初一下册数学课时作业本答案

合集下载

【课时作业】人教版2019年 七年级数学下册 垂线 课时作业本(含答案)

【课时作业】人教版2019年 七年级数学下册 垂线 课时作业本(含答案)

人教版2019年七年级数学下册垂线课时作业本一、选择题1.以下关于距离的几种说法中,正确的有()①连接两点间的线段长度叫做这两点的距离;②连接直线外的点和直线上的点的线段叫做点到直线的距离;③从直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.1个B.2个C.3个D.4个2.P为直线L上的一点,Q为L外一点,下列说法不正确的是( )A.过P可画直线垂直于L B、过Q可画直线L的垂线C.连结PQ使PQ⊥L D、过Q可画直线与L垂直3.如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是()A.PAB.PBC.PCD.PD4.有下列几种说法:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻补角相等;④两条直线相交对顶角互补.其中,能两条直线互相垂直的是()A.①③B.①②③C.②③④D.①②③④5.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′6.如图,0M⊥NP,ON⊥NP,所以ON与OM重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线与已知直线垂直C.过一点只能作一直线D.垂线段最短7.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为()A.4厘米B.2厘米C.小于2厘米D.不大于2厘米8.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离线段有()A.1条B.3条C.5条D.7条9.如图∠BCA=90,CD⊥AB,则图中互余的角有()对.A.1B.2C.3D.410.如图,直线AB,CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法:①∠AOC=α-90°;②∠EOB=180°-α;③∠AOF=360°-2α,其中正确的是()A.①②B.①③C.②③D.①②③二、填空题11.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是 .12.已知AB⊥CD,垂足为O,EF经过点O,∠AOE=35°,则∠DOF等于_________.如图,∠AOB=90°,若OA=3cm,OB=2cm,则点A到OB的距离是 cm,点B到OA 的距离是 cm,点O与AB上各点连接的所有线段中,最短.14.如图,点C在直线MN上,AC⊥BC于点C,∠1=65°,则∠2= °.15.如图,已知直线AB、CD交于点O,OE为射线,若∠1+∠2=90°,∠1=65°,则∠3=_____.16.如图,AB⊥l,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段的长度.1三、解答题17.如图,AB、CD、EF交于O点,AB⊥CD,OG平分∠AOE,∠COE=28°求∠AOG的度数.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD。

最新苏科版七年级数学下册全册课时作业(附解析)

最新苏科版七年级数学下册全册课时作业(附解析)

