角的度量试题

合集下载

第三单元 角的度量 单元测试题 参考答案(共3套)

第三单元 角的度量 单元测试题 参考答案(共3套)

一、填空题。

1、从一点引出两条(射线)所组成的的图形叫做角,这个点叫做角的(顶点),这两条射线叫做角的(边)。

2、角的两边在一条直线上,这样的角叫做(平)角,它是(180 )度,它等于( 2 )个直角。

3、∠1+∠2+∠3=平角,其中∠1=42°,∠2=46°,那么∠3=( 92°)。

4、∠1是∠2的3倍,∠1=120°,∠2=(40°)。

5、钟面上3时整时,时针与分针所成的角度是(90 )度,它是(直)角;钟面上(6)时整时,时针与分针成平角。

6、通过一点可以作(无数)条直线,两点之间可以作( 1 )条线段,从一点出发可以作(无数)条射线。

7、把一张正方形纸沿对角线对折,那折痕与正方形的边成(45)°角。

8、用10倍放大镜看15°的角,看到的角的度数是(15°)。

9、将我们学过的角按一定顺序排列:(锐角‹直角‹钝角‹平角‹周角)。

10、这个图形中一共有(10 )个角。

二、判断题。

1、角的大小与边的长短没有关系。

(√)2、两个锐角的和一定比直角大。

(χ)3、平角就是一条直线,周角就是一条射线。

(χ)4、直线比射线长,射线比线段长。

(χ)5、一条4厘米的直线加一条3厘米的直线是7厘米。

(χ)6、用量角器可以测量出任意一个角的度数。

(χ)7、大于90°的角是钝角。

(χ)8、两条直线相交所形成的四个角中,相对的角相等。

(√)三、选择题。

1、比平角小100°的角是( A )。

A.锐角B.钝角C.周角2、从一点出发,可以画(C)个角。

A.1B.2C.无数3、下面( B)是射线。

A.米尺B.手电筒的光C.竹棍4、小强画了一条(C )长5厘米。

A.直线B.射线C.线段5、角的两边是(B )。

A.直线B.射线C.线段6、把平角分成大小两个角,其中较大的角是( B )。

A.锐角B.钝角C.直角7、钟面上,分针转动360°,时针相应会转动( C )。

四年级上册数学试题-《角的度量》(含答案)

四年级上册数学试题-《角的度量》(含答案)

《角的度量》专项练习题1. 钟面上,分针转动360度,相应地时针转动()度.A.360B.180C.60D.30E.202. 要想使物体从斜面上向下滚动时尽可能的快,木板与地面的夹角应该是()A.10∘B.20∘C.75∘D.45∘3. 已知∠1=35∘,∠2=________.4. 看图填空:∠1=________度;∠2=________度;∠3=________度;∠4=________度.5. 已知∠1+∠2=125∘,∠2=35∘,那么∠1=________.6. 在一个三角形中,∠1=72∘,∠2=48∘,∠3=________;在一个直角三角形中,一个锐角是36∘,另一个锐角是________.7. 求图中各个角的度数.已知∠1=75∘,∠2=________,∠3=________,∠4=________.8. 从12:40到13:10,钟表的分针转动的角度为________.9. 已知∠1=90∘,∠2=45∘,∠3=________.10. 如图,已知∠1=60∘,∠2=________,∠3=________,∠4=________.11. 算一算如图:已知∠1=35∘∠3=________∠4=________∠2=________∠1+∠2+∠3=________.12. 如图中∠1=30∘,∠2=________,∠3=________,∠4=________,∠5=________.13. 已知如图,∠1=60∘,∠2=________度.14. 如图,∠1=90∘,∠2=45∘.∠3=________,∠4=________,∠5=________.15. 如图,∠1=________度.16. 钟面上10点时,时针和分针成________角;3点时,时针和分针成________角.钟面上从3时到4时,分针走过了________度,这时时针和分针成________角.17. 有一块三角形地(如图).①从A点走到对边BC,怎样走最近?在图上画出来.②过A点作BC边的平行线.③测量出∠1的度数,并标在图中.18. 在一个直角三角形中.(1)一个锐角是78∘,另一个锐角是多少度?(2)如果两个锐角相等,这两个锐角各是多少度?19. (1)量出下面这个角的度数.(2)过A点画出ι1的平行线,画出ι2的垂线.20. 量一量,数一数.参考答案与试题解析《角的度量》专项练习题一、选择题(本题共计 2 小题,每题 3 分,共计6分)1.【答案】D【考点】角的度量【解析】钟面上分针转动一周是360度,转动了60个格,时针转动5个格,每个格对应的圆心角是360∘÷60=6∘.据此解答.【解答】解:360∘÷60×5,=6∘×5,=30∘.答:时针转动了30∘.故选:D.2.【答案】C【考点】角的度量【解析】当木板与地面夹角越大,物体从斜面上向下滚动时就越快,依此即可求解.【解答】解:因为75∘>45∘>20∘>10∘,所以木板与地面夹角是75度时最符合要求.故选:C.二、填空题(本题共计 14 小题,每题 3 分,共计42分)3.【答案】145∘【考点】角的度量【解析】因∠1和∠2在同一条直线上,它们组成了一个平角,据此解答.【解答】解:∠2=180∘−∠1,∠2=180∘−35∘,∠2=145∘.故答案为:145∘.4.【答案】60,90,30,150【解析】观察图形可知,∠1与图中30度的角组成直角,所以∠1=90−30=60度;∠2是直角,是90度;∠3与30度的角是对顶角,所以∠3=30度;∠4与30度的角组成了一个平角,所以∠4=180−30=150度,由此即可填空.【解答】解:观察图形可知:∠2=90度;∠3=30度(对顶角相等);∠1=90−30=60(度),∠4=180−30=150(度),故答案为:60;90;30;150.5.【答案】90∘【考点】角的度量【解析】根据加法各部分间的关系,可得∠1=125∘−35∘=90∘,由此即可填空.【解答】解:∠1=125∘−35∘=90∘,故答案为:90∘6.【答案】60∘,54∘【考点】角的度量三角形的内角和【解析】(1)在一个三角形中,已知两个角的度数,依据三角形的内角和是180度,即可求出另外一个角的度数;(2)根据在直角三角形中,两个锐角的和是90∘解答即可.【解答】解;(1)∠3=180∘−(72∘+48∘)=60∘;(2)90∘−36∘=54∘.故答案为:60∘;54∘.7.【答案】105∘,75∘,105∘【考点】角的度量【解析】两条直线相交,组成的四个角中,每相邻的两个角都能组成一个平角,据此根据平角的定义即可求出∠2,∠3,∠4的度数.【解答】解:∠2=∠4=180∘−∠1=105∘,∠3=180∘−∠12=75∘.故答案为:105∘,75∘,105∘.180∘【考点】角的度量时、分、秒及其关系、单位换算与计算【解析】分针从12:40到13:10,共经过30分钟;另外,分针一小时转360∘,因此一分钟转360∘÷60=6∘,用分针转过的分钟数乘以每分钟所转的度数即可.【解答】解:分针转过的角度:(360∘÷60)×30=6∘×30=180∘;答:从12:40到13:10,钟表的分针转动的角度为180∘.故答案为:180∘.9.【答案】45∘【考点】角的度量【解析】因∠1,∠2,∠3在同一条直线上,它们组成了一个平角.据此解答.【解答】解:∠3=180∘−∠1−∠2,∠3=180∘−90∘−45∘,∠3=45∘.故答案为:45∘.10.【答案】120∘,60∘,120∘【考点】角的度量【解析】由图可知∠1与∠2,∠1与∠4的和为180∘,而∠2与∠3的和为180∘,根据以上关系计算即可解答.【解答】解:∠2=∠4=180∘−60∘=120∘,∠3=180∘−∠2=60∘.故答案为:120∘,60∘,120∘.11.【答案】35∘,90∘,145∘,215∘【考点】角的度量【解析】根据平角的定义先求出∠2的度数,再求出∠3的度数,根据直角的定义得到∠4的度数;将∠1、∠2、∠3的度数相加得到∠1+∠2+∠3的度数.【解答】∠4=90∘,∠1+∠2+∠3=35∘+145∘+35∘=215∘.故答案为:35∘,90∘,145∘,215∘.12.【答案】60∘,90∘,30∘,150∘【考点】角的度量【解析】观察图形可知,∠3是一个直角,所以∠3=90度,则∠1与∠2组成一个直角,∠1=30度,所以∠2=90−30=60度;∠1与∠4是一对对顶角,所以∠4也是30度;又因为∠1与∠5组成平角,据此求出∠5=180−30=150度;【解答】解:根据题干分析可得:∠3=90∘;∠2=90∘−30∘=60∘;∠4=∠1=30∘;∠5=180∘−30∘=150∘;故答案为:60∘;90∘;30∘;150∘.13.【答案】30【考点】角的度量【解析】由题意得:∠1+∠2+90=180∘,则∠2=180∘−90∘−∠1,据此解答即可.【解答】解:∠2=180∘−90∘−∠1,=90∘−∠1,=90∘−60∘,=30∘.故答案为:30.14.【答案】45∘,135∘,45∘【考点】角的度量【解析】观察图形可知,∠2与∠3组成一个直角,所以∠3=90∘−∠2=45∘;又因为∠3与∠4组成了一个平角,所以∠4=180∘−∠3=135∘;又因为∠4与∠5组成了一个平角,所以∠5=180∘−∠4=45∘;据此即可解答.【解答】解:,∠2与∠3组成一个直角,所以∠3=90∘−∠2=90∘−45∘=45∘;又因为∠3与∠4组成了一个平角,所以∠4=180∘−∠3=180∘−45∘=135∘;又因为∠4与∠5组成了一个平角,15.【答案】115【考点】角的度量【解析】如图所示:,∠2=180∘−135∘=45∘,再根据∠1、∠2和20∘角组成一个平角计算即可.【解答】解:由题意得:,∠2=180∘−135∘=45∘,所以∠1=180∘−20∘−∠2,=180∘−20∘−45∘,=115∘.故答案为:115.16.【答案】锐,直,360,钝【考点】角的度量时、分、秒及其关系、单位换算与计算【解析】根据直角和平角的含义:等于90∘的角叫直角;等于180∘的角叫平角;并结合实际,时钟上12个数字把钟面平均分成12个大格,每个大格的度数是30度,10整时,分针指向12,时针指向10时,夹角是60度,是锐角;3点时,分针指向12,时针指向3,中间有3个大格,是30∘×3=90∘,是直角;从3时到4时,分针走了一圈,是360度,4时,时针指向4,分针指向12,是30∘×4=120∘,是钝角.据此解答即可.【解答】解:10点时:分针和时针之间的夹角是:30∘×2=60∘,是锐角;3点时,分针和时针之间的夹角是:30∘×3=90∘,是直角;钟面上从3时到4时,分针走过了一周,是360度;4时,时针和分针之间的夹角是:30∘×4=120∘,是钝角;故答案为:锐,直,360,钝.三、解答题(本题共计 4 小题,每题 10 分,共计40分)17.【答案】解:如图所示:①从A点走到对边BC,沿AD走最近;②过A点作出BC边的平行线,如图:③测量出∠1的度数为60∘;【考点】两点间线段最短与两点间的距离角的度量过直线外一点作已知直线的平行线【解析】①根据从直线外一点到这条直线的所有连线中,垂线段最短;由此过A点向BC作垂线,交BC于点D;②三角板的一条直角边与已知直线BC重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板和已知直线BC重合的直角边和A点重合,过A点沿三角板的直角边画直线即可;③用量角器的0刻度线对准所量角的一条边,用中心点对准顶点,看看另一条边在哪一刻度这个角就是几度.【解答】解:如图所示:①从A点走到对边BC,沿AD走最近;②过A点作出BC边的平行线,如图:③测量出∠1的度数为60∘;18.【答案】另一个锐角是12度.(2)90÷2=45(度).答:这两个锐角都是45度.【考点】角的度量三角形的内角和【解析】(1)在直角三角形中:一个锐角=90−另一个锐角,(2)在直角三角形中如两个锐角相等,则这两个锐角=90÷2.【解答】解:(1)90−78=12(度).答:另一个锐角是12度.(2)90÷2=45(度).【答案】解:经过测量可得这个角是120度,并画图如下:【考点】角的度量过直线上或直线外一点作直线的垂线过直线外一点作已知直线的平行线【解析】(1)用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此解答.(2)把三角板的一条直角边与已知直线l1重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.(3)把三角板的一条直角边与已知直线l2重合,沿直线移动三角板,使三角板的另一条直角边和A点重合,过A点沿三角板的直角边,向已知直线画直线即可.【解答】解:经过测量可得这个角是120度,并画图如下:20.【答案】30∘,150∘;16,15.【考点】组合图形的计数角的度量【解析】①用量角器量角时:量角器的中心和角的顶点对齐;.量角器的0刻度线和角的一条边对齐;看角的另一条边对着刻度线几,这个角就是几度量得∠1=30∘,∠3=150∘②根据线段的含义:线段有两个端点,有限长,可以度量,如果共有n个顶点,则共有1+2+3+...+(n−1)条线段;③根据角的概念,即由公共端点的两条射线组成的图形叫做角,如果共有n条射线,则共有1+2+3+...+(n−1)个角.【解答】解:①∠1=30∘,∠3=150∘②4+3+2+1=10(条)3+2+1=6(条)10+6=16(条)。

