初始状态引起的响应,若特征根为单根时,则零状态响应为
应。
四、单位序列响应和阶跃响应
1.单位序列响应
由单位序列 δ(k)所引起的零状态响应,称为单位序列响应或单位样值响应或单位取
样响应,或简称单位响应,记为 h(k),即

2.阶跃响应
由 阶 跃 序 列 ε ( k ) 所 引 起 的 零 状 态 响 应 , 称 为 阶 跃 响 应 , 记 为 g ( k ), 即
和 f i。 i
0, k 0
(1)
f
k
1 2
k
,
k
0
(2)
f
k
0, k k, k
0 0
解:(1)f(k)可以表示为:
f
k
1 2
k
k
f
k
f
k
1
f
k
1 2
k
1
k
1
1 2
k
k
10,,
k 1 k 1
1 2
k
1
,
k 0
f
k
f
k
f
k
1
1 k 2
k
1 2
k
1
k
1

f k f k f k 1 k k k 1 k 1 k 1

k
i
f
i

信号与系统吴大正第四版第四章课件

信号与系统吴大正第四版第四章课件

当n → ∞, ε = 0
2
帕斯瓦尔( 帕斯瓦尔(Parseval)方程 )
∞ j =1

t2
t1
f (t )dt = ∑ C 2 K j j
2 j =1

f (t ) = ∑ C jϕ j (t )
第1-14页 14页

信号与系统 电子课件
4.2 傅里叶级数(周期信号)
若完备的正交集选择的是三角函数集或指数函数 集,那么周期信号所展开的无穷级数就分别成为 三角型傅里叶级数” 指数型傅里叶级数” “三角型傅里叶级数”或“指数型傅里叶级数”, 统称为傅里叶级数。 统称为傅里叶级数。 并非所有的周期信号均能进行傅里叶级数展开 ,只有当周期信号满足狄里赫利条件时,再能展开 只有当周期信号满足狄里赫利条件时, 成傅里叶级数, 成傅里叶级数,通常遇到的周期信号都满足该条件。
f (t ) ≈ C1ϕ1 (t ) + C2ϕ 2 (t ) + ⋅ ⋅ ⋅ + Cnϕ n (t ) = ∑ C jϕ j (t )
j =1 n
才能得到最佳近似。 如何选择 C j才能得到最佳近似。
n 1 t2 ε = [ f (t ) − ∑ C jϕ j (t )]2 dt t 2 − t1 ∫t1 j =1 2
第1-20页 20页

信号与系统 电子课件
第1-21页 21页

信号与系统 电子)ϕ j ∗ (t )dt = K i ≠ 0, 当i = j
则称此复函数集为正交函数集。 则称此复函数集为正交函数集。 复函数集 {e jnΩt }( n = 0, ± 1 , ± 2,⋅ ⋅ ⋅)在区间(t0 , t0 + T ) 内是 完备正交函数集。 完备正交函数集。 = 2π 在区间 (t0 , t0 + T ) T

信号与线性系统分析吴大正第四版习题答案第四章修订版

信号与线性系统分析吴大正第四版习题答案第四章修订版

信号与线性系统分析吴大正第四版习题答案第四章修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第四章习题4.6 求下列周期信号的基波角频率Ω和周期T 。

(1)t j e 100 (2))]3(2cos[-t π(3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++ (5))4sin()2cos(t t ππ+ (6))5cos()3cos()2cos(t t t πππ++ 4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

图4-154.10 利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。

图4-184-11 某1Ω电阻两端的电压)(t u 如图4-19所示,(1)求)(t u 的三角形式傅里叶系数。

(2)利用(1)的结果和1)21(=u ,求下列无穷级数之和(3)求1Ω电阻上的平均功率和电压有效值。

(4)利用(3)的结果求下列无穷级数之和图4-194.17 根据傅里叶变换对称性求下列函数的傅里叶变换(1)∞<<-∞--=t t t t f ,)2()]2(2sin[)(ππ(2)∞<<-∞+=t t t f ,2)(22αα(3)∞<<-∞⎥⎦⎤⎢⎣⎡=t t t t f ,2)2sin()(2ππ4.18 求下列信号的傅里叶变换(1))2()(-=-t e t f jt δ (2))1(')()1(3-=--t e t f t δ(3))9sgn()(2-=t t f (4))1()(2+=-t e t f t ε(5))12()(-=tt f ε4.19 试用时域微积分性质,求图4-23示信号的频谱。