苏科版七年级数学下册全册课时作业7.1 探索直线平行的条件一.选择题(共8小题)1.如图,下列条件:①∠1=∠3;②∠2+∠4=180°;③∠4=∠5;④∠2=∠3;⑤∠6=∠2+∠3,其中能判断直线l1∥l2的有()A.5 个B.4 个C.3 个D.2 个【解答】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∵∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选:B.2.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【解答】解:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,且相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,且相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等,两直线不平行,此选项错误.故选:B.3.已知四条直线a,b,c,d在同一平面内,a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a⊥c B.b⊥d C.a⊥d D.a∥d 【解答】解:∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选:C.4.下列说法中正确的个数有()①经过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短;③A、B、C三点在同一直线上且AB=BC,则B是线段AC的中点;④在同一平面内,两条直线的位置关系有两种:平行与相交.A.1个B.2个C.3个D.4个【解答】解:①经过一点有且只有一条直线与已知直线垂直,正确;②连接直线外一点与直线上各点的所有线段中,垂线段最短,正确;③A、B、C三点在同一直线上且AB=BC,则B是线段AC的中点,正确;④在同一平面内,两条直线的位置关系有两种:平行与相交.正确;故选:D.5.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有()A.3 个B.2 个C.1 个D.0 个【解答】解:①由∠1=∠2可判定AD∥BC,不符合题意;②由∠BAD=∠BCD不能判定AB∥BC,不符合题意;③由∠ABC=∠ADC且∠3=∠4知∠ABD=∠CDB,可判定AB∥CD,符合题意;④由∠BAD+∠ABC=180°可判定AD∥BC,不符合题意;故选:C.6.如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CDB.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BCD.由AD∥BC,可以推出∠3=∠7【解答】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;B、由AB∥CD,可以推出∠4=∠8,故本选项错误;C、由∠2=∠6,可以推出AD∥BC,故本选项正确;D、由AD∥BC,可以推出∠3=∠7,故本选项正确.故选:B.7.在下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:A、∠1=∠AEF,∠2=∠EFD,∠AEF于∠DFE是内错角,由∠1=∠2能判定AB∥CD,故本选项正确;B、∠1、∠2是内错角,由∠1=∠2能判定AC∥BD,故本选项错误;C、由∠1=∠2不能判定AB∥CD,故本选项错误;D、∠1、∠2是四边形中的对角,由∠1=∠2不能判定AB∥CD,故本选项错误;故选:A.8.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠6【解答】解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.二.填空题(共4小题)9.如图,在△ABC中,以点C为顶点,在△ABC外画∠ACD=∠A,且点A与D在直线BC的同一侧,再延长BC至点E,在作的图形中,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.【解答】解:如图所示,∠A与∠ACD、∠ACE是内错角;∠B与∠DCE、∠ACE是同位角;∠ACB与∠A、∠B是同旁内角.故答案是:∠ACD、∠ACE;∠DCE、∠ACE;∠A、∠B.10.如图,按角的位置关系填空:∠1与∠2是同旁内角,∠1与∠3是内错角,∠2与∠3是邻补角.【解答】解:∠1与∠2是同旁内角,∠1和∠3是内错角,∠2和∠3是邻补角;故答案为:同旁内,内错,邻补.11.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是①③④⑤(填序号)【解答】解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;⑤∵∠7=∠8,∠6=∠8,∴∠6=∠7,∴a∥b,故此选项正确;综上所述,正确的有①③④⑤.故答案为:①③④⑤.12.如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是①②(填序号).【解答】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1不是内错角,此结论错误;④∠1与∠3是内错角,此结论错误;故答案为:①②.三.解答题(共28小题)13.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125 °.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).【解答】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°.(垂直的定义)所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).故答案为:AC;BD;同位角相等,两直线平行;垂直的定义;125;等量代换;AE;BF.14.如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC.请问:(1)AD与EF平行吗?为什么?(2)∠3与∠E相等吗?试说明理由.【解答】解:(1)AD∥EF.理由如下:∵AD⊥BC,EF⊥BC,∴∠EFD=∠ADC=90°,∴AD∥EF;(2)∠3=∠E.理由如下:∵AD∥EF,∴∠1=∠E,∠2=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠3=∠E.15.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=90°.∵∠1=∠ACB(已知)∴DE∥BC(同位角相等,两直线平行)∴∠2=∠BCD.(两直线平行,内错角相等)∵∠2=∠3(已知)∴∠3=∠BCD.(等量代换)∴CD∥FH(同位角相等,两直线平行)∴∠BDC=∠BHF=90 .°(两直线平行,同位角角相等)∴CD⊥AB.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角角相等)∴CD⊥AB.故答案为:90°;同位角相等,两直线平行;∠BCD;两直线平行,内错角相等;∠BCD;等量代换;同位角相等,两直线平行;90;两直线平行,同位角角相等.16.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.17.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD(同位角相等,两直线平行)所以∠BGF+∠3=180°(两直线平行,同旁内角互补)因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=100°.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=50°.(等式性质).所以∠BGF=130°.(等式性质).【解答】解:因为∠1=∠2=80°(已知),所以AB∥CD(同位角相等,两直线平行),所以∠BGF+∠3=180°(两直线平行,同旁内角互补).因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=100°.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=50°.(等式性质).所以∠BGF=130°.(等式性质).故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;100°;;50°;130°.18.完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:角平分线的定义,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.19.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵CD⊥DA,DA⊥AB,,∴∠CDA=90°,∠DAB=90°(垂直定义).∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4 (等角的余角相等),∴DF∥AE(内错角相等,两直线平行).【解答】证明:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°,(垂直定义)∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4,(等角的余角相等)∴DF∥AE.(内错角相等,两直线平行)故答案为:CD⊥DA,DA⊥AB,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.20.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,试说明:CF∥DO.【解答】解:∵DE⊥AO于E,BO⊥AO,∴DE∥OB,∴∠EDO=∠DOF,∵∠CFB=∠EDO,∴∠CFB=∠DOF,∴CF∥DO.21.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠BAC=90 °(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠ 1 =120 °又∵∠B=60°∴∠BAD+∠B=180 °∴AD∥BC(同旁内角互补,两直线平行)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.22.