数学角的度量试题答案及解析

数学角的度量试题答案及解析

数学角的度量试题答案及解析1.如图,共端点A的线段a与d,b与e,c与f分别垂直,a与b的夹角时30°,e与f的夹角是45°,求c与d的夹角的度数.【答案】见解析【解析】根据a与d垂直,a与b的夹角是30°,可求出b与d的夹角度数,根据c与f分别垂直,e与f的夹角是45°,可求出c与e的夹角度数,再由b与e垂直,进行运算即可得出答案.解:因为a与d垂直,a与b的夹角是30°,所以b与d的夹角为90°﹣30°=60°;c与f垂直,e与f的夹角是45°,c与e的夹角度数为90°﹣45°=45°,又因为b与e垂直,所以c与d的夹角的度数为60°+45°﹣90°=15°.点评:本题主要考查角的度量,根据几组互相垂直的角得出一只角的余角度数是解答本题的关键.2.通过放大10倍的放大镜来看一个60°的角,这个角是多少度?【答案】这个角是60度【解析】从角的大小与哪些因素有关,从而得出角度是多少.解:由题意知,角的度数与叉开的大小有关,与其它因素无关,所以用放大镜观察还是60度,答:这个角是60度.点评:此题考查了角的大小与什么有关.3.如图所示,∠1=70°,那么∠2等于多少度?【答案】∠2是55°【解析】观察图形可知,根据图形折叠的方法,可知∠1与2个∠2的和正好组成一个平角,据此用180度减去70度,再除以2即可解答问题.解:(180°﹣70°)÷2,=110°÷2,=55°,答:∠2是55°.点评:解答此题的关键是根据图形折叠的方法,得出平角是由∠1和两个∠2的度数组成的.4.9时15分时针和分针的夹角是多少度?【答案】此时时针与分针的夹角是172.5°.【解析】由题意知,时针每小时走30°,一刻钟走7.5度;分针每小时走360°,一刻钟走90°;当9点整时,时针、分针的夹角是90°,当9点15分时,时针和分针的夹角,可用分针和时针的速度差加上90即可求得.解:当时间为9点整时,时针、分针的夹角是90°;当9点15分时,时针走了7.5°,分针正好走了90°,此时时针和分针的夹角是:90°﹣7.5°+90°=172.5°;答:此时时针与分针的夹角是172.5°.点评:解答此题要注意时针、分针都在移动,只是速度不一样,可以理解为行程问题来解答.5.如图,先用量角器量出∠l的度数,然后推算∠2、∠3和∠4的度数.你发现了什么?【答案】两条直线相交形成的四个角中,相对的两个角度数相等,相邻的两个角组成平角【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.再根据平角的定义得出∠2、∠3和∠4的度数.总结结论即可.解:经测量可得:∠1=140°;则根据平角的意义推算出:∠2=40°;∠3=°;∠4=40°;发现:两条直线相交形成的四个角中,相对的两个角度数相等,相邻的两个角组成平角.点评:考查了角的度量和利用平角的意义灵活推算的能力.同时总结出:两条直线相交形成的四个角中,相对的两个角度数相等,相邻的两个角组成平角.6.先估计,再量出下列各角的度数.【答案】∠1=50°;∠2=50°;∠3=50°;∠4=130°【解析】(1)根据角的开口大小,先估测角的度数;(2)把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:观察图形,估测结果是:∠1约是45°,∠2约是45°,∠3约是45°,∠4约是135°;经测量:∠1=50°;∠2=50°;∠3=50°;∠4=130°.点评:此题主要是考查根据角的度量方法正确量出各角度数.7.下面三角尺拼成的角是多少度?【答案】(1)90°+90°=180°;(2)60°+45°=105°;(3)45°+30°=75°【解析】(1)是利用了三角板上两个直角组成的一个大角,是90°+90°=180°;(20是利用了三角板上60°角和45°角拼成的一个大角,是60°+45°=105°;(3)是利用量角器上30°和45°的角拼成的一个大角,是45°+30°=75°.据此解答即可.解:(1)90°+90°=180°;(2)60°+45°=105°;(3)45°+30°=75°点评:本题是考查图形的拼组和角的度量,要熟记三角板上各个角的度数.8.如图中∠1+∠2=150°,∠1=60°,那么∠2=°,∠3=°.【答案】90,30【解析】根据加法各部分的关系可求出∠2的度数.再根据∠1、∠2、∠3组成的角是平角可求出∠3的度数.据此解答.解:∠1+∠2=150°,∠1=150°﹣∠2,=150°﹣60°,=90°,∠1+∠2+∠3=180°,∠3=180°﹣∠1﹣∠2,=180°﹣60°﹣90°,=30°.答:∠2是90°,∠3是30°.故答案为:90,30.点评:本题主要考查了学生根据组成的角是平角及加法各部分之间的关系来解答问题的能力.9.量出如图各角的度数.【答案】【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量出这三个角的度数分别是135°、35°、100°在图上标出如图:点评:此题主要考查根据角的度量方法正确量出各角的度数.10.先量出两个角的度数,再比较大小.【答案】30°,<,70°【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.解:测量结果如下:故答案为:30°,<,70°点评:本题主要考查了学生测量角的能力.11.先量出两个角的度数,再比较大小.【答案】50°,<,70°.【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.再比较大小即可.解:如图所示,测量结果如下:.故答案为:50°,<,70°.点评:此题主要是考查根据角的度量方法正确量出各角度数.12.用一张正方形纸对折两次,打开后再沿一条对角线对折,再打开(如图).你能直接从图④中找出45°、90°和l35°的角吗?【答案】见解析【解析】根据正方形的四个角都是直角,所以只要是将90度角平均分成两份得出的角都是45度角;只要是45度和90度组成的角就是135度角;据此解答即可.解:如图所示:,其中45度角有:∠1、∠2、∠3、∠4、∠5、∠6、∠7、∠8;90度角有:∠9、∠10、∠11、∠12、∠13、∠14、∠15、∠16、∠17、∠18、∠19、∠20;l35°的角有:∠3和∠12组成的角;∠5和∠12组成的角、∠4和∠15组成的角;∠6和∠15组成的角.点评:此题主要考查折叠后的图形的角度,要结合图形和各种角的特点解答.13.(1)兵兵的父亲喜欢打台球,兵兵经常观看,他发现当球撞向桌边的时候就会向另一个方向弹走.如图:(2)请你量出上面每个角的度数.通过上面的度量,你发现台球撞向桌边,然后弹走,有何特点?(3)你能运用发现的特点画完下面台球的运动线路图吗?【答案】见解析【解析】入射光线与水平线的夹角等于反射光线与水平线的夹角,动手操作即可.解:(1)角的度数如下:(2)通过上面的度量,发现:台球撞向桌边的路线与桌边形成了一个角,它弹走的路线也与桌边形成了一个角,两个角度数相同.(3)画图如下:点评:本题主要考查了生活中的轴对称现象;结合轴对称的知识画出图形是解答本题的关键.此题主要考查了轴对称图形的实际应用,做这类题时要注意掌握轴对称图形的性质是关键.14.求出下面各三角形中未知角的度数.∠A=;∠B=;∠C=.【答案】32°,54°,119°【解析】(1)用三角形的内角和减去直角再减去已知角58度,就是未知角的度数.(2)用三角形的内角和减去已知角54度,再减去已知72度,就是未知角的度数,(3)用三角形的内角和减去去已知角26度,再减去已知角35度,就是未知角的度数.解:(1)180﹣90﹣58=32(度).答:未知角是32度.(2)180﹣54﹣72=54(度).答:未知角是54度.(3)180﹣26﹣35=119(度).答:未知角是119度.故答案为:32°,54°,119°.点评:本题主要考查了学生对求三角形未知角的数量关系:未知角=180﹣已知角,这一数量关系的掌握情况.15.量出下列各角的度数.【答案】45°,120°【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量出这三个角的度数分别是45°、120°.在图上标出如图:故答案为:45°,120°.点评:此题主要是考查根据角的度量方法正确量出各角度数.16.先估计,再量一量,填一填.(1)∠1=(2)∠1=∠2=∠3=∠1+∠2+∠3=(3)∠1=∠2=∠3=∠4=∠1+∠2+∠3+∠4=.【答案】40°,60°,90°,30°,180°,60°,120°,60°,120°,360°【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.解:测量结果如下:(1)∠1=40°(2)∠1=60°∠2=90°∠3=30°∠1+∠2+∠3=180°(3)∠1=60°∠2=120°∠3=60°∠4=120°∠1+∠2+∠3+∠4=360°.故答案为:40°,60°,90°,30°,180°,60°,120°,60°,120°,360°.点评:本题主要考查了测量角的能力.17.一个三角形,∠1=70°,∠2比∠3大10°,∠2和∠3分别是多少度?【答案】∠2和∠3分别是60°、50°【解析】三角形的内角和是180度,那么∠2+∠3=180﹣70=110°,又因为∠2比∠3大10°,根据和差问题的解答方法即可求出∠2和∠3分别是多少度.解:∠2+∠3=180﹣70=110°,∠3:(110﹣10)÷2,=100÷2,=50°;∠2=50°+10°=60°;答:∠2和∠3分别是60°、50°.点评:本题结合三角形的内角和定理考查了和差问题,关键是明确:(和+差)÷2=较大数,(和﹣差)÷2=较小数.18.已知∠1=90°,∠2=50°,求∠3、∠4和∠5的度数.【答案】∠3=130°,∠4=50°,∠5=40°【解析】(1)∠2与∠3构成平角,所以∠3=180°﹣∠2,∠2已知,代数计算即可;(2)∠3与∠4构成平角,∠4=180°﹣∠3;(3)∠1、∠2、∠5构成平角,∠5=180﹣∠1﹣∠2.解:(1)∠3=180°﹣∠2=180°﹣50°=130°;(2)∠4=180°﹣∠3=180°﹣130°=50°;(3)∠5=180°﹣∠1﹣∠2=180°﹣90°﹣50°=40°.故答案为:∠3=130°,∠4=50°,∠5=40°.点评:解决本题的关键是根据图示找出已知角与所求角的关系,再利用它们之间的关系解答.19.请算∠1、∠2、∠3各是多少度.∠1=;∠2=;∠3=.【答案】60°;90°;150°【解析】(1)由图意得:∠1和30度角组成一个直角,所以∠1=直角度数﹣30°;(2)由图意得:∠2和50度角、40度角三个角组成一个平角,所以∠2=180°﹣50°﹣40°;(3)由图意得:∠3和30度角组成一个平角,所以∠3=180°﹣30°;据此计算即可.解:(1)∠1=90°﹣30°=60°;(2)∠2=180°﹣50°﹣40°=90°;(3)∠3=180°﹣30°=150°;故答案为:60°;90°;150°.点评:解决本题的关键是根据图意找出图形中角之间的关系.20.8时整,时针与分针的夹角是多少度?【答案】8时整,时针与分针的夹角是120度【解析】画出图形,利用钟表表盘的特征解答.解:8点整,时针指向8,分针指向12,钟表12个数字,每相邻两个数字之间的夹角为30°,因此8点整分针与时针的夹角正好是4×30°=120°.答:8时整,时针与分针的夹角是120度.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.21.∠1=;∠2=;∠3=.【答案】145°;60°;90°【解析】观察图形可知,∠3=90度;∠1与35度的角组成了一个平角,所以∠1=180﹣35=145度;因为∠2与30度的角组成了一个直角,所以∠2=90﹣30=60度;解:观察图形可知:∠3=90°;∠1=180﹣35=145(度);∠2=90﹣30=60(度);故答案为:145°;60°;90°.点评:结合图形中的特殊角如:平角和直角,再利用特殊角的度数进行计算即可解答.22.【答案】(1)90°﹣45°=45°;(2)180°﹣30°﹣120°=30°.【解析】(1)直角三角形中的两个锐角的度数之和是90度,据此即可解答;(2)根据三角形内角和定理,用180度减去已知的两个角的度数,即可解答.解:(1)90°﹣45°=45°;(2)180°﹣30°﹣120°=30°.点评:此题主要考查三角形内角和定理的灵活应用.23.算一算∠1=65°∠2=∠3=∠4=∠1+∠2+∠3+∠4=.【答案】25°;155°;25°;270°【解析】由图意知:(1)∠2=90°﹣∠1;(2)∠3=180°﹣∠2;(3)∠4=180°﹣∠3;(4)∠1+∠2+∠3+∠4=360°﹣90°,或者把四个角的度数加起来.解:(1))∠2=90°﹣∠1,=90°﹣65°,=25°;(2))∠3=180°﹣∠2,=180°﹣25°,=155°;(3))∠4=180°﹣∠3,=180°﹣155°,=25°;(4))∠1+∠2+∠3+∠4=360°﹣90°,=270°.或∠1+∠2+∠3+∠4=65°+25°+155°+25°=270°.故答案为:25°;155°;25°;270°.点评:解决本题要根据题中所给信息,找到已知角与未知角的关系,将未知角转化为用已知角来计算.24.已知∠1=50°,求∠2=?∠3=?【答案】∠2=130°,∠3=90°【解析】根据平角的定义求出∠2的度数,根据直角和平角的定义求出∠3的度数.解:∠2=180°﹣50°=130°,∠3=180°﹣90°=90°.答:∠2=130°,∠3=90°.点评:本题的关键是熟悉直角等于90°,平角等于180°.25.先写出每个钟面上的时间,再量一量钟面上的分针和时针所组成的角的度数【答案】时间是:7:00 4:00 3:00 6:00角度是:150° 120° 90° 180°【解析】根据钟面图,分别写出钟面上的时间即可;钟面一周为360°,共分12大格,每大格为360÷12=30°,看时针和分针相隔几个大格,然后分别求出即可.解:时间是:7:00 4:00 3:00 6:00角度是:150° 120° 90° 180°答:第一个钟表的时间是7:00,角度是150°;第二个钟表的时间是4:00,角度是120°;第三个钟表的时间是3:00,角度是90°;第四个钟表的时间是6:00,角度是180°.点评:本题要在了解钟面结构的基础上进行,应能够根据钟面图,写出钟面表示的时间,并能根据时针和分针之间的格子数,求出时针和分针之间的角度.26.你会量如图所示的角的度数吗?【答案】【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此解答.解:经测量可得:.点评:本题考查了学生用量角器测量角的能力.注意第一个角的测量.27.分别求出图中∠1,∠2,∠3的度数.