图4-234.20 若已知)(j ])([ωF t f F =,试求下列函数的频谱:(1))2(t tf (3)dt t df t )( (5))-1(t)-(1t f(8))2-3(t f e jt (9)t dt t df π1*)(4.21 求下列函数的傅里叶变换(1)⎩⎨⎧><=000,1,)(j ωωωωωF (3))(3cos 2)(j ωω=F(5)ωωωω1)(2n -20sin 2)(j +=∑=j n e F4.23 试用下列方式求图4-25示信号的频谱函数(1)利用延时和线性性质(门函数的频谱可利用已知结果)。

吴大正《信号与线性系统分析》(第4版)章节题库(傅里叶变换和系统的频域分析)【圣才出品】

吴大正《信号与线性系统分析》(第4版)章节题库(傅里叶变换和系统的频域分析)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 4 章 傅里叶变换和系统的频域分析
一、选择题 1.图 4-1 所示系统由两个 LTI 子系统组成,已知子系统 H1 和 H2 的群时延分别为 τ1 和 τ2,则整个系统的群时延 τ 为( )。
图 4-1 A.τ1+τ2 B.τ1-τ2 C.τ1·τ2 D.max(τ1,τ2) 【答案】A
9.如图 4-2 所示信号 f1(t)的傅里叶发换 F1(jω)已知,求信号 f2(t)的傅里叶发 换为( )。
图 4-2
【答案】A
【解析】由题意知, f2 (t) f1(t t0 ) 。由于 f2(t)=f1(-(t+t0)),根据傅里叶 发换的反转性质和时秱性质可知, F2 ( j) F1( j)e jt0 。
4.设 f(t)的频谱函数为 F(jω),则
的频谱函数等于( )。
【答案】D
2 / 150
圣才电子书 十万种考研考证电子书、题库视频学习平台

【解析】
可写为 f[-1/2(t-6)],根据傅里叶发换的尺度发换性质,
x(at)
|
1 a
|
[x(w
/
a)],得
f[-1/2(t)]
A.x(t)=-4Sa[2π(t-3)]
B.x(t)=4Sa[2π(t+3)]
C.x(t)=-2Sa[2π(t-3)]
D.x(t)=2Sa[2π(t+3)]
【答案】A
【解析】常用的傅里叶发换对
Sa(ct)
c
G2c
()
令c 2 ,则有 4Sa(2t) 2G4 ()
ቤተ መጻሕፍቲ ባይዱ
再由傅里叶发换的时秱性质,有
4Sa[2 (t 3)] 2G4 ()e j3

吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解

吴大正《信号与线性系统分析》(第4版)笔记和课后习题考研真题详解
第 6 章 离散系统的 z 域分析 6.1 复习笔记 6.2 课后习题详解 6.3 名校考研真题详解
第 7 章 系统函数 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解
第 8 章 系统的状态变量分析 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解
吴大正《信号与线性系统分பைடு நூலகம்》(第 4 版)笔记和课后习题(含考研真题)详
解完整版>精研学习 wang>无偿试用 20%资料
全国 547 所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
第 1 章 信号与系统 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第 2 章 连续系统的时域分析 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第 3 章 离散系统的时域分析 3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解
第 4 章 傅里叶变换和系统的频域分析 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解
第 5 章 连续系统的 s 域分析 5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解