如图,已知∠1=∠B,∠2=∠E,请你说明AB∥DE的理由.【解答】证明:∵∠1=∠B(已知)∴AB∥CF(内错角相等,两直线平行)∵∠2=∠E(已知)∴CF∥DE(内错角相等,两直线平行))∴AB∥DE(平行同一条直线的两条直线平行).23.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【解答】解:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等);故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.24.完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD(已知)∴∠ABD=2∠α(角平分线的定义)∵DE平分∠BDC(已知)∵∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=(等量代换)∴AB∥CD(同旁内角互补两直线平行)【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.25.如图已知BE平分∠ABC,E点在线段AD上,∠ABE=∠AEB,AD与BC平行吗?为什么?解:因为BE平分∠ABC(已知)所以∠ABE=∠EBC(角平分线的意义)因为∠ABE=∠AEB(已知)所以∠AEB=∠EBC(等量代换)所以AD∥BC(内错角相等,两直线平行)【解答】解:因为BE平分∠ABC(已知),所以∠ABE=∠EBC(角平分线的意义),因为∠ABE=∠AEB(已知),所以∠AEB=∠EBC(等量代换),所以AD∥BC(内错角相等,两直线平行).故答案为:角平分线的意义;已知;AEB;EBC;等量代换;内错角相等,两直线平行26.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.【解答】证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)27.已知:如图,∠1=∠2,∠A=∠E,求证:AD∥BE.【解答】解:∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∵∠A=∠E,∴∠3=∠A,∴AD∥BE.28.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.求证:AC∥DF.【解答】证明:∵∠1=∠DMF,∠1=∠2,∴∠2=∠DMF,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.29.(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.【解答】解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EFA(两直线平行,同位角相等),∵∠1=∠2+∠EFA,∴∠1=∠2+∠3.30.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.【解答】证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.31.如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.【解答】证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量替换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量替换),∴AB∥CD(内错角相等,两直线平行).32.如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB∥CD.【解答】证明:∵CE平分∠ACD,∴∠ACE=∠DCE,又∵∠ACE=∠AEC,∴∠DCE=∠AEC,∴AB∥CD.33.在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB.(同旁内角互补,两直线平行.)∴∠1=∠3.(两直线平行,内错角相等.)又∵∠1=∠2,(已知)∴∠2=∠3 .(等量代换)∴EF∥DB.(同位角相等,两直线平行.)【解答】证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴EF∥DB(同位角相等,两直线平行).故答案为:DG∥AB;同旁内角互补,两直线平行;两直线平行,内错角相等;∠2=∠3;等量代换;同位角相等,两直线平行.34.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,【解答】解:AB∥CD,QH∥PG.理由:∵PG平分∠BPQ,QH平分∠CQP,∴∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,∵∠1=∠2,∴∠GPQ=∠HQP,∠BPQ=∠CQP,∴QH∥PG,AB∥CD.35.已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.【解答】解:BD∥CE,理由是:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE36.已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE ∥BC.【解答】证明:∵CD⊥AB(已知),∴∠1+∠3=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠3=∠2(同角的余角相等).∴DE∥BC(内错角相等,两直线平行).37.如图,在△ABC中,AD⊥BC于点D,点E在AB边上,点G在AC边上EF⊥BC于点F,若∠BEF=∠ADG.求证:AB∥DG【解答】证明:∵AD⊥BC,EF⊥BC∴AD∥EF∴∠BEF=∠BAD(两直线平行,同位角相等)又∵∠BEF=∠ADG∴∠ADG=∠BAD∴AB∥DG(内错角相等,两直线平行)38.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.【解答】证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,内错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).39.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.【解答】证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).40.如图,∠B=40°,∠A+10°=∠1,∠ACD=65°.求证:AB∥CD.【解答】证明:∵∠B+∠1+∠A=180°,∠B=40°,∠A+10°=∠1,∴40°+∠A+10°+∠A=180°,∴∠A=65°,∵∠ACD=65°,∴∠ACD=∠A,∴AB∥CD.7.2 探索平行线的性质一.选择题(共7小题)1.如图,AB∥CD,∠1=30°,则∠2的度数是()A.120°B.130°C.150°D.135°【解答】解:∵AB∥CD,∠1=30°,∴∠3=∠1=30°,又∵∠3+∠2=180°,∴∠2=150°,故选:C.2.如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【解答】解:∵DF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=35°,故选:B.3.如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A.70°B.100°C.110°D.120°【解答】解:设DE与AB相交于点F,因为∠1=70°,所以∠AFE=110°,因为DE∥BC,所以∠B=∠AFE=110°,故选:C.4.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A.30°B.50°C.80°D.100°【解答】解:∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选:D.5.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【解答】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选:D.6.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选:A.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选:C.二.解答题(共10小题)8.如图,AB∥CD,∠1=∠2.求证:AM∥CN.【解答】证明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.9.如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.【解答】解:∵直线AB∥CD,∴∠1=∠3∵∠1=54°,∴∠3=54°∵BC平分∠ABD,∴∠ABD=2∠3=108°,∵AB∥CD,∴∠BDC=180°﹣∠ABD=72°,∴∠2=∠BDC=72°.10.如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE 的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.11.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠4=∠3=75°(两直线平行,内错角相等).12.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+ ∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.【解答】解:∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.13.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)【解答】证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)故答案为:邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补.14.