【答案】∠1,∠2,∠3的度数分别是45°、45°135°【解析】观察图形可知,∠1与45°的角组成了一个直角,所以∠1=90°﹣45°;∠3与45°的角组成了一个平角,所以∠3=1800°﹣45°;∠2与45°的角组成了一组对顶角,根据对顶角相等即可解答.解:根据题干分析可得:∠1=90°﹣45°=45°;∠3=1800°﹣45°=135°;∠2=45°(等对角相等),答:∠1,∠2,∠3的度数分别是45°、45°135°.点评:解答此类问题的关键是利用图形中特殊角的度数,如直角、平角、对顶角,据此计算即可解答.28.求出下面各角的度数.已知:∠1=150°∠2=;∠3=;∠4=.【答案】30°;150°;30°【解析】观察图形可知,∠1与∠2组成了一个平角,所以∠1+∠2=180°,由此即可得出∠2=180°﹣150°=30°,同样的道理可以求出∠3和∠4的度数.解:根据题干分析可得:∠2=180°﹣150°=30°;∠3=180°﹣30°=150°;∠4=180°﹣150°=30°;故答案为:30°;150°;30°.点评:解答此题的关键是利用图形中特殊角的度数,如直角或平角,利用它们的度数进行计算即可解答.29.如图:已知∠1=30°,计算出∠1+∠2=;∠3+∠4=.【答案】120°;240°【解析】根据题干可得:已知∠1=30°,∠1与∠4组成了一个平角,据此可以求出∠4的度数,又因为∠2=∠3=90°,据此即可解答问题.解:根据题干分析可得:∠1=30°,∠2=∠3=90°,所以∠4=180°﹣30°=150°,所以∠1+∠2=30°+90°=120°;∠3+∠4=90°+150°=240°.故答案为:120°;240°.点评:根据已知条件和图形中特殊角的度数,如直角和平角的度数进行计算,是解决此类问题的关键.30.求出下面图形中的角的度数∠1=∠2=∠3=∠4=.【答案】60°,125°,80°,100°【解析】(1)这是一个直角三角形,其中一个角是直角,90°;还有一个角是30°,用三角形的内角和减去已知的这两个角就是要求的∠1;(2)用三角形的内角和减去已知的两个内角就是要求的∠2;(3)先根据三角形的内角和,用180°减去40°,再减去60°,就是∠3的度数,然后再根据∠3和∠4构成一共平角,运用平角的度数180°减去∠3的度数就是∠4的度数.解:(1)180°﹣90°﹣30°,=90°﹣30°,=60°;∠1=60°;(2)180°﹣20°﹣35°,=160°﹣35°,=125°;∠2=125°;(3)180°﹣40°﹣60°,=140°﹣60°,=80°;∠3=80°;∠4=180°﹣80°=100°.故答案为:60°,125°,80°,100°.点评:本题利用三角形的内角和是180度,以及平角是180度进行求解即可.31.计算图形中角的度数.∠1=55°,∠2=,∠3=,∠4=.【答案】125°;55°;125°【解析】两条直线相交,组成的四个角中,相邻的两个角互补,对顶角相等,据此即可解答.解:观察图形可知,∠2=∠4=180°﹣55°=125°(邻补角的定义),∠3=∠1=55°(等对角相等),故答案为:125°;55°;125°.点评:此题主要考查两条直线相交组成的四个角之间的关系的灵活应用.32.测出下列角的度数,并画一个75°的角.【答案】(1)根据题干分析测量如下:(2)根据分析画图如下:【解析】(1)测量角的方法是:顶点与量角器的中心对其,一条边与量角器的0刻度线对齐,则另一条边指向的度数,就是这个角的度数;(2)角的画法是:先画一条射线,用量角器的圆点和射线的端点重合,0刻度线和射线重合,在量角器75°的刻度上点上点,过射线的端点和刚作的点,画射线即可.解:(1)根据题干分析测量如下:(2)根据分析画图如下:点评:本题考查了学生角的测量和画法.33.用量角器量出图中∠2的度数,再求∠1、∠3和∠4的度数.【答案】∠1的度数是55°,∠3的度数是145°,∠4的度数是35°【解析】先用量角器量出∠2的度数,再根据直角的定义得出∠1的度数,根据平角的定义得出∠3和∠4的度数.解:经测量可得∠2=35°,则∠1=90°﹣35°=55°,∠3=180°﹣35°=145°,∠4=180°﹣145°=35°.答:∠1的度数是55°,∠3的度数是145°,∠4的度数是35°.点评:考查了角的度量,直角的度数是90°,平角的度数是180°.34.如图,已知∠1=130°,求∠2、∠3的度数.【答案】∠2是50度,∠3是40度【解析】由图意得出:∠1和∠2组成一个平角,所以∠2=180°﹣∠1;又因为在直角三角形里,∠2和∠3的和是90°,据此解答即可.解:∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.点评:解决本题的关键是根据图意找出所有角之间的关系.35.已知∠1=60°,求∠2、∠3和∠4的度数.【答案】∠2=30°,∠3=60°,∠4=30°【解析】根据∠3+∠4=90°,可知∠1+∠2=60°,那么就可以求出∠2=90°﹣∠1=90°﹣60°=30°;又因为∠2+∠3=90°,∠3+∠4=90°,同理可以求出∠3和∠4的度数,据此解答.解:∠2=90°﹣∠1=90°﹣60°=30°,∠3=90°﹣∠2=90°﹣30°=60°,∠4=90°﹣∠3=90°﹣60°=30°;答:∠2=30°,∠3=60°,∠4=30°.点评:本题关键是理解相邻的两个角成直角.36.(1)如图1,已知:∠1=45°,求:∠2(2)如图2,已知:∠1=90°,∠2=30°求:∠3等于多少度?(3)如图3,已知:∠1=135°求:∠2、∠3、∠4各等于多少度?【答案】(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°,【解析】(1)∠1和∠2组成的是平角,(2)∠1、∠2和∠3组成的是平角,(3)∠1和∠3组成平角,∠1和∠4组成的是平角,∠2和∠3组成的是平角.解:(1)∠2=180°﹣∠1=180°﹣45°=135°.(2)∠3=180°﹣∠1﹣∠2=180﹣90°﹣30°=60°.(3)∠3=180°﹣∠1=180°﹣135°=45°,∠4=180°﹣∠1=180°﹣135°=45°,∠2=180°﹣∠3=180°﹣45°=135°,点评:本题的关键是根据图找出哪两两个角组成的是平角,再根据平角是180度进行求解.37.(1)作出三角形底边上的高.(2)∠1=37°,∠2=°.【答案】53【解析】(1)画法如下:使直角三角尺的一条直角边与三角形的底平行或重合,沿着底边左右移动直角三角尺使三角形的顶点与直角三角尺的另一条直角边重合,沿着这条直角边画线,这条过三角形的顶点和底边的线段就是三角形的高.(2)在直角三角形中,两个锐角的和是90度,所以用90度减去∠1的度数,即可得出另一个锐角∠2的度数.解:(1)画高如下:(2)∠2=90°﹣∠1=90°﹣37°=53°.故答案为:53.点评:解答此题的依据是过直线外一点作已知直线的垂线的方法,以及三角形内角和定理的灵活应用.38.求下面各角的度数.已知∠1=30°,∠2=90°.∠3=;∠4=;∠5=.【答案】60°;120°;60°【解析】观察图形可知,∠1和∠5组成了一个直角,所以可以求出∠5=90﹣30=60度,∠5与∠4组成了一个平角,由此可求出∠4=180﹣60=120度;因为∠5与∠3是一组对顶角,所以∠3=∠5=60度,由此即可解答.解:∠1和∠5组成了一个直角,所以∠5=90﹣30=60(度),∠5与∠4组成了一个平角,所以∠4=180﹣60=120(度);因为∠5与∠3是一组对顶角,所以∠3=∠5=60(度),故答案为:60°;120°;60°.点评:解答此类问题的关键是利用图形中的特殊角的度数进行解答,如平角,直角和对顶角.39.已知∠1=20°,求∠2和∠3的度数.(写出计算过程)【答案】∠2=70°,∠3=110°.【解析】由图可知,∠1与∠2和为90°,据此可求出∠2的度数,又∠2与∠3的和为180°,即可求出∠3的度数.解:因为∠1+∠2=90°,所以∠2=90°﹣∠1=90°﹣20°=70°,因为∠2+∠3=180°,所以∠3=180°﹣∠2=180°﹣70°=110°.点评:本题主要考查了直角和平角的定义,属于基础题,比较简单.40.已知∠1=25°,∠2=°,∠3=°,∠4=°.【答案】155,25,155【解析】分别根据平角的定义即可求出各角的度数.解:∠2=180°﹣∠1=155°,∠3=180°﹣∠2=25°,∠4=180°﹣∠1=155°.故答案为:155,25,155.点评:本题关键是熟悉平角的度数是180°.41.如图,∠1=,∠2=,∠3=.【答案】45°,45°,135°【解析】观察图形可知,∠3与45°的角组成了一个平角,据此可得∠3=180﹣45=135度,∠2与∠3也组成了一个平角,据此可得∠2=180﹣135=45度;又因为∠1与90度和45度的角拼成一个平角,所以∠1=180﹣90﹣45=45度.解:根据题干分析可得:∠1=180﹣90﹣45=45(度),∠3=180﹣45=135(度),∠2=180﹣135=45(度),故答案为:45°,45°,135°.点评:根据图形中特殊角的度数,即平角的度数是180度,进行计算解答,是解决此类问题的关键.42.把直角三等分.【答案】【解析】(1)以点B为一顶点作等边三角形;(2)作等边三角形点B处的角平分线.解:如图所示:点评:用到的知识点为:等边三角形的一个内角为60°,角平分线把一个角分成相等的两个角.43.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.【答案】∠AOB的度数是28°【解析】此题可以设∠AOB=x,∠BOC=2x,再进一步表示∠AOC=3x,根据角平分线的概念表示∠AOD,最后根据已知角的度数列方程即可计算.解:设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°.点评:此类题设恰当的未知数,根据已知条件进一步表示出相关的角,列方程计算较为简便.44.计算出下列各角的度数.【答案】(1)角的度数是65°(2)角的度数是140°【解析】(1)利用等腰三角形的性质,三角形的内角和是180度即可作答;(2)根据平角的定义即可求解.解:(1)(180°﹣50°)÷2,=130°÷2,=65°.答:角的度数是65°.(2)180°﹣40°=140°.答:角的度数是140°.点评:此题主要考查等腰三角形两底角相等的性质,三角形的内角和的定义,平角的度数是180°.45.从早晨7时到晚上7时,钟面上共有几次时针与分针成50°角?【答案】从早晨7时到晚上7时,钟面上共有22次时针与分针成50°角.【解析】首先,夹角为50度有两种情况,一种是分针在时针前,一种是分针在时针后,从早晨7时起,当时针与分针夹角是50度时,应该是分针在时针后,由于此题的数量关系不是很明显,可以采取实际操作的方法,进行解答.解:找一个钟表,实际操作,从早晨7时到晚上7时,拨一拨,数一数,钟面上共有22次时针与分针成50°角;答:从早晨7时到晚上7时,钟面上共有22次时针与分针成50°角.点评:解答此题的关键是,知道夹角为50度有两种情况,一种是分针在时针前,一种是分针在时针后,然后实际操作,即可得出答案.46.(2010•十堰模拟)量出下图角的度数,是度,再以这个角的顶点为顶点,在角内画一个直角.【答案】【解析】(1)用三角尺测量即可.(2)用直角三角尺的直角顶点固定在O点,然后画出.解:(1)用三角尺量得∠AOB=135°.(2)用直角三角尺的直角顶点固定在O点,然后画出.点评:此题考查学生角的测量以及画角的能力.47.(2012•仙游县模拟)如图是一张长方形纸折起来以后的图形,已知∠1=30°,那么∠2=度.【答案】75【解析】如图,把这张长方形纸展开,以∠1的顶点为顶点的角是一个平角,平角=180°,折起来后∠2盖住了一个与它度数相等的角,也就是2∠2与∠1的和是180°,据此解答.解:由分析得:∠2=(180°﹣30°)÷2=150°÷2=75°;故答案为:75.点评:本题是考查简单的图形折叠问题、角的度量.48.观察钟面.指针从“12”绕点O顺时针旋转°到“2”;指针从“12”绕点O逆时针旋转90°到;指针从“12”绕点O顺时针旋转°到“6”.【答案】60,9,180【解析】钟表里,每一大格所对的圆心角是30°,根据这个关系,依次推算即可解答.解:指针从“12”绕点O顺时针旋转到“2”,经过2个大格,2×30°=60°,;指针从“12”绕点O逆时针旋转90°,经过3个大格,12﹣3=9;指针从“12”绕点O顺时针旋转到“6”,经过6个大格,6×30°=180°.故答案为:60,9,180..点评:本题考查钟面角的问题,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.49.想一想.(1)图1中∠1度,∠2度,∠3度.(2)图2中∠A度,∠B度,∠C度.【答案】90;130;50;50;100;70.【解析】(1)观察图形,根据直角的定义可得,∠1是90°;根据平角的定义可得,∠2=180°﹣50°=130°,∠3与50°的角是对顶角,所以∠3=50°;(2)根据三角形内角和定理可先求出∠C=180﹣80﹣30=70度,根据平角的定义可求出∠B=180﹣80=100度,再利用三角形内角和定理即可求出∠A=180﹣100﹣30=50度.解:(1)观察图形可知,∠1=90°,∠2=180°﹣50°=130°,∠3=50°,(2)∠C=180﹣80﹣30=70(度),∠B=180﹣80=100(度),∠A=180﹣100﹣30=50(度),故答案为:90;130;50;50;100;70.点评:此题要根据三角形的内角和定理,平角的定义以及对顶角相等建立角之间的等量关系.50.将分别含有30°和45°角的一副三角板如图放置,且30°和45°角的顶点重合在一起,OM平分∠AOC,ON平分∠DOC,画出几何图形,并求∠MON的大小.【答案】∠MON=22.5°【解析】由图可得角之间的关系:∠COM=∠AOC=(∠BOC+∠A0B),∠CON=∠COD=(∠BOC+∠A0B+∠AOD),∠MON=∠COD﹣∠AOC=(∠BOC+∠A0B+∠AOD)﹣(∠BOC+∠A0B),由此解答即可.解:根据题意可作图如下:根据图中所示:∠COM=∠AOC=(∠BOC+∠A0B);∠CON=∠COD=(∠BOC+∠A0B+∠AOD);∠MON=∠COD﹣∠AOC,=(∠BOC+∠A0B+∠AOD)﹣(∠BOC+∠A0B),=(30°+∠A0B+45°)﹣(30°+∠A0B),=×75°﹣×30°,=22.5°;故答案为:∠MON=22.5°.点评:此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,对同学们的作图、分析、计算能力有较高要求.在计算分析的过程中注意动手操作,在计算中消去共同的未知量.。