吴大正 信号与线性系统分析 第4章 傅里叶变换和系统的频域分析

吴大正 信号与线性系统分析 第4章 傅里叶变换和系统的频域分析
j 1
第 7页
小结
函数f(t)可分解为无穷多项正交函数之和
f (t )
1 Ci Ki
C i i (t )
i
f (t ) i (t ) d t
Ki
t
t2
1
i2 (t ) d t
巴塞瓦尔能量公式
t
t2
1
f 2 (t ) d t

i 1

Ci2 K i
在用正交函数去近似f(t)时,所取得项数越多,即n越 大,则均方误差越小。当n→∞时(为完备正交函数 集),均方误差为零。此时有

t2
t1
f 2 (t ) d t C 2 K j j
j 1
上式称为(Parseval)巴塞瓦尔公式,表明:在区间 (t1,t2) f(t)所含能量恒等于f(t)在完备正交函数集中分解 的各正交分量能量的之和。 函数f(t)可分解为无穷多项正交函数之和 f (t ) C j j (t )
第 2页
二、信号正交与正交函数集
1. 信号正交: 定义在(t1,t2)区间的 1(t)和 2(t)满足

t2 ( t ) 2 ( t ) d t t1 1
0 (两函数的内积为0)
则称 1(t)和 2(t) 在区间(t1,t2)内正交。
2. 正交函数集: 若n个函数 1(t), 2(t),…, n(t)构成一个函数集, 这些函数在区间(t1,t2)内满足 i j 0, t2 t1 i ( t ) j ( t ) d t K 0, i j i 则称此函数集为在区间(t1,t2)的正交函数集。
A0 An j ( nt n ) j ( nt n ) [e e ] 2 n 1 2 A0 1 j n jnt 1 An e e An e j n e jnt 2 2 n 1 2 n 1

信号与线性系统分析(第四版)--吴大正课件.

信号与线性系统分析(第四版)--吴大正课件.
第 20 页
离散周期信号举例2
例 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin(3πk/4) + cos(0.5πk) (2)f2(k) = sin(2k)
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
如:ε(t)是功率信号; tε(t)、 e t为非功率非能量信号;
δ(t)是无定义的非功率非能量信号。
第 25 页
5.一维信号和多维信号
一维信号: 只由一个自变量描述的信号,如语音信号。
多维信号: 由多个自变量描述的信号,如图像信号。 还有其他分类,如:
实信号与复信号 左边信号与右边信号 因果信号和反因果信号
③ S t ) 0 a ,t ( n π , n 1 , 2 , 3
④ sitd n tπ, sitd n tπ

0t
2
limSat)(0
t
t
⑥ sit)n sπ c itn ( π t
t
第 31 页
§1.3 信号的基本运算
两信号的相加和相乘 信号的时间变化
➢ 平移 ➢ 反转 ➢ 尺度变换 信号的微分和积分
第7页
通信系统 为传送消息而装设的全套技术设备
信信
信信

信信
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1-15页 15页

信号与系统 电子课件 一、周期信号的分解
2π 它的周期是T, 设有周期信号 f (t ) ,它的周期是 ,角频率 Ω = 2πF = T
它可分解为: 它可分解为: a f (t ) = 0 + a1 cos(Ωt ) + a2 cos(2Ωt ) + ⋅ ⋅ ⋅ + b1 sin(Ωt ) + b2 sin(2Ωt ) + ⋅ ⋅ ⋅ 2 ∞ a0 ∞ = + ∑ an cos(nΩt ) + ∑ bn sin(nΩt ) 2 n =1 n =1 π π (− , ) 成为傅里叶系数, an , bn 成为傅里叶系数,积分区间 (t0 , t0 + T ) 取
π
当只取基波时 ε 12 = 1 − 1 ( 4 ) 2 = 0.189 2 π
1 4 2 1 4 2 当取基波和三次谐波时ε = 1 − ( ) − ( ) = 0.0994 2 π 2 3π
2 2
当取一、 当取一、三、五次谐波 时 1 4 2 1 4 2 1 4 2 2 ε 3 = 1 − ( ) − ( ) − ( ) = 0.0669 2 π 2 3π 2 5π
当m ≠ n 当m = n ≠ 0 当m = n = 0 当m ≠ n 当m = n ≠ 0