已知:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空(理由或数学式)解:∵BE∥GF(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠3(已知)∴∠1=(∠2 )(等量代换)∴DE∥(BC)(内错角相等两直线平行)∴∠EDB+∠DBC=180°(两直线平行同旁内角互补)∴∠EDB=180°﹣∠DBC(等式性质)∵∠DBC=(70°)(已知)∴∠EDB=180°﹣70°=110°【解答】解:∵BE∥GF(已知),∴∠2=∠3(两直线平行同位角相等),∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴DE∥BC(内错角相等两直线平行),∴∠EDB+∠DBC=180°(两直线平行同旁内角互补),∴∠EDB=180°﹣∠DBC(等式性质),∵∠DBC=70°(已知),∴∠EDB=180°﹣70°=110°.故答案为:两直线平行同位角相等,已知,∠2,等量代换,BC,内错角相等两直线平行,两直线平行同旁内角互补,70;15.如图,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=∠BAC(等量代换)∴AB∥DE.((同位角相等两直线平行)∴∠ABD+∠D=180°.(两直线判定同旁内角互补)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)【解答】解:∵∠E=50°,∠BAC=50°,(已知)∴∠E=∠BAC(等量代换)∴AB∥DE.(同位角相等,两直线平行)∴∠ABD+∠D=180°.(两直线平行,旁内角互补)∴∠D=110°,(已知)∴∠ABD=70°.(等式的性质)故答案为:∠BAC,AB,DE,同位角相等,两直线平行,两直线平行,同旁内角互补,16.如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC 于点G、H.若∠1=∠2,∠A=∠C,试说明AD∥BC和AB∥CD.请完成下面的推理过程,并填空(理由或数学式):∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)【解答】证明:∵∠1=∠2(已知)∠1=∠AGH(对顶角相等)∴∠2=∠AGH(等量代换)∴AD∥BC(同位角相等,两直线平行)∴∠ADE=∠C(两直线平行,同位角相等)∵∠A=∠C(已知)∴∠ADE=∠A∴AB∥CD(内错角相等,两直线平行)故答案为:已知;对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;内错角相等,两直线平行.17.如图,直线CD、EF被直线OA、OB所截,∠1+∠2=180°.求证:∠3=∠4.【解答】证明:∵∠2与∠5是对顶角,∴∠2=∠5,∵∠1+∠2=180°,∴∠1+∠5=180°,∴CD∥EF,∴∠3=∠4.7.3 图形的平移一.选择题(共11小题)1.平行线之间的距离是指()A.从一条直线上一点到另一直线的垂线段B.从一条直线上一点到另一条直线的垂线段长度C.从一条直线上一点到另一条直线的垂线的长度D.从一条直线上一点到另一条直线上的一点间线段的长度【解答】解:平行线之间的距离是指:从一条直线上一点到另一条直线的垂线段长度.故选:B.2.如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有()A.1个B.2个C.3个D.4个【解答】解:∵AB∥DC,∴△ABC与△ABD的面积相等,∵AE∥BD,∴△BED与△ABD的面积相等,∵ED∥BC找不到与△ABD等底等高的三角形,∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.故选:B.3.下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有()A.4个B.3个C.2个D.1个【解答】解:①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时的抽屉,是平移;④工厂里的输送带上的物品,是平移;故选:C.4.一个平面图形经过平移后,下列说法正确的是()①对应线段平行或在同一条直线上,②对应线段相等,③图形的大不形状都没有发生变化,④对应点的连线段都平行.A.①②③B.②③④C.①②④D.①③④【解答】解:①对应线段平行或在同一条直线上,故本小题正确;②对应线段相等,故本小题正确;③图形的大小形状都没有发生变化,故本小题正确;④应该为:对应点的连线段平行或在同一条直线上,故本小题错误;故选:A.5.如图,六边形ABCDEF是由6个相同的等边三角形组成的,在这些三角形中,可以由△OBC 平移得到的有()个三角形.A.2 B.3 C.4 D.5【解答】解:△COD方向发生了变化,不属于平移得到;△EOD形状和大小没有变化,属于平移得到;△EOF方向发生了变化,不属于平移得到;△FAO形状和大小没有变化,属于平移得到;△ABO方向发生了变化,不属于平移得到.∴可以由△OBC平移得到的是△ODE,△OAF共2个.故选:A.6.下列说法中,其中错误的()①△ABC在平移过程中,对应点连接的线段一定相等;②△ABC在平移过程中,对应点连接的线段一定平行;③△ABC在平移过程中,周长不变;④△ABC在平移过程中,面积不变.A.①B.②C.③D.④【解答】解:①∵平移不改变图形的和大小,∴△ABC在平移过程中,对应点连接的线段一定相等,故正确;②∵经过平移,对应点连接的线段也可能在一条直线上,故不能说一定平行,∴△ABC在平移过程中,对应点连接的线段不一定平行,故不正确;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确.故选:B.7.将左图案剪成若干小块,再分别平移后能够得到①、②、③中的()A.0个B.1个C.2个D.3个【解答】解:根据左边图形可剪成若干小块,再进行拼接平移后能够得到①、②,不能拼成③,故选:C.8.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【解答】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、能用平移变换来分析其形成过程,故此选项正确;D、不能用平移变换来分析其形成过程,故此选项错误;故选:C.9.如图的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.奔驰﹣德国B.大众﹣德国C.宝马﹣德国D.奥迪﹣德国【解答】解:A、通过旋转得到,故本选项错误;B、通过轴对称得到,故本选项错误;C、通过旋转得到,故本选项错误;D、通过平移得到,故本选项正确.故选:D.10.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的四条线段首尾相接组成一个四边形,最少需要()步.A.5 B.6 C.7 D.8【解答】解:由图形知,中间的线段向右平移1个单位,上边的直线向右平移1个单位,再向下平移2个单位,最下边的直线向上平移1个单位,只有这样才能使构造的四边形平移的次数最少,其它平移方法都多于5步.故通过平移使图中的4条线段首尾相接组成一个四边形,最少需要5步.故选:A.11.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【解答】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.二.填空题(共15小题)12.已知:在同一平面内,直线a∥c,且直线a到直线c的距离是3;直线b∥c,直线b 到直线c的距离为5,则直线a到直线b的距离为2或8 .【解答】解:①,则直线a到直线b的距离为5﹣3=2;②,则直线a到直线b的距离为5+3=8.故答案为2或8.13.如果两直线之间垂线段的长度,这个距离称为平行线之间的距离.【解答】解:两条平行线之间的距离是指两条平行线之间垂线段的长度.故答案为:两直线之间垂线段的长度.14.如图,方格纸中每个最小正方形的边长为1,则两平行直线AB、CD之间的距离是 3 .【解答】解:由图可知,∵AB、CD为小正方形的边所在直线,∴AB∥CD,∴AC⊥AB,AC⊥CD,∵AC的长为3个小正方形的边长,∴AC=3,即两平行直线AB、CD之间的距离是3.故答案为:3.15.如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是点M到直线CD的距离,线段MN 的长度是点M到直线EF的距离,又是平行线AB、EF间的距离,点N到直线MG的距离是线段GN的长度.【解答】解:线段GM的长度是点M到直线CD的距离;线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离;点N到直线MG的距离是线段GN的长度.16.如图,该图的周长是28cm.【解答】解:利用平移,可以发现该图的周长为2(6+8)=28(cm)故答案为:28cm.17.如图,在宽为20m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为551 m2.【解答】解:可把两条路平移到耕地的边上,如图所示,则耕地的长变为(30﹣1)m,宽变为(20﹣1)m,耕地面积为:29×19=551(m2).故答案是:551.18.如图,是某宾馆楼梯示意图(一楼至二楼),若要将此楼梯铺上地毯,则至少需要 6 米.【解答】解:横台阶向下平移,竖台阶向左平移,得横台阶的长度是3.5m,竖台阶的长度是2.5m,台阶的从长度是:3.5+2.5=6(m),故答案为:6m.19.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为6900 m2.【解答】解:由题意可得:草坪的面积为:(101﹣1)×(70﹣1)=6900(m2).故答案为:6900.20.在如图所示的草坪上,铺设一条宽为2的小路,则小路的面积16 .【解答】解:根据题意知,小路的面积=2×8=16.故答案是:16.21.如图,从A地到B地有三条路①②③可走,每路长分别为l,m,n(图中“┌”、“┘”、“└”表示直角),则第③条路最短,另外两条路的长短关系是相等.【解答】解:根据平移的性质可得①、②两条路线的总长度相等;③路线的长度最短,因为CE+CD>DE.故答案为:③;相等.22.如图所示,三角形ABC经过平移后得到三角形DEF,其中,点B、C、E、F在一条直线上.若AD=5,BC=3,则CE= 2 ,CF= 5 .【解答】解:∵BC=3,AD=5,∴CF=AD=BE=5,∴CE=BE﹣BC=5﹣3=2,故答案为:2、5.23.如图,线段DE由线段AB平移而得,AB=4,EC=7﹣CD,则△DCE的周长为11 cm.。