2024年数学四年级上册角的度量基础练习题(含答案)

2024年数学四年级上册角的度量基础练习题(含答案)

2024年数学四年级上册角的度量基础练习题(含答案)试题部分一、选择题:1. 在下列图形中,哪个图形的角是直角?A. 钝角三角形B. 等腰直角三角形C. 锐角三角形D. 梯形2. 量角器的中心点应与角的哪个部分重合?A. 角的顶点B. 角的一条边C. 角的另一条边D. 角的外部3. 一个角的度数是60°,它是哪种角?A. 钝角B. 直角C. 锐角D. 周角4. 下列哪个角的度数大于90°?A. ∠ABCB. ∠DEFC. ∠GHID. ∠JKL(其中∠ABC、∠DEF、∠GHI、∠JKL分别为锐角、直角、钝角、周角)5. 一个等边三角形的每个角是多少度?A. 30°B. 45°C. 60°D. 90°6. 下列哪个角的度数小于180°?A. 平角B. 周角C. 直角D. 锐角7. 量角器上的刻度线表示的是角的什么?A. 顶点B. 边C. 度数D. 外部8. 下列哪个图形的角是周角?A. 正方形B. 长方形C. 三角形D. 圆9. 两个角的度数和为180°,这两个角是什么关系?A. 邻补角B. 对顶角C. 内错角D. 同位角10. 下列哪个图形的角是钝角?A. 等边三角形B. 等腰直角三角形C. 等腰钝角三角形D. 正方形二、判断题:1. 角的度数越大,角就越大。

()2. 量角器是测量角的大小的工具。

()3. 所有三角形的内角和都是180°。

()4. 一个直角三角形的两个锐角之和是90°。

()5. 量角器上的刻度线越密,表示角的度数越小。

()6. 一个钝角的度数一定大于90°。

()7. 两个锐角的和一定是钝角。

()8. 一个角的度数是360°,这个角是周角。

()9. 两个角的度数相等,这两个角一定相同。

()10. 用直尺可以测量角的大小。

()。

角的度量单元测试题

角的度量单元测试题

角的度量单元测试班级:姓名:一、填空。

1、直线上两点间的一段叫做〔〕,线段有〔〕个端点。

2、〔〕、〔〕都可以无限延长,其中〔〕没有端点,〔〕只有一个端点。

3、一个钝角大于〔〕度,而小于〔〕度。

4、从一点引出〔〕所组成的图形叫做角。

5、一个周角=〔〕个平角=〔〕个直角。

6、度量角的大小可以使用〔〕。

7、下午6时,时针和分针形成了〔〕角。

二、判断。

1、0°的角和360°的角一样大。

〔〕2、一条射线OA,经过度量它的长度是5厘米。

〔〕3、射线就是周角,直线也就是平角。

〔〕4、角的大小与边的长短有很大关系。

〔〕5、用三角尺可以画出75°、120°、140°的角。

〔〕6、经过一点可以画一条直线。

〔〕三、选择。

1、〔〕比直角大而比平角。

A、锐角B、钝角C、周角2、角的大小与两边的〔〕有关。

A、张开的大小B、长短3、下列图中,一共有〔〕条线段。

A、5B、10C、4四、在〔〕里填上“>〞、“<〞或“=〞。

180°-136°〔〕钝角平角〔〕71°+24°180°+180°〔〕周角45°+35°〔〕35°+45°90°-21°〔〕90°+21°180°-15°-85°〔〕180°-〔15°+85°〕五、量一量、说一说。