第1-8页
t 0 +T
t0
sin( mΩt ) cos( nΩt ) dt = 0, 对于所有的 m和 n

信号与系统 电子课件
1 cos mx cos nx = [cos(m − n) x + cos(m + n) x] 2 1 sin mx sin nx = [cos(m − n) x − cos(m + n) x] 2 1 cos mx sin nx = [sin( m + n) x − sin(m − n) x] 2 1 sin mx cos nx = [sin( m + n) x + sin(m − n) x] 2
A0 + A1 cos(Ωt + ϕ1 ) + A2 cos(2Ωt + ϕ 2 ) + ⋅ ⋅ ⋅ 2
A0 = a0
2 n 2 n
An = a + b , n = 1,2,⋅ ⋅ ⋅ an = An cos ϕ n , bn bn = − An sin ϕ n , ϕ n = − arctan( ) an
在区间 (t0 , t0 + T ) 式中T = 2π 组成正交函数集,并且是完备 组成正交函数集,

证明三角函数集
的正交函数集。 的正交函数集。

0, T t 0 +T cos( mΩt ) cos( nΩt ) dt = , ∫t0 2 T, 0, t 0 +T sin( mΩt ) sin( nΩt ) dt = T ∫t0 2 ,
O
1
t
Wal (1, t )
O
1/ 2
1
t
Wal (2, t )
O
1/ 4
1/ 2
3/ 4
1
t
第1-10页 10页

信号与系统 电子课件 如果是复函数集,正交是指: 如果是复函数集,正交是指: 在区间( 若复函数集 {ϕi (t )}(i = 1,2,⋅ ⋅ ⋅, n) 在区间(t1,t2)满足


t2
t1
ϕ1 (t )ϕ 2 (t )dt = 0
在区间(t 内正交。 则称 ϕ1和ϕ 2 在区间(t1,t2)内正交。 若有n 构成一个函数集, 若有n个函数 {ϕ1 (t ), ϕ 2 (t ),⋅ ⋅ ⋅, ϕ n (t )} 构成一个函数集, 这些函数在区间(t 这些函数在区间(t1,t2)内满足 t2 当i ≠ j 0, ∫t1 ϕi (t )ϕ j (t )dt = K i ≠ 0, 当i = j 则称此函数集为在区间(t 的正交函数集。 则称此函数集为在区间(t1,t2)的正交函数集。 在区间(t 内相互正交的n 在区间(t1,t2)内相互正交的n个函数构成正交信号空间
当n → ∞, ε = 0
2
帕斯瓦尔( 帕斯瓦尔(Parseval)方程 )
∞ j =1

t2
t1
f (t )dt = ∑ C 2 K j j
2 j =1

f (t ) = ∑ C jϕ j (t )
第1-14页 14页

信号与系统 电子课件
4.2 傅里叶级数(周期信号)
若完备的正交集选择的是三角函数集或指数函数 集,那么周期信号所展开的无穷级数就分别成为 三角型傅里叶级数” 指数型傅里叶级数” “三角型傅里叶级数”或“指数型傅里叶级数”, 统称为傅里叶级数。 统称为傅里叶级数。 并非所有的周期信号均能进行傅里叶级数展开 ,只有当周期信号满足狄里赫利条件时,再能展开 只有当周期信号满足狄里赫利条件时, 成傅里叶级数, 成傅里叶级数,通常遇到的周期信号都满足该条件。
第1-12页 12页

信号与系统 电子课件
多元函数就极值问题
∂ ∂C j
n 1 t = 0 j =1 t 2 − t1
Ci
∫ =
t2
t1
f (t )ϕi (t )dt

t2
t1
ϕi2 dt
t2 t1
1 = Ki

信号与系统 电子课件 数学上给定条件下的函数可展开为由某种 基本函数形式所构成的一组多项式。 基本函数形式所构成的一组多项式。 时域基本信号: 连续系统: 时域基本信号: 连续系统:冲激函数 离散系统: 离散系统:单位序列 频域基本信号? 频域基本信号?
第1-3页