课时作业本七年级下册数学答案南通专用

课时作业本七年级下册数学答案南通专用

课时作业本七年级下册数学答案南通专用
一、七年级下册数学答案:
1、第一章函数与方程
(1)y=2x+1 答案:
解:令y=2x+1,即y-1=2x 即x=( y-1)/2
(2)2x-3y=6 答案:
解:令2x-3y=6,即2x+6/3=y,即x=( y-6)/2
2、第二章平面向量
(1)两个向量的合并:
答案:向量的合并:
解:若AB两个向量的大小和方向分别为 a、b与α、β,向量AB的大小和方向分别为 | AB=|a+b| 与α+β
(2)两个向量的差:
答案:向量的差:
解:若AB两个向量的大小和方向分别为 a、b与α、β,向量AB的大
小和方向分别为 | AB=|a-b| 与α-β
3、第三章比例与比
(1)一个容器中装了甲、乙两种水果各半,其中的甲水果的数量是乙
水果的3倍,这个容器中有多少个乙水果:
答案:答:共有6个乙水果。

解:由容器中装了甲水果和乙水果各半可知容器中的水果总共有12个,由葡萄比例关系3:1可推出其中有6个乙水果。

(2)4份比例是2:3,已知有8份,其中2份是甲,则有多少份乙:
答案:答:有12份乙。

解:由4份比例是2:3可知甲乙比例为2:3,已知有8份,其中2份
是甲,则可推出有12份乙。

初一数学课时作业本答案【三篇】

初一数学课时作业本答案【三篇】

初一数学课时作业本答案【三篇】
第二章2.1从生活中理解几何图形答案
1、2、3、4、
BCAB
5、(1)圆柱(2)正方体和长方体
(3)球(4)圆锥
6、56
7、(6);(2)(3)(4)(6)
8、解:55.
9、解:4个数之和的最小值为16.即a+b+c≥15,所以
a+b+c+1≥16
第二章2.2点和线答案
1、2、3、4、5、
DACBD
6、经过两点有一条直线,并且只有一条直线
7、1,6,3
8、①②④
9、解:1条直线MN;2条射线,分别是射线EM和射线EN;8条线段,
分别是DC,DE,DB,E-B,CE,CA,E-A,AB.
12、解:(1)直线;
(2)射线,射线OA;
(3)非正数,端点O表示零;
(4)线段,线段BA.
13.解:(1)3,2,1,3,2,1,6;
(2)4,3,2,1,4,3,2,1,10;
(4)画一条直线,在直线上依次取A、C、D、E、B共5个点,用线段来表示车票,
单程有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,考虑往返车票不同,
共需安排20种不同的火车票
第二章2.3线段的长短答案
1、2、3、
CDC
4、AB-CD,AB>CD,AB
5、两点之间的所有连线中,线段最短
6、AB,AE;DC
7、线段AB外
8、解:小英的看法是对的,标注确实有问题.由两点之间的所有连线中,
线段最短可知,甲、乙之间的距离应小于18千米,可小明标注的甲、
乙两地的距离为20千米,故标注有问题.
9、同样长。

七年级数学下课时练习参考答案

七年级数学下课时练习参考答案

七年级数学(下)课时练习参考答案8.1 角的表示一、选择题1.C 2.A 3.C二、填空题4.绕着它的端点从起始位置旋转到终止位置所成;始边;终边。

5.当角的终边与始边恰成一条直线是,所成的角;当射线旋转一周回到起始位置时,所成的角6.∠O,∠α,∠AOB;O;OA与OB 7.2三、解答题8.∠BAD;∠B;∠ACB;∠ACD; ∠D;∠CAD 9.(1)3 (2)6 (3)10 (4)288.2 角的比较一、选择题1.D 2.C 3.C二、填空题4.(1)∠AOC (2)∠AOD (3)∠BOC (4)∠BOD 5.90°6.70°三、解答题7.解:与题意可知∠AOB为平角即∠BOC+∠AOC=180°又∠BOC=2∠AOC,那么∠BOC=120°,又OD、OE三等分∠BOE那么∠BOC=3∠BOE,∠BOE=40°8.解:由题意知:∠AOB=∠AOC+∠BOC,又∠AOC=30°;∠BOC=50°那么∠AOB=80°,由题意知OD是∠AOB的平分线,那么∠BOD=12∠AOB=40°,又∠COD=∠BOC-∠BOD,所以∠COD=10°8.3 角的度量(1)一、选择题1.D 2.C 3.B 4.C二、填空题5.60;60 6.30°;6°7.37.5°8.25°19′三、解答题9.(1)32°15′36″ (2)35.43°10.(1)56°20′ (2)46°42′8.3 角的度量(2)一、选择题1.B 2.C 3.C 4.C二、填空题5.互余;互补6.14°7.90°8.50°三、解答题9.(1)32°(2)148°10.(1)∠AOB;∠COD(2)∠AOB=∠DOC因为同一个角的余角相等(3)有,∠BOE8.4 对顶角一、选择题1.B 2.B 3.D 4.C二、填空题5.∠AOD;∠3;∠COE 6.50°;130°7.135°;135°;45°;135°8.180°三、解答题9.∠BOC=105°10.∠AOM=40°8.5 垂直一、选择题1.C 2.D 3.D二、填空题4.(1)一;(2)垂线段5.∠1+∠2=90°6.(1)BE;CD (2)DC;BE三、解答题7.∠AOD=150°8.∠COE=27°第八章综合练习一、选择题1.B 2.B 3.B 4.B二、填空题5.(1)63°7′ (2)46°36′45″ 6.30°7.120°;30°8.180°三、解答题9.∠COE=145°10.∠EOG=59°9.1 同位角、内错角、同旁内角一、选择题1.B 2.D 3.A 4.B二、填空题5.AB;CE;BD;同位角;AB;AC;BC;同旁内角6.∠4,∠3,∠3 7.1;1;4 三、解答题8.∠1和∠E是同位角;∠2和∠3是内错角;∠3和∠E是同旁内角;第二步略。

苏教版七年级下册数学课时作业本答案(2017)

苏教版七年级下册数学课时作业本答案(2017)

[课堂作业]1、C
2、A
3、B
4、∠2 ∠5 ∠3 ∠4
5、∠1与∠2是同旁内⾓,
∠1与∠7是同位⾓,
∠1与∠BAD是同旁内⾓,
∠2与∠6是内错⾓,
∠5与∠8是对顶⾓,
∠3与∠5是内错⾓,
∠4与∠7是内错⾓,
∠4与28没有特殊的位置关系
[课后作业] 6、A
7、C
8、(1) CD AB AE 内错⾓
(2) AE AB CD 同旁内⾓
(3) AB AE CD 同位⾓
(4) AE CD AB 内错⾓
9、(1)由图可知∠1的同位⾓是∠4,因为∠2与∠4互为邻补⾓,所以∠2+∠4=180°.因为∠2=105°,所以∠4=180°=∠2=75° (2)由图可知∠4的内错⾓是∠5,因为∠5与∠1互为对顶⾓,所以∠5=∠1、
因为∠1=40°,所以∠5=40°
(3)由图可知∠3的同旁内⾓是∠4,所以由(1)可知∠4=75°
10、∠A的内错⾓有两个,
分别是∠ACD、∠ACE ∠B的同位⾓有两个,
分别是∠DCE、∠ACE ∠ACB的同旁内⾓有两个,
分别是∠A、∠B
11、(1)同位⾓:∠2与∠5,∠4与∠7,∠1与∠8,∠6与∠3
内错⾓:∠4与∠5,∠3与∠8
同旁内⾓:∠3与∠5,∠4与∠8
(2) ∠A与∠8是直线AB、DE被直线AC所截形成的同位⾓
∠A与∠5是直线AB、DE被直线AC所截形成的同旁内⾓
∠A与∠6是直线AB、DE被直线AC所戳形成的内错⾓。