六、画一画。

1、画一条直线、一条射线〔注意在旁边注明〕。

2、用量角器画一个130°的角。

3、用量角器画一个25°的角。

4、用三角板画一个135°和120°的角。

七、计算。

1、求图中∠2=?2、∠1+∠2=240°,∠2=131°,那么∠1=?八、下面这个图形中,你能找到哪些角,各有几个?。

初一数学角的度量试题

初一数学角的度量试题

初一数学角的度量试题1.把10.26°用度、分、秒表示为()A.10°15′36″B.10°20′6″C.10°14′6″D.10°26″【答案】 A【解析】解:因为0.26°×60=15.6′,0.6′×60=36″,∴10.26°用度、分、秒表示为10°15′36″.2.把2.36°用度、分、秒表示正确的是()A.2°3′6″B.2°30′6″C.2°21′6″D.2°21′36″【答案】 D【解析】解:根据角的换算可得2.36°=2°+0.36×60′=2°+21.6′=24°+21′+0.6×60″=2°21′36″.3.计算180°-48°39′40″-67°41′35″的值是()A.63°38′45″B.58°39′40″C.64°39′40″D.63°78′65″【答案】A【解析】解:180°-48°39′40″-67°41′35″=63°38′45′′.4.若∠α=30°,则∠α的补角是()A.30°B.60°C.120°D.150°【答案】 A【解析】解:由互补的概念,可得180°-30°=150°.5.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,下列说法正确的是()A.∠1=∠2B.∠1="∠3"C.∠1<∠2D.∠2>∠3【答案】B【解析】解:∠1=28°24′=28.4°.故∠1=∠3,而∠2最小.6.已知∠1与∠2互余,∠1=55°,则∠2=_______.【答案】35°【解析】解:由互余的概念知∠2=90°-∠1=90°-55°=35°.7.将一副直角三角板按图示方法放置(直角顶点重合),则∠AOB+∠DOC=________度.【答案】180°【解析】解:因为∠AOB+∠DOC=∠AOC+∠BOD-∠COD+∠DOC=∠AOC+∠BOD=90°+90°=180°.8.已知一个角的补角是128°37′,那么这个角的余角是_______.【答案】38°37′【解析】解:先求出这个角=180°-128°37′=51°23′,然后根据互余的概念求出其余角.9.比较大小:32.5°______32°5'(填“>”、“=”或“<”).【答案】>【解析】解:32.5°=32°30′,32.5°>32°5'.10.32°44′24″用度来表示为______度.【答案】32.74°【解析】解:根据1°=60′,1′=60″得,24″÷60=0.4′,44.4′÷60=0.74°,所以32°44′24″用度来表示为32.74°.。

角的度量专项练习卷(共14套)

角的度量专项练习卷(共14套)
习题十二 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题十三 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题十四 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题一 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题二 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题三 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题四 第 1 页
角的度量专项练习卷
姓名: __ห้องสมุดไป่ตู้________ 成绩: ___________ 一、量出角的度数
习题五 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题六 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题七 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数
习题八 第 1 页
角的度量专项练习卷
姓名: ___________ 成绩: ___________ 一、量出角的度数

角的度量练习题带答案

角的度量练习题带答案

角的度量练习题带答案一、填空1、5时整,时针与分针组成的角是度。

时整, 时针与分针成平角。

2.120°的角比平角小度。

比直角大度。

3.写出下面各角的度数。

4.1周角 = 平角 = 直角 = 度。

5.如果∠1 + ∠= ∠+ ∠3,∠1 =0°,那么∠= 。

二、选择1.一个锐角和一个直角可以组成一个。

A、锐角B、钝角C、平角2.经过两点,可以画条线段。

经过一点可以画多少条射线。

A、1B、C、D、无数条3.角的两条边是A、直角。

B、线段。

C、射线。

4.下面说法错误的是 A、一条直线长6厘米。

B、角的两边张开得越大,角越大。

C、钟面上2时整,分针和时针成锐角。

5.两个锐角之和一定是A、直角B、锐角C、钝角D、不能确定三、解答1.量一量,算一算。

∠1 = ∠= ∠= ∠= ∠1 + ∠+ ∠+ ∠=∠1 = ∠= ∠=∠1 + ∠+ ∠=2.已知:∠1=2°,求其余3个角的度数?3.写出下面各角的度数。

已知:∠1=∠3,∠2=140°,求∠1、∠3的角是多少度?4.求:∠1、∠、∠3的度数?5.下面是一张长方形纸折起来以后形成的图形,已知:∠1 =2,求∠=?《角的度量》同步试题及答案一、填空1、5时整,时针与分针组成的角是度。

时整, 时针与分针成平角。

考查目的:巩固对量角器原理的认识;巩固对平角的认识。

答案:150;6解析:钟面上有12个大格,每一大格所对的角是30度,5时整刚好是5个大格,所以是150度;时针旋转一周是12小时,半周是6小时,所以当6时整,时针与分针刚好在成平角。

2.120°的角比平角小度。

比直角大度。

考查目的:加深对不同角的度数的认识。

答案:60;30。

解析:平角是180°,用180°—120°=60°;直角是90°,用120°—90°=30°。

3.写出下面各角的度数。

角的度量同步试题及答案

角的度量同步试题及答案
、填空
《角的度量》同步试题
1、5时整,时针与分针组成的角是(
)度。(
时整,时针与分针成平
角。
2.120°的角比平角小(
)度。比直角大(
)度。
3.写出下面各角的度数。
・_*鼻
¥f m —:• J '■
4.
5.
1.
2.
3.
1周角
)平角
)直角
)度。
如果/1+/2 =/2 +
/3,/1 = 40
,那么/3 =(
直角
B、锐角
C、
钝角
D、不能确定
三、解答
(1) /1 =(
/1
+
2.已知:
1= 52°
,求其余3个角的度数?
3.写出下面各角的度数。
—二7
1140
已知:/仁/3,/2=140°,求/1、/3的角是多少度?
4.求:/1、/2、/3的度数?
5.下面是一张长方形纸折起来以后形成的图形,已知:/1 = 32,求/2 =?
5.下面是一张长方形纸折起来以后形成的图形,已知:/1 = 32,求/2 =?
考查目的:巩固对图形特征的认识。
答案:/2=90°—32°X2= 26°解析:看图可知,/2和2个/1组成了一个直角,根据直角=90°,通过计算可以得到答案。
答案:2、4、360解析: 可以依据图形的特点找到关系,也可以根据图形的度数推算出关系。
5.如果/1 +/2 =/2 +/3,/1 = 40°,那么 /3 =(考查目的:考查学生对等式的认识,鼓励学生借助数形结合的方法分析。
答案:40°。
解析:因为/1和/3加上同一个角的和相等,所以/1=/3=40°。

角的度量测试题及答案

角的度量测试题及答案

D A BC 3.3 角的度量一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.⑤∠AOB=90°∠BOC=30°则∠AOC=120°A.1个B.2个C.3个D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个二、填空: 4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图: (1)画∠AOB=100°;(2)在∠AOB 的内部画射线OC,使∠BOC=50°; (3)在∠AOB 的外部画射线OD,使∠DOA=40°;(4)在射线OD 上取E 点,在射线OA 上取F,使∠OEF=90°. 8.任意画一个三角形,估计其中三个角的度数, 再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.。

角的度量练习题

角的度量练习题

一、填空1.从一点引出两条( )所组成的图形叫做角,这个点叫做角的( ),这两条射线叫做角的( )。

2.计量角的大小的单位是( )。

3.在一个直角三角形中,有两个相等的角,那么这两个角都是( )。

4.用一副三角尺中( )度和( )度的角可以拼成105度的角。

二、精心挑选1.度量一个角,角的一条边对着量角器上内圈“0”的刻度,另一条边对着内圈刻度“60”,这个角是( )。

A.60度B.180度C.20度2.一个5倍的放大镜看一个15度的角,这个角是( )。

A.15度B.20度C.75度3.度量一个角,角的一条边对着量角器上内圈“180”的刻度,另一条边对着内圈刻度“60”,这个角是( )。

A.60度B.120度C.无法确定三、量一量1.量出下面各角的度数。

( )度( )度( )度( )度( )度( )度2.量出下面各图中角的度数。

三个角的度数和是( ) 三个角的度数和是( )四个角的度数和是( ) 四个角的度数和是( )1.下图中④是直线,①是射线,②是线段.⑦是锐角,⑧是平角,⑨是周角,⑥是钝角.2.从一点引出两条射线,所组成的图形叫作角.这两条射线叫作角的边,角通常用符号∠来表示..量角时,量角器的中心与重合,零刻度与重合,角的另一条边所对的量角器上的刻度,就是这个角的.重合,零刻度与重合,角的另一条边所对的量角器上的刻度,就是这个角的11.看图计算.①如图∠1=50°,求∠2、∠3、∠4的度数.②已知,图中∠1=30°,∠3=90°,求∠2、∠4、∠5、∠6各是多少度?③已知图中∠1=30°,∠3=40°,求∠2、∠4、∠5各是多少度?12.下图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进口、出口应分别设在什么地方?一、填空题(每空1分,共20分)1、角是从一点引出的两条( )所组成的图形,这一点是角的(),两条射线是角的( )。

四年级上册数学《第3单元 角的度量》单元测试卷(含答案详解)

四年级上册数学《第3单元 角的度量》单元测试卷(含答案详解)