信号与系统 电子课件
傅立叶的两个最主要的贡献
第1-20页 20页

信号与系统 电子课件
第1-21页 21页

信号与系统 电子课件
2 2 an = ∫ π f (t ) cos(nΩt )dt , T −2 2 π bn = ∫ 2π f (t ) sin( nΩt )dt , T −2
第1-16页 16页

π
2 2
n = 0,1,2,⋅ ⋅ ⋅ n = 1,2,⋅ ⋅ ⋅
信号与系统 电子课件
f (t ) = = a0 + a1 cos(Ωt ) + a2 cos(2Ωt ) + ⋅ ⋅ ⋅ + b1 sin(Ωt ) + b2 sin(2Ωt ) + ⋅ ⋅ ⋅ 2
傅里叶的第一个主要论点: 傅里叶的第一个主要论点: “周期信号都可表示为谐波关系的正弦信号的加权和” 周期信号都可表示为谐波关系的正弦信号的加权和” 周期信号都可表示为谐波关系的正弦信号的加权和 傅里叶的第二个主要论点 “非周期信号都可用正弦信号的加权积分表示” 非周期信号都可用正弦信号的加权积分表示”
cos 2 x = 2 cos x − 1 = 1 − 2 sin x
2 2
第1-9页

信号与系统 电子课件
证明沃尔什( 证明沃尔什(Walsh)函数集在区间(0,1)内是完备的 )函数集在区间( , ) 正交函数集。 表示。 为编号 正交函数集。用Wal(k,t)表示。k为编号 表示
Wal (0, t )

t2
t1
f (t )ϕi (t )dt
式中K i = ∫ ϕi2 dt
第1-13页 13页

信号与系统 电子课件 当取有限项时, 当取有限项时,
n 1 t2 [ f (t ) − ∑ C jϕ j (t )]2 dt ε2 = t 2 − t1 ∫t1 j =1 n t2 1 = [ ∫ f 2 (t )dt − ∑ C 2 K j ] j t1 t 2 − t1 j =1
第1-18页 18页

信号与系统 电子课件
an = 0 n = 2,4,6,⋅ ⋅ ⋅ 0, bn = 4 nπ , n = 1,3,5,⋅ ⋅ ⋅
信号的傅里叶级数展开式为: 信号的傅里叶级数展开式为:
1 1 1 f (t ) = [sin(Ωt ) + sin(3Ωt ) + sin(5Ωt ) + ⋅ ⋅ ⋅ + sin( nΩt ) + ⋅ ⋅ ⋅] π 3 5 n n = 1,3,5,⋅ ⋅ ⋅ 4
2 T 2 0 2 T an = ∫ 2T f (t ) cos(nΩt )dt = ∫ T − cos(nΩt )dt + ∫ 2 cos(nΩt )dt T −2 T −2 T 0 2 T 2 0 2 T bn = ∫ 2T f (t ) sin(nΩt )dt = ∫ T − sin(nΩt )dt + ∫ 2 sin( nΩt )dt T −2 T −2 T 0
信号与系统 电子课件
连续时间信号与系统的频域分析
第1-1页

信号与系统 电子课件
本章安排
• 信号的正交分解和傅里叶级数 • 周期信号和非周期信号的频谱 • 傅里叶变换的性质 • 周期信号的傅里叶变换 • LTI系统的频域分析和取样定理 LTI系统的频域分析和取样定理 • 离散傅里叶变换及其性质
第1-2页
信号只含一、 奇次谐波分量。 信号只含一、三、五、…奇次谐波分量。 奇次谐波分量
第1-19页 19页

信号与系统 电子课件 n 1 t2 ε2 = [ f (t ) − ∑ C jϕ j (t )]2 dt t 2 − t1 ∫t1 j =1
n T 1 2 2 1 n 2 = [ ∫ π f (t )dt − ∑ b 2 ] = 1 − ∑ b j j − T 2 2 2 j =1 j =1
相关文档
最新文档