七年级数学下册课时作业本答案参考

七年级数学下册课时作业本答案参考

统计调查(1)[知识梳理]1、全体对象2、条形统计图扇形统计图折线统计图具体数据百分比交化趋势[课堂作业]1、C2、 D3、 C4、 10805、 (1) 6 20 30(2) 3 12<x<16(3) (8+4)÷30=40%[课后作业]6、 D7、 A8、 B9、 12010、 5511、(1)梨树占14%,苹果树占50%,枣树占16%,桃树占20%(2)梨树:50.4°,苹果树:180°,枣树:57.6°,桃树:72°(3)略统计调查(2)[知识梳理]1、部分对象2、总体个体样本样本容量3、简单随机抽样[课堂作业]1、B2、A3、C4、七年级980名新生的视力情况一个班50名学生的视力情况5、(1)被调查的有330÷22%=1500(人),a=1500-450-420-330=300(2) 360°×450/1500×100%=108°(3)∵12~35岁的网瘾人数约为2 000万,∴12~23岁的网瘾人数约为2 000×300+450=1000(万) [课后作业]6、 C7、 C8、 A9、 52010、 120011、29212、(1)总体是全校同学喜欢球类运动的情况样本是小明所在班的43名同学喜欢球类运动的情况(2)不合适理由略13、(1)8÷16%=50(名)(2)略(3) 360°×(10÷50)=72°(4) 500×(12- 50)=120(名)七年级数学下册课时作业本答案参考(三)直方图[知识梳理]1、个数2、(1)最大值最小值(2)组距组数(3)频数分布表(4)频数分布直方图[课堂作业]1、C2、 C3、 B4、 155、 (1) 8 5(2) 155<x<160(3) 2(4) 49[课后作业]6、A7、A8、39、10 6 810、计算最大值与最小值的差为172-141=31;决定组距与组数,当组距为5时,31/5=6.2.∴可分为7组;列频数分布表和画频数分布直方图略。

课时作业本七年级下册数学答案

课时作业本七年级下册数学答案

课时作业本七年级下册数学答案一、选择题1. 下列四个数中,最大的数是( A. -2 )2. 下列四个数中,最小的数是( C. -3 )3. 下列四个数中,最小的正数是( B. 0 )4. 下列四个数中,最大的负数是( D. -5 )5. 下列四个数中,最小的负数是( A. -7 )6. 下列四个数中,最大的正数是( D. 6 )7. 下列四个数中,最小的正数是( B. 1 )8. 下列四个数中,最大的数是( D. 8 )9. 下列四个数中,最小的负数是( A. -9 )10. 下列四个数中,最大的负数是( C. -4 )二、填空题1. 两个数的和是7,其中一个数是3,另一个数是( 4 )2. 三个数的和是-5,其中一个数是-2,另外两个数分别是( -1 )和( -2 )3. 两个数的差是-3,其中一个数是2,另一个数是( 5 )4. 三个数的差是-4,其中一个数是-2,另外两个数分别是( 2 )和( -6 )5. 两个数的积是-12,其中一个数是-4,另一个数是( 3 )6. 三个数的积是-24,其中一个数是-4,另外两个数分别是( -2 )和( 6 )7. 两个数的商是-2,其中一个数是-6,另一个数是( 3 )8. 三个数的商是-3,其中一个数是-9,另外两个数分别是( 3 )和( -1 )三、解答题1. 已知数列{an}的通项公式为an=2n-1,求a7的值。

解:a7=2×7-1=132. 已知数列{an}的通项公式为an=3n+2,求a8的值。

解:a8=3×8+2=263. 已知数列{an}的通项公式为an=4n-3,求a9的值。

解:a9=4×9-3=334. 已知数列{an}的通项公式为an=5n+1,求a10的值。

解:a10=5×10+1=515. 已知数列{an}的通项公式为an=6n-4,求a11的值。

解:a11=6×11-4=626. 已知数列{an}的通项公式为an=7n+5,求a12的值。

七年级数学课时作业本答案

七年级数学课时作业本答案

七年级数学课时作业本答案[知识梳理] 1、平行2、同位角内错角同旁内角[课堂作业] 1、D2、D3、108°4、∵AB⊥BC,EF⊥BC,∴AB//EF(垂直于同=条直线的两条直线平行).又∵∠1=∠2,∴∠EF//CD(内错角相等,两直线平行).∴AB//CD(如果两条直线都与第三条直线平行,那∠这两条宜线也互相平行)5、直线BF与DC平行理由:∵ BF、DG分别平分∠ABD、∠CDE,∴ ∠FBE=1/2∠ABD,∠GDE=1/2∠CDE.又∵ ∠ABD=∠CDE,∴∠FBE=∠GDE.∴BF//DG(同位角相等,两直线平行).[课后作业] 6、D7、C8、115°9、68°10、 AB与CD平行∵ BE平分∠ABD,DE平分∠CDB,∴∠ABD-=2∠1,∠CDB=2∠2、∴∠ABD+∠CDB=2∠1+2∠2=2(∠1+∠2)∴∠1与∠2互余,∴∠1+∠2= 90°,∴∠ABD+∠CDB=2×90°=180°,∴AB//CD(同旁内角互补,两直线平行)11、合理理由:过点E作∠AEC的平分线EF,则∠AEF=∠CEF.又∵ ∠AEC=120°,∴ ∠AEF=∠CEF= 60°∴∠BAE= 120°∴∠AEF+ ∠BAE=60°+120°=180°.∵ AB//EF(同旁内角互补,两直线平行).同理可得EF//CD.∴AB//CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).12、(1)当a=15°时,图②中的AB'//CD理由:因为∠B'AC'=45°,所以∠B'AC=∠B'AC' =∠α=30°.又因为∠C=30°,所以∠B'AC=∠C.所以AB' //CD. (2)当α=45°时,B'C'//AD 当α=150°时,AC'//CD。

【课时作业】人教版2019年七年级数学下册平行及其判定课时作业本(含答案)

【课时作业】人教版2019年七年级数学下册平行及其判定课时作业本(含答案)