人教版四年级上册《第3单元角的度量》单元测试卷一、填空.1.(3分)直线上两点间的一段叫做,线段有个端点.2.(3分)、都可以无限延长,其中没有端点,只有一个端点.3.(3分)钝角是大于度而小于度的角.4.(3分)从一点引出所组成的图形叫做角.5.(3分)一个周角=个平角=个直角.6.(3分)度量角的大小,可以用.7.(3分)下午6时,时针和分针形成了角.8.(3分)计量角的大小常用的单位是.9.(3分)我们学过的五种角,按度数的大小排列起来是:.二、判断.对的打“√”,错的打“×”10.(3分)0°的角和360°的角一样大..(判断对错)11.(3分)一条射线OA,经过度量它的长度是5厘米..(判断对错)12.(3分)射线就是周角,直线也就是平角..(判断对错)13.(3分)角的大小与边的长短有很大关系..(判断对错)14.(3分)用三角尺可以画出75°、120°、140°的角.(判断对错)15.(3分)过一点可以画一条直线(判断对错)三、选择.16.(3分)()比直角大而比平角小.A.锐角B.钝角C.周角17.(3分)角的大小与两边的()有关.A.张开的大小B.长短18.(3分)如图中,一共含有()条线段.A.4B.5C.10四、解答题(共2小题,满分5分)19.(3分)将同类的角放在一起.90°、180°、115°、60°、360°、42°20.(2分)量一量、说一说.五、画一画.21.画一条直线、一条射线(注意在旁边注明).22.用量角器画一个130°的角.23.用量角器画一个25°的角.24.用三角板画一个135°和120°的角.六、计算.25.求图中∠2=?26.已知∠1+∠2=240°,∠2=131°,那么∠1=?人教版四年级上册《第3单元角的度量》单元测试卷参考答案与试题解析一、填空.1.(3分)直线上两点间的一段叫做线段,线段有2个端点.【考点】图形的拼组.【分析】根据直线、线段的含义及其性质进行解答.【解答】解:直线上两点间的一段叫做线段,线段有2个端点.故答案为:线段;2.2.(3分)直线、射线都可以无限延长,其中直线没有端点,射线只有一个端点.【考点】直线、线段和射线的认识.【分析】根据直线、射线的含义:射线有一个端点,无限长;直线无端点,无限长;进而解答即可.【解答】解:直线、射线都可以无限延长,其中直线没有端点,射线只有一个端点.故答案为:直线;射线;直线;射线.3.(3分)钝角是大于90度而小于180度的角.【考点】角的概念和表示.【分析】根据钝角的含义:大于90°,小于180°的角,叫做钝角;据此解答.【解答】解:由钝角的含义可知:钝角大于90度,而小于180度的角;故答案为:90,180.4.(3分)从一点引出两条射线所组成的图形叫做角.【考点】角的概念和表示.【分析】根据角的含义:由一点引出的两条射线所围成的图形,叫做角;进行解答即可.【解答】解:根据角的含义可知:从一点引出的两条射线所围成的图形,叫做角;故答案为:两条射线.5.(3分)一个周角=2个平角=4个直角.【考点】角的概念和表示;角的度量.【分析】根据周角、平角、直角的度数及关系直接解答即可.【解答】解:1周角=360°,1平角=180°,1直角=90°;所以一个周角=2个平角=4个直角.故答案为:2,4.6.(3分)度量角的大小,可以用量角器.【考点】角的度量.【分析】度量角大小的工具是量角器,据此进行判断.【解答】解:度量角的大小,可以用量角器.故答案为:量角器.7.(3分)下午6时,时针和分针形成了平角.【考点】角的度量.【分析】下午6时,时针指向6,分针指向12,相差6个大格,再乘每个大格的度数即可求解.【解答】解:下午6时,时针指向6,分针指向12,相差6个大格,30°×6=180°,180°是平角.故答案为:平.8.(3分)计量角的大小常用的单位是度.【考点】角的度量.【分析】在国际单位制中,角的单位是度.【解答】解:在国际单位中,角的单位是度,符号:“°”.故答案为:度.9.(3分)我们学过的五种角,按度数的大小排列起来是:锐角<直角<钝角<平角<周角.【考点】角的概念和表示.【分析】根据锐角、钝角、直角、平角、周角的含义进行解答:锐角:大于0°小于90°的角;钝角:大于90°小于180°的角;直角:等于90°的角;平角:等于180°的角;周角:等于360°的角;据此解答即可.【解答】解:由分析知:锐角<直角<钝角<平角<周角;故答案为:锐角<直角<钝角<平角<周角.二、判断.对的打“√”,错的打“×”10.(3分)0°的角和360°的角一样大.×.(判断对错)【考点】角的概念和表示.【分析】因为0度的角是没有度数,是0°;而360度的角是一个圆周角,是360°;进而判断即可.【解答】解:因为0度的角是没有度数,是0°;而360度的角是一个圆周角,是360°,所以0度的角和360度的角不一样大;故答案为:×.11.(3分)一条射线OA,经过度量它的长度是5厘米.×.(判断对错)【考点】直线、线段和射线的认识.【分析】根据射线的含义:射线有一个端点,无限长;进行判断即可.【解答】解:由分析可知:一条射线OA,经过度量它的长度是5厘米,说法错误;因为射线无限长;故答案为:×.12.(3分)射线就是周角,直线也就是平角.×.(判断对错)【考点】角的概念和表示.【分析】因为角和线是两个不同的概念,二者不能混淆,并结合周角、平角的特点,进行分析、进而判断即可.【解答】解:平角的特点是两条边成一条直线,不能说直线是平角;周角的特点是两条边重合成射线,但不能说成周角是一条射线;故答案为:×.13.(3分)角的大小与边的长短有很大关系.×.(判断对错)【考点】角的概念和表示.【分析】根据角的含义:由一点引出的两条射线所围成的图形,叫做角;可知:角的大小与边的长短无关,只与两边叉开距离的大小有关,两边叉开距离的越大,角越大,反之,角越小.【解答】解:根据角的特点可知:角的大小与边的长短无关,只与两边叉开距离的大小有关;故答案为:×.14.(3分)用三角尺可以画出75°、120°、140°的角.×(判断对错)【考点】用三角尺画30°,45°,60°,90°角.【分析】因一副三角板中的各个角的度数分别是30°、60°、45°、90°把它们进行组合,得出可以画出的角,从而进行判断.【解答】解:可以用一副三角尺直接画出来的角有60°﹣45°=15°,60°+45°=105°,60°+90°=150°,90°+45°=135°,90°+30°=120°,30°+45°=75°,°90°+90°=180°,所以在这几个角中,140°角不可以直接用一副三角尺画出.故答案为:×.15.(3分)过一点可以画一条直线×(判断对错)【考点】直线、线段和射线的认识.【分析】根据直线的性质:过两点可以画一条直线,过一点可以画无数条直线;据此判断.【解答】解:由直线的性质可得:“过一点只可以画无数条直线”,故原题说法错误;故答案为:×.三、选择.16.(3分)()比直角大而比平角小.A.锐角B.钝角C.周角【考点】角的概念和表示.【分析】根据钝角、直角、平角的含义:大于90°小于180°的角是钝角,直角是等于90°的角,平角是等于180°的角;由此可知:钝角比直角大比平角小;【解答】解:因为钝角是大于90°小于180°的角,而直角是90°,所以钝角一定大于直角.故选:B.17.(3分)角的大小与两边的()有关.A.张开的大小B.长短【考点】角的概念和表示.【分析】根据角的含义“由一点引出的两条射线所围成的图形叫做角”可知:角的大小跟边的长短无关,跟两边叉开的大小有关;由此选择即可.【解答】解:根据角的含义可知:角的大小跟两边张开的大小有关,跟边的长短无关;故选:A.18.(3分)如图中,一共含有()条线段.A.4B.5C.10【考点】组合图形的计数.【分析】根据线段的定义,分别写出图形中的线段,从而可得出答案.【解答】解:由题意可得,图形中的线段有:AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条.故选:C.四、解答题(共2小题,满分5分)19.(3分)将同类的角放在一起.90°、180°、115°、60°、360°、42°【考点】角的概念和表示.【分析】根据角的分类可知,锐角<90°,平角=180°,180°>钝角>90°,直角=90°,周角=360°,据此分类即可.【解答】解:如图所示:20.(2分)量一量、说一说.【考点】直线、线段和射线的认识.【分析】直尺的“0”刻度线和所量图形的一个端点重合,另一个端点在直尺上的刻度,就是该线段的长度;先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.【解答】解:如图,五、画一画.21.画一条直线、一条射线(注意在旁边注明).【考点】直线、线段和射线的认识.【分析】根据直线、射线的含义:射线有一个端点,无限长;直线无端点,无限长;进而解答即可.【解答】解:22.用量角器画一个130°的角.【考点】画指定度数的角.【分析】根据角的画法:(1)画一条射线,使量角器的中心与射线的端点重合,0刻度线与射线重合;(2)在量角器130度的地方点上一个点;(3)以画出的射线的端点为端点,通过刚画的点,再画出另一条射线;(4)画完后在角上标上符号,写出度数.【解答】解:如图所示:23.用量角器画一个25°的角.【考点】画指定度数的角.【分析】画一个25°的角可据以下步骤进行:(1)先画一条射线使量角器的中心和射线的端点重合,零刻度线和射线重合;(2)在量角器25°角刻度线的地方点一个点;(3)以射线的端点为端点,通过刚画的点,再画一条射线即可作成一个25°的角.【解答】解:24.用三角板画一个135°和120°的角.【考点】图形的拼组;用三角尺画30°,45°,60°,90°角.【分析】显然从两个三角板中,将一个等于45°的角,再加上另一个三角板中等于90°的角,即可得到135°的角;将一个等于30°的角,再加上另一个三角板中等于90°的角,即可得到120°的角.【解答】解:45°+90°=135°,30°+90°=120°;画图如下:六、计算.25.求图中∠2=?【考点】线段与角的综合.【分析】观察图形可知,∠2与30°的角组成一个直角,所以∠2=90°﹣30°,据此即可解答.【解答】解:∠2=90°﹣30°=60°,答:∠2=60°.26.已知∠1+∠2=240°,∠2=131°,那么∠1=?【考点】三角形的内角和.【分析】根据减法的意义,已知两角的度数之和与其中一个角的度数,求另一个角的度数,用这两角度数之和减去已知角的度数.【解答】解:因为∠1+∠2=240°,∠2=131°所以∠1=240°﹣131°=109°答:∠1等于109°.。