第1 页共7 页人教版2019年七年级数学下册平行及其判定课时作业一、选择题1.如图,能使AB AB∥∥CD 的条件是()A.A.∠∠B=B=∠∠DB.D B.∠∠D+D+∠B=90°∠B=90°∠B=90°C. C. C.∠∠B+B+∠∠D+D+∠E=180°∠E=180°∠E=180°D. D. D.∠∠B+B+∠∠D=D=∠∠E2.如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是()A.A.∠∠1=1=∠∠6B.6 B.∠∠2=2=∠∠6C.6 C.∠∠1=1=∠∠3D.3 D.∠∠5=5=∠∠7 3.3.下列图形中,已知∠下列图形中,已知∠下列图形中,已知∠1=1=1=∠∠2,2,则可得到则可得到AB AB∥∥CD 的是的是 ( ) ( )4.4.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是(如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.A.同位角相等,两直线平行同位角相等,两直线平行同位角相等,两直线平行B. B. B.内错角相等,两直线平行内错角相等,两直线平行C.C.同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行D. D. D.两直线平行,同位角相等两直线平行,同位角相等5.5.如图,能判断直线如图,能判断直线AB AB∥∥CD 的条件是()A.A.∠∠1=1=∠∠2B.2 B.∠∠3=3=∠∠4C.4C.∠∠1+1+∠∠3=180 oD. D.∠∠3+3+∠∠4=180o6.6.如图如图如图,,下列条件中下列条件中,,不能判断直线l1∥l2的是()A.A.∠∠1=1=∠∠3B.3 B.∠∠4=4=∠∠5C.5 C.∠∠2+∠+∠4=1804=1804=180°°D.D.∠∠2=2=∠∠37.7.如图,点如图,点如图,点E E 在CD CD的延长线上,下列条件中不能判定的延长线上,下列条件中不能判定的延长线上,下列条件中不能判定AB AB AB∥∥CD CD的是(的是(的是( ))A.A.∠∠1=1=∠∠2B.2 B.∠∠3=3=∠∠4C.4 C.∠∠5=5=∠∠BD.B D.∠∠B+B+∠∠BDC=180BDC=180°°8.如图,下列条件中,能判定如图,下列条件中,能判定DE DE DE∥∥AC AC的是(的是(的是( ))A.A.∠∠EDC=EDC=∠∠EFCB.EFC B.∠∠AFE=AFE=∠∠ACDC.ACD C.∠∠3=3=∠∠4D.4 D.∠∠1=1=∠∠29.如图如图,,点E 在CD CD延长延长线上线上,,下列条件中不能判定下列条件中不能判定AB AB AB∥∥CD CD的是(的是(的是( ))A.A.∠∠1=1=∠∠2B.2 B.∠∠3=3=∠∠4C.4 C.∠∠5=5=∠∠BD.B D.∠∠B+B+∠∠BDC=180BDC=180°°10.如图如图,,下列条件中下列条件中:(1):(1):(1)∠∠B +∠+∠BCD=180BCD=180BCD=180°;°;°;(2)(2)(2)∠∠1=1=∠∠2;(3)(3)∠∠3=3=∠∠4;(4)(4)∠∠B=B=∠∠5;能判定AB//CD AB//CD的条件个数有的条件个数有的条件个数有( ) ( )A.1B.2C.3D.4二、填空题11.11.如图如图如图,,直线a,b 与直线c 相交,给出下列条件:①∠相交,给出下列条件:①∠1=1=1=∠∠2;②∠;②∠3=3=3=∠∠6;③∠;③∠4+4+4+∠∠7=1807=180°;°;°;④∠④∠5+5+5+∠∠3=1803=180°,其中能判断°,其中能判断a ∥b 的是的是_______________(_______________(_______________(填序号填序号填序号))。

七年级数学下学期课时作业本习题答案

七年级数学下学期课时作业本习题答案

七年级数学下学期课时作业本习题答案同学们做七年级数学作业本习题时要仔细认真的做,学习的关键——重复。

小编整理了关于七年级数学下学期课时作业本习题答案,希望对大家有帮助!七年级数学下学期课时作业本习题答案(一)平行线的性质[知识梳理] 1、相等2、相等3、互补[课堂作业]1、C2、B3、139°10'4、35°5、∵ EF//BC,∴∠BAF= 180°- ∠B=100°.∵ AC平分∠BAF,∴∠CAF=1/2∠BAF=50°,∵ EF//BC,∴ ∠C=∠CAF-50°[课后作业]6、B7、B8、A9、34°10、70°11、∠BEF=40°,∠DEG= 50°12、由题意知AB//CD,AD//BC,∴∠A+∠D=180°,∠A+∠B=180°(两直线平行,同旁内角互补).∴∠B=∠D.同理可得∠A=∠C13、 AB//DC 理由:∵ AD//BC,∴ ∠DAB=∠3=80°(两直线平行,同位角相等).又∵ ∠1=30°,∴∠CAB=∠DAB-∠1=80°-30°=50°∵∠2=50°,∴∠2=∠CAB.∴AB//CD(内错角相等,两直线平行).14、(1) ∠BED=∠B+∠D 理由:过点E向右作EF//AB.∴∠B=∠BEF(两直线平行,内错角相等).又∵ AB//CD,∴EF//CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).∴ ∠D=∠FED(两直线平行,内错角相等).∴∠BEF+∠FED=∠B+∠D,即∠BED= ∠B+ ∠D.(2) ∠ABF(或∠FBE)∠CDF(或∠FDE) 35°七年级数学下学期课时作业本习题答案(二)不等式的性质[知识梳理]1、数(或式子) 不变2、正数不变3、负数改变[课堂作业]1、C2、C3、B4、(1)> (2)>(3)<5、(1)<(2)>(3)<6、(1)②(2)错用不等式性质3(3)∵a>b.∴-2015a<-2015b.∴-2015a+1<-2015b+1[课后作业]7、B8、D9、B10、④11、都成立12、(1)>(2)=(3)<(4)∵4+3a²-2b+bx -(3a²-2b+1)=b²+3>0,∴4+3ax -2b+b²>3ax -2b+113、∵b<c,∴2b<b+c.由b+c<n+1,得2b<a+1;由1<a.得1+a< 2a.∴2b<1+a<2a.∴b<a七年级数学下学期课时作业本习题答案(三)直方图[知识梳理]1、个数2、(1)最大值最小值(2)组距组数(3)频数分布表(4)频数分布直方图[课堂作业]1、C2、 C3、 B4、 155、 (1) 8 5(2) 155<x<160(3) 2(4) 49[课后作业]6、A7、A8、39、10 6 810、计算最大值与最小值的差为172-141=31; 决定组距与组数,当组距为5时,31/5=6.2.∴可分为7组;列频数分布表和画频数分布直方图略。

七下苏科版数学课时作业本答案

七下苏科版数学课时作业本答案

七下苏科版数学课时作业本答案1、第三象限第四象限(正确答案)tanθ>0,则θ是第()象限角。

*第一象限(正确答案)第二象限2、6.过多边形的一个顶点能引出7条对角线,则这个多边形是()边形.[单选题]* A.七B.八C.九D.十(正确答案)3、8.一个面积为120的矩形苗圃,它的长比宽多2米,苗圃长是()[单选题] *A 10B 12(正确答案)C 13D 144、4. 下列命题中,是假命题的是()[单选题] *A、两点之间,线段最短B、同旁内角互补(正确答案)C、直角的补角仍然是直角D、垂线段最短5、9.点(-3,4)到y轴的距离是()[单选题] * A.3(正确答案)B.4C.-3D.-46、下列说法正确的是[单选题] *A.绝对值最小的数是0(正确答案)B.绝对值相等的两个数相等C.-a一定是负数D.有理数的绝对值一定是正数7、从3点到6点,分针旋转了多少度?[单选题] *90°-1080°(正确答案)-90°8、18.如果A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,那么AC两点之间的距离为()[单选题] *A.2cmB.6cmC.2或6cm(正确答案)D.无法确定9、要使多项式不含的一次项,则与的关系是()[单选题] *A. 相等(正确答案)B. 互为相反数C. 互为倒数D. 乘积为110、22.如果|x|=2,那么x=()[单选题] *A.2B.﹣2C.2或﹣2(正确答案)11、9.如果向东走记为,则向西走可记为() [单选题] *A+3mB+2mC-3m(正确答案)D-2m12、44、如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形()[单选题] *A.1对B.2对C.3对(正确答案)D.4对13、18.下列说法正确的是()[单选题] *A.“向东10米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6℃,记为-6℃,那么+8℃的意义就是下降8℃D.若将高1米设为标准0,高20米记作+20米,那么-05米所表示的高是95米(正确答案)14、6.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是1/3?,则正面画有正三角形的卡片张数为()[单选题] *A.3B.5C.10(正确答案)D.1515、6. 某小组有男学生5人,女学生4人.从中选一人去参加座谈会,共有( )种不同的选法.[单选题] *A. 4种B. 5种C. 9种(正确答案)D. 20种16、17. 的计算结果为()[单选题] *A.-7B.7(正确答案)C.49D.1417、43、长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为[单选题] *A.1B.2C.3(正确答案)D.418、48、如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC=24°,则∠BEA的度数为()[单选题] *A.54°B.63°(正确答案)C.64°D.68°19、-2/5角α终边上一点P(-3,-4),则cosα=()[单选题] *-3/5(正确答案)2月3日-0.333333333-2/5角α终边上一点P(-3,-4),则tanα=()[单选题] *20、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.35521、41.若m2﹣n2=5,则(m+n)2(m﹣n)2的值是()[单选题] * A.25(正确答案)B.5C.10D.1522、下列各角中,与300°终边相同的角是()[单选题] *A、420°B、421°C、-650°D、-60°(正确答案)23、2、在轴上的点的纵坐标是()[单选题] *A.正数B.负数C.零(正确答案)D.实数24、6.数学文化《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若向西走9米记作米,则米表示()[单选题] *A向东走5米(正确答案)B向西走5米C向东走4米D向西走4米25、1.在0,,3,2π,﹣23%,2021这六个数中,非正数有()个.[单选题] *A.2(正确答案)B.3C.4D.026、12. 在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A3020的坐标为()[单选题] *A、(1007,1)(正确答案)B、(1007,-1)C、(504,1)D、(504,-1)27、14.不等式|3-x|<2 的解集为()[单选题] *A. x>5或x<1B.1<x<5(正确答案)C. -5<x<-1D.x>128、若(x+m)(x2-3x+n)展开式中不含x2和x项,则m,n的值分别为( ) [单选题] *A. m=3,n=1B. m=3,n=-9C. m=3,n=9(正确答案)D. m=-3,n=929、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.230、两个有理数相加,如果和小于每一个加数,那么[单选题] *A.这两个加数同为负数(正确答案)B.这两个加数同为正数C.这两个加数中有一个负数,一个正数D.这两个加数中有一个为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
初一下册数学课时作业本答案
第六单元练习一答案
基础达标
1~4.BDAA
13.解:因为x=-5/3是方程2x-1/2=●的解,所以2×(-5/3)-1/2=●所以被污染的数等于:-23/6
14.解:设女儿现在x岁,根据题意,可列方程:
4x+20=2(x+20)
用检验的方法可得x=10
4x=4×10=40(岁)
因此,女儿现在10岁,父亲现在40岁。

第六单元练习二第1节答案
基础达标

4x-3x=20+25,45,45
7.解:丽萍的解法有问题,问题出在第②步.正确解法如下:方程两边都加上3,得3x=2x
方程两边都减去2x,得x=0
8.解:(1)移项,得4x-3x=-5合并同类项,得x=-5
(2)移项,得3x-4x=1-5合并同类项,得-x=-4系数化为1,得
x=4
(3)移项,得(5/12)x=-(1/4)+1/3合并同类项,得(5/12x)=1/12系数化为1,得x=1/5
(4)移项,得x/3=1-9+1/6合并同类项,得x/3-5/18系数化为1,得x=5/6
全球通通活费为:0.40×200+50=130(元)
神州行通话费为:0.60×200=120(元)
当拨扪本地电话的通话时问为300分钟时,
全球通通活费为:0.40x200+50=130(元)
神州行通话费为:0.60×200=120(元)
当拨钉本地电话的通话时问为300分钟时,
全球通通活费为:0.40×300+50=170(元)
神州行通话费为:0.60×300=180(元)
(2)设当拨打本地电话的通活时间为x分钟时,两种计费方式收费一样
0.40x+50=0.60x,解之得x=250。

相关文档
最新文档