数学角的度量试题答案及解析

数学角的度量试题答案及解析

数学角的度量试题答案及解析1.通过放大10倍的放大镜来看一个60°的角,这个角是多少度?【答案】这个角是60度【解析】从角的大小与哪些因素有关,从而得出角度是多少.解:由题意知,角的度数与叉开的大小有关,与其它因素无关,所以用放大镜观察还是60度,答:这个角是60度.点评:此题考查了角的大小与什么有关.2.求出下列各角的度数.(1)∠1=;∠3=(2)∠1=.【答案】45°;135°;35°.【解析】(1)观察图形可知,∠1与45度的角互为余角,所以∠1的度数是90﹣45=45度;∠3与45度的角互为补角,所以∠3的度数是180﹣45=135度;(2)因为∠1与相邻的两个角的度数之和是180度,所以∠1的度数是:180﹣85﹣60=35度;由此即可填空.解:(1)∠1与45度的角互为余角:∠1=90﹣45=45(度);∠3与45度的角互为补角,所以∠3的度数是180﹣45=135(度);(2)∠1的度数是:180﹣85﹣60=35(度);故答案为:45°;135°;35°.点评:解答此题的关键是根据图形中的特殊角的度数进行解答,即互余的两个角的度数之和是90度,互补的两个角的度数之和是180度,由此即可解答.3.先估计,再量出下列各角的度数.【答案】∠1=50°;∠2=50°;∠3=50°;∠4=130°【解析】(1)根据角的开口大小,先估测角的度数;(2)把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:观察图形,估测结果是:∠1约是45°,∠2约是45°,∠3约是45°,∠4约是135°;经测量:∠1=50°;∠2=50°;∠3=50°;∠4=130°.点评:此题主要是考查根据角的度量方法正确量出各角度数.4.如图,已知∠AOB=∠BOC,∠COD=∠DOE,A、O、E、三个点在同一条直线上.求∠BOD的度数.【答案】∠BOD的度数是90°【解析】观察图形可知,这四个角组合在一起组成一个平角,因为平角的度数是180度,所以四个角的和是180度,又因为∠AOB=∠BOC,∠COD=∠DOE,所以∠BOC+∠COD=∠BOD=×180°=90°,据此即可解答.解:因为∠AOB=∠BOC,∠COD=∠DOE,所以∠AOB+∠BOC+∠COD+∠DOE=2(∠BOC+∠COD)=2∠BOD,即∠BOD=(∠AOB+∠BOC+∠COD+∠DOE),=×180°,=90°.答:∠BOD的度数是90°.点评:解答此题的关键是利用图形中已知的平角的度数是180度进行计算解答.5.量出如图各角的度数.【答案】【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量出这三个角的度数分别是135°、35°、100°在图上标出如图:点评:此题主要考查根据角的度量方法正确量出各角的度数.6.∠1和∠2的和是°.【答案】180【解析】因为四边形的内角和是360°,而有2个角是直角,则另外2个角的和是(360﹣90×2)度.据此即可求解.解:因为∠1+∠2+90°×2=360°,所以∠1+∠2=180°;故答案为:180.点评:此题考查了多边形的内角和是360度.7.已知两个长方形按如图所示的方式叠放,下图中的∠1和∠2是否相等?说明理由.【答案】∠1和∠2相等,因这两个角与∠3的和都是90°【解析】根据题意知∠1和∠3组成了一个直角,∠2和∠3组成了一个直角,让∠1和∠2分别用∠3和90°的关系表示,再进行比较.解:∠1+∠3=90°,∠1=90°﹣∠3,∠2+∠3=90°,∠2=90°﹣∠3,所以:∠1=∠2.答:∠1和∠2相等,因这两个角与∠3的和都是90°.点评:本题的关键是通过中间的量∠3来表示∠1和∠2,再时行比较.8.把时针和分针所组成的角的名称填在横线上.再比较角的大小.3时 2时 5时 6时 12时周角>角>角>角>角.【答案】直角;锐角;钝角;平角;直角;平;钝;直;锐.【解析】因为每个大格子的夹角是30°,根据时针和分针之间的大格子数,计算出每个角度,再给角的分类,比较大小即可.解:在3时,时针指向3,分针指向12,中间有3个大格,因为每个大格所夹的角度是30°,所以是30°×3=90°,是直角;2时时,时针指向2,分针指向12,中间有2个大格,是30°×2=60°,是锐角;5时时,时针指向5,分针指向12,中间有5个大格,是30°×5=150°,是钝角;6时时,时针指向6,分针指向12,在一条直线上,是180°;12时时,分针和时针重合,是360°,是周角.从大到小排列为:周角>平角>钝角>直角>锐角.故答案为:直角;锐角;钝角;平角;直角;平;钝;直;锐.点评:解答此题应明确:钟面上共分为12个大格,一个大格是30度.9.先量出两个角的度数,再比较大小.【答案】50°,<,70°.【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.再比较大小即可.解:如图所示,测量结果如下:.故答案为:50°,<,70°.点评:此题主要是考查根据角的度量方法正确量出各角度数.10.请你把下面图形的四个角的度数量出来.你发现了什么?(1)图1:∠1=∠2=∠3=∠4=(2)图2:∠1=∠2=∠3=∠4=(3)图3:∠1+∠4=∠2+∠3=.【答案】50°,130°,50°,130°;65°,115°,65°,115°;180°,180°【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.依此量出各角,再作答.解:测量可知:(1)图1:∠1=50°,∠2=130°,∠3=50°,∠4=130°;(2)图2:∠1=65°,∠2=115°,∠3=65°,∠4=115°;(3)图3:∠1+∠4=55°+125°=180°,∠2+∠3=55°+125=180°.故答案为:50°,130°,50°,130°;65°,115°,65°,115°;180°,180°.点评:此题主要考查角的度量和四边形的内角和等于360°的性质.11.【答案】75°;120°;120°;60°【解析】(1)是用30度角和45度角拼成的;(2)是用90度角和30度角拼成的;(2)所求角和60度角拼成平角,用180度减去60度就是角的度数;(4)是90度角和30度角的差;据此计算即可.解:(1)30°+45°=75°;(2)90°+30°=120°;(3)180°﹣60°=120°;(4)90°﹣30°=60°;故答案为:75°;120°;120°;60°.点评:解决本题的关键是熟悉三角板上每个角的度数.12.量出下列各角的度数.【答案】45°,120°【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量出这三个角的度数分别是45°、120°.在图上标出如图:故答案为:45°,120°.点评:此题主要是考查根据角的度量方法正确量出各角度数.13.看图填空.已知:∠1=48°∠2=﹙﹚∠3=﹙﹚∠4=﹙﹚【答案】132°;48°;132°【解析】(1)∠1与∠2的和是180°,则∠2=180°﹣∠1;(2)∠2与∠3的和是180°,则∠3=180°﹣∠2;(3)∠1与∠4的和是180°,则∠4=180°﹣∠1.解:(1)∠2=180°﹣∠1,=180°﹣48°,=132°;(2)∠3=180°﹣∠2,=180°﹣132°,=48°;(3)∠4=180°﹣∠1,=180°﹣48°,=132°.故答案为:132°;48°;132°.点评:本题主要考查角的度量,用平角为180°这一知识点解决问题.14.一个三角形,∠1=70°,∠2比∠3大10°,∠2和∠3分别是多少度?【答案】∠2和∠3分别是60°、50°【解析】三角形的内角和是180度,那么∠2+∠3=180﹣70=110°,又因为∠2比∠3大10°,根据和差问题的解答方法即可求出∠2和∠3分别是多少度.解:∠2+∠3=180﹣70=110°,∠3:(110﹣10)÷2,=100÷2,=50°;∠2=50°+10°=60°;答:∠2和∠3分别是60°、50°.点评:本题结合三角形的内角和定理考查了和差问题,关键是明确:(和+差)÷2=较大数,(和﹣差)÷2=较小数.15.(1)∠C=()°;(2)∠B=()°.【答案】75,60.【解析】(1)根据三角形的内角和等于180度,用180减去55,再减去50,就是∠C的度数,(2)直角三角形的两个锐角的和是90度.用90减30,就是∠B的度数.解:(1)∠C=180°﹣55°﹣50°=75°,(2)∠B=90°﹣30°=60°.故答案为:75,60.点评:本题重点考查了学生对三角形的内角和是180度知识的掌握情况.16.【答案】(1)90°﹣45°=45°;(2)180°﹣30°﹣120°=30°.【解析】(1)直角三角形中的两个锐角的度数之和是90度,据此即可解答;(2)根据三角形内角和定理,用180度减去已知的两个角的度数,即可解答.解:(1)90°﹣45°=45°;(2)180°﹣30°﹣120°=30°.点评:此题主要考查三角形内角和定理的灵活应用.17.如图中∠1=40°,你能求出∠2、∠3、∠4其他几个角的度数吗?【答案】∠2=140°,∠3=40°,∠4=140°【解析】根据平角的定义依次可求∠2、∠3、∠4的度数.解:∠2=∠4=180°﹣∠1=180°﹣40°=140°,∠3=180°﹣∠2=180°﹣140°=40°.答:∠2=140°,∠3=40°,∠4=140°.点评:考查了角的度量,关键是熟悉平角等于180°的知识点.18.用量角器量出每个角的度数.【答案】【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此解答.解:经过测量可得:点评:本题考查了学生测量角的能力,注意测量中的两个重合.19.(1)按照指定的度数画角.45°;125°(2)如图1,已知∠1=44°,∠2=,∠3=,(3 )如图2,求图中∠2=.【答案】46°,136°,60°【解析】(1)画出一条射线,用量角器的原点和射线的端点重合,0刻度线与射线重合,在量角器上找出45度和125度的点,点上点,以射线的端点过刚画出的点,画出射线即可.(2)∠1和∠3组成的是一个平角,∠1和∠2组成的是直角.(3)∠2和直角和30°的角组成的是一个平角.据此解答.解:(1)画图如下:(2)∠2=90°﹣∠1=90°﹣44°=46°,∠3=180°﹣∠1=180°﹣44°=136°.(3)∠2=180°﹣90°﹣30°=60°.故答案为:46°,136°,60°.点评:本题主要考查了学生对角的画法和角的计算知识的掌握情况.20.求各个角的度数.(1)图1中:已知∠1=60°∠2=∠3=∠4=∠5=(2)图2中:已知∠1=75°∠2=∠3=∠4=.【答案】90°,30°,60°,120°,105°,75°,105°【解析】(1)平角=180°,∠2=90°,∠1、∠2和∠3组成平角,∠1和∠5组成平角,∠4和∠5组成平角,然后根据减法的意义解答即可;(2)∠1和∠2组成平角,∠1和∠4组成平角,∠4和∠3组成平角,然后根据减法的意义,解答即可.解:(1)因为∠2=90°,平角=180°,所以,∠3=180°﹣∠1﹣∠2=180°﹣90°﹣60°=30°;∠5=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠5=180°﹣120°=60°;(2)因为∠1=75°,平角=180°,所以,∠2=180°﹣∠1=180°﹣75°=105°;∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠4=180°﹣105°=75°;故答案为:90°,30°,60°,120°,105°,75°,105°.点评:本题结合平角的有关知识考查了组合角的度量,注意,平角=180°,直角=90°.21.画一个顶角是40°的等腰三角形.【答案】见解析【解析】等腰三角形的特征是两个底角的度数相等,又因为三角形的内角和是180度,所以可以求出一个底角的度数,列式为:(180﹣40)÷2=70(度),然后根据角的画法画角即可.解:根据分析可得,底角:(180﹣40)÷2=70(度),点评:本题考查的知识点比较多:①等腰三角形的特征,②三角形的内角和定理,③角的画法.22.在直线L上找一点B,连接A、B两点,使线段AB长3厘米.经测量:图中形成的锐角是度.【答案】40°【解析】以点A为圆心,以3厘米长为半径画圆,则圆与直线的交点就是点B的位置,由此连接AB,即可得到两个角,再利用量角器测量即可解答问题.解:以点A为圆心,以3厘米长为半径画圆,则圆与直线的交点就是点B的位置,取其中一个点为点B,由此连接AB,如图所示:∃经过测量可知,图中形成的锐角是40°,故答案为:40°.点评:此题主要考查同一个圆的半径都相等的性质,以及角的度量的方法.23.已知角∠1=45度,∠2=65度,求∠5的度数.【答案】∠5的度数是110°【解析】先跟据三角形的内角和180°求出∠3,再根据平角是180°,求出∠5的度数.解:如图:∠3=180°﹣∠1﹣∠2,=180°﹣45°﹣65°,=70°,∠5=180°﹣70°,=110°,答:∠5的度数是110°.点评:此题主要考查了三角形的内角和180°及平角180°的理解及运用.24.图中∠1=,∠2=,∠3=,∠1+∠2=.【答案】40°;50°;130°;90°【解析】观察图形可知∠1与50度的角的和是一个直角,所以∠1=90﹣50=40度;∠1与∠2的和也是一个直角,所以∠2=50度;∠3与50度的角的度数之和是180度,则∠3=180﹣50=130度,由此即可填空.解:∠1=90﹣50=40(度);∠2=90﹣40=50(度);∠3=180﹣50=130(度);∠1+∠2=90(度);故答案为:40°;50°;130°;90°.点评:根据图形中的特殊角即直角和平角的性质即可解答问题.25.量一量,∠1=°,∠2=°,∠1是角,∠2是角.【答案】45,135,锐,钝【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此得到∠1与∠2的度数,再根据角的分类解答.解:测量可得:∠1=45°,∠2=135°,则∠1是锐角,∠2是钝角.故答案为:45,135,锐,钝.点评:本题考查了学生测量角的能力;注意测量中的两个重合.同时考查了角的分类.26.先量出如图∠1的度数,再求∠2、∠3、∠4的度数.∠1=∠2=∠3=∠4=.【答案】60°,120°,60°,120°【解析】先量出图中∠1的度数是60°;然后根据∠2和∠1,∠1和∠4,∠3和∠4的度数和都是平角解答即可.解:测量可得∠1的度数是60°;∠2=180°﹣∠1=180°﹣60°=120°;∠4=180°﹣∠1=180°﹣60°=120°;∠3=180°﹣∠4=180°﹣120°=60°.故答案为:60°,120°,60°,120°.点评:本题关键是观察得出∠2和∠1,∠1和∠4,∠3和∠4的度数和都是平角.27.量角的度数时将角的两边延长后再量并不影响角的大小..【答案】√【解析】根据角的大小与角的两边的长短无关,即可作出判断.解:因为量角的度数时将角的两边延长后,角的大小没有变,故不影响角的大小.故答案为:√.点评:考查了角的度量.角的大小和角两边张开的大小有关,和角两边的长度无关.28.画出15°、120°、135°的角.【答案】见解析【解析】根据角的画法解答:1.画一条射线,2、使量角器的中心和射线的端点重合,刻度线和射线重合,3、分别在量角器15°、120°、135°的地方点一个点,4、以画出的射线的端点为端点,通过刚画的点,再画一条射线,5、最后标出度数即可.解:作图如下:点评:此题主要考查的是角的画法即画角的步骤.29.分别求出图中∠1,∠2,∠3的度数.【答案】∠1,∠2,∠3的度数分别是45°、45°135°【解析】观察图形可知,∠1与45°的角组成了一个直角,所以∠1=90°﹣45°;∠3与45°的角组成了一个平角,所以∠3=1800°﹣45°;∠2与45°的角组成了一组对顶角,根据对顶角相等即可解答.解:根据题干分析可得:∠1=90°﹣45°=45°;∠3=1800°﹣45°=135°;∠2=45°(等对角相等),答:∠1,∠2,∠3的度数分别是45°、45°135°.点评:解答此类问题的关键是利用图形中特殊角的度数,如直角、平角、对顶角,据此计算即可解答.30.量出下面各角的度数,写出它们各是什么角.∠1=度;∠2=度;∠3=度∠1是角;∠2是角;∠3是角.【答案】40;35;130;锐;锐;钝【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数;锐角是小于90°的角;钝角大于90°而小于180°,量出各角,即可确定是什么角.解:根据度量角的方法,经测量可得:∠1=40°,∠2=35°,都是锐角;∠3=130°,是钝角;故答案为:40;35;130;锐;锐;钝.点评:本题考查了角的测量和角的分类知识的应用,用量角器测角度数时要注意量角器的放置及两个重合,即量角器的圆点和角的顶点重合,0刻度线和角的一条边重合.31.已知:∠1=20°,∠2=°,锐角有个,钝角有个.【答案】70,3,2【解析】因为∠1+∠2=90°,∠1=20°,则∠2=90°﹣20°,解答即可;根据锐角、钝角的含义:大于0°,小于90°的角,叫做锐角;大于90°,小于180°的角,叫做钝角;进行解答即可.解:∠2=90°﹣∠1=90°﹣20°=70°,如图:锐角有:∠1、∠2、∠3共3个;钝角有:由∠1和∠2及∠3合起来的大角,∠2和∠3合起来的大角,共2个;故答案为:70,3,2.点评:解答此题应根据钝角、锐角和直角的含义进行解答.32.已知∠1=130°,∠2=,∠3=,∠4=.【答案】50°,130°,50°【解析】因∠1和∠2在同一条直线上,它们组成了一个平角,∠2和∠3在同一条直线上,它们组成了一个平角,∠1和∠4在同一条直线上,它们组成了一个平角.据此解答.解:(1)∠2=180°﹣∠1,∠2=180°﹣130°,∠2=50°;(2)∠3=180°﹣∠2,∠3=180°﹣50°,∠3=130°;(3))∠4=180°﹣∠1,∠4=180°﹣130°,∠4=50°;故答案为:50°,130°,50°.点评:本题主要考查了学生根据角的位置关系求角的度数的能力.33.量出下面角的度数.【答案】【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量出这两个角的度数分别是40°、120°.在图上标出如图:点评:此题主要是考查根据角的度量方法正确量出各角度数.34.先估计,再测量出各角的度数.估计的结果:∠1=;∠2=;∠3=测量的结果:∠2=;∠2=;∠3=.【答案】(1)80°,60°,40°,(2)80°,65°,35°【解析】估计的数值与测量的数值有一定的偏差,但是测量值与估计值之间的差距应不会太大,这样才更合理.解:(1)估计的结果:∠1=80,∠2=60°,∠3=40°;(2)测量结果:∠1=80°,∠2=65°,∠3=35°;故答案为:(1)80°,60°,40°,(2)80°,65°,35°.点评:本题难度较大,考查了学生的观察估计的能力及抽象思维的能力.35.如图,已知∠1=130°,求∠2、∠3的度数.【答案】∠2是50度,∠3是40度【解析】由图意得出:∠1和∠2组成一个平角,所以∠2=180°﹣∠1;又因为在直角三角形里,∠2和∠3的和是90°,据此解答即可.解:∠2=180°﹣∠1=180°﹣130°=50°;∠3=90°﹣∠2=90°﹣50°=40°;答:∠2是50度,∠3是40度.点评:解决本题的关键是根据图意找出所有角之间的关系.36.测量出各角的度数.测量的结果:∠1=;∠2=;∠3=.【答案】40°,60°,80°【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:如图所示:,∠1=40°,∠2=60°,∠3=80°.故答案为:40°,60°,80°.点评:此题主要是考查根据角的度量方法正确量出各角度数.37.看图,已知∠1=75○,求∠2、∠3和∠4的度数.【答案】∠2是105度,∠3是75度,∠4是105度【解析】因为∠1和∠2、∠1和∠4组成一个平角,用180度减去∠1的度数即可求出∠2、∠4的度数;∠2和∠3组成一个平角,所以用180度减去∠2的度数就是∠3的度数.据此解答即可.解:∠2=∠4=180°﹣∠1=180°﹣75°=105°;∠3=180°﹣∠2=180°﹣105°=75°.答:∠2是105度,∠3是75度,∠4是105度.点评:解决本题的关键是找出各个角之间的关系,利用特殊角解答.38.如图:∠1=48°;∠2=.【答案】42°【解析】观察图形可知,∠1与∠2组成一个直角,所以∠2等于90度减去∠1的度数.解:∠2=90°﹣48°=42°,故答案为:42°.点评:抓住图形中的特殊角的度数,即可计算解答.39.求下面各角的度数.【答案】67°;148°;129°【解析】根据三角形的内角和是180度,已知其中2个角,求另一个角的度数,用180度减去已知的两个角的和即可解答.解:(1)180°﹣(28°+85°),=180°﹣113°,=67°;(2)∠C=180°﹣(42°+90°),=180°﹣132°,=148°;(3)∠A=180°﹣(21°+30°),=180°﹣51°,=129°.故答案为:67°;148°;129°.点评:此题主要考查角的度量,关键是灵活利用三角形的内角和.40.求下面∠1和∠2各是多少度?【答案】∠1=35度,∠2=77度【解析】(1)直角三角形中,两个锐角的和是90度,由此即可求出∠1的度数;(2)三角形的内角和是180度,则∠2=180﹣25﹣78=77度,由此即可解答.解:∠1=90﹣55=35(度),∠2=180﹣25﹣78=77(度),答:∠1=35度,∠2=77度.点评:此题考查三角形内角和定理的灵活应用以及直角三角形的两个锐角的关系.41.量出∠1的度数.∠1=度.【答案】35【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:如图所示:,∠1=35°.故答案为:35.点评:此题主要是考查根据角的度量方法正确量出各角度数.42.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.【答案】∠AOB的度数是28°【解析】此题可以设∠AOB=x,∠BOC=2x,再进一步表示∠AOC=3x,根据角平分线的概念表示∠AOD,最后根据已知角的度数列方程即可计算.解:设∠AOB=x,∠BOC=2x.则∠AOC=3x.又OD平分∠AOC,因为∠AOD=x.所以∠BOD=∠AOD﹣∠AOB=x﹣x=14°因为x=28°即∠AOB=28°.答:∠AOB的度数是28°.点评:此类题设恰当的未知数,根据已知条件进一步表示出相关的角,列方程计算较为简便.43.用量角器量出下面角的度数.度.【答案】120°【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.据此解答.解:根据分析测量结果如下图:故答案为:120°.点评:本题主要考查了学生测量角的能力44.从早晨7时到晚上7时,钟面上共有几次时针与分针成50°角?【答案】从早晨7时到晚上7时,钟面上共有22次时针与分针成50°角.【解析】首先,夹角为50度有两种情况,一种是分针在时针前,一种是分针在时针后,从早晨7时起,当时针与分针夹角是50度时,应该是分针在时针后,由于此题的数量关系不是很明显,可以采取实际操作的方法,进行解答.解:找一个钟表,实际操作,从早晨7时到晚上7时,拨一拨,数一数,钟面上共有22次时针与分针成50°角;答:从早晨7时到晚上7时,钟面上共有22次时针与分针成50°角.点评:解答此题的关键是,知道夹角为50度有两种情况,一种是分针在时针前,一种是分针在时针后,然后实际操作,即可得出答案.45.以A为顶点画一个70°的角,以B为顶点画一个30°的角,组成一个三角形.(1)这个三角形的第3个角是度.(2)以AB为底,画出三角形的高,并量出底和高.底是厘米,高是厘米.(结果保留一位小数.)【答案】80;6.1;2.8【解析】用量角器的圆点和顶点A、B分别重合,0刻度线和AB重合,在量角器70°和30°的刻度上点上点,过A、B两个点和刚作的点画射线,相交于点C就组成了一个三角形;(1)根据三角形的内角和定理可得,第三个角的度数是:180﹣70﹣30=80(度);(2)过C点作出AB边上的高CD.并测量出BC、CD的长度,即可填空.解:(1)以A为顶点画70°的角,(2)以B为顶点在和以A为顶点作的角的同侧画30°的角,(3)两条射线的交点,就是三角形的顶点C.(4)过C点作出AB边上的高CD.画图如下:(1)第三个角的度数是:180﹣70﹣30=80(度);(2)经过测量可知,AB=6.1厘米,CD=2.8厘米,故答案为:80;6.1;2.8.点评:本题考查了学生画角的能力,关键是要在AB的同一侧画角.主要考查学生动手操作的能力.46.如图中,以顶点A的对边为底,画出三角形的高,并量出∠C的角度数,标在图中括号里.【答案】【解析】过三角形的顶点A作对边的垂线,顶点与垂足之间的线段就是三角形的高;依据角的度量方法即可量出角的度数.解:如图所示,即为题目要求的作图;.点评:此题主要考查三角形高的作法即角的度量方法.47.【答案】∠A=30°,∠B=60°【解析】因为三角形的内角和是180°,又知此三角形是直角三角形,所以另外两个角的和为90°.用直尺测量即可.解:经过测量∠A=30°,∠B=60°.点评:此题考查学生对角的测量方法的掌握情况.48.用水彩笔在下图中按要求描一个角.【答案】【解析】通过观察可知,图中把平角进行了四等分,所以每个小角是45°,三个小角就是135°,由此描出即可.解:根据要求描出如下:点评:此题考查了学生的观察能力和动手操作能力.49.用一副三角板可以拼出75°和15°的角,测量方法可以用下面的算式表示.75°=45°+30°; 15°=45°﹣30°.下面这些角的度数都是用一副三角板拼出来的,请把拼的方法填在括号里.105°=°+°;120°=°+°;135°=°+°;150°=°+°.【答案】60;45;90;30;90;45;90;60【解析】因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到:60°+45°=105°,90°+30°=120°,90°+45°=135°,90°+60°=150°,据此解答.解:105°=60°+45°;120°=90°+30°;135°=90°+45°;150°=90°+60°.故答案为:60;45;90;30;90;45;90;60.点评:用一副三角板可以拼出度数,就是求两个三角板中的角的度数的和或差.50.量出下面各角的度数,并说说是哪一类角.°;°;°角;角;角.【答案】50;锐;92,钝;120,钝【解析】量出各个角的度数,再根据锐角、钝角的含义:大于0度小于90度的角叫做锐角;大于90度小于180度的角叫做钝角;等据此解答即可.解:如图所示:;50°; 92°; 120°;锐角;钝角;钝角;故答案为:50;锐;92,钝;120,钝.点评:此题考查了锐角、钝角的含义,明确各种角的含义是解答此题的关键.。

角的度量测试题及答案

角的度量测试题及答案

D A BC 角的度量测试题及答案一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角能够看作由一条射线绕着它的端点旋转而形成的图形.⑤∠AOB=90°∠BOC=30°则∠AOC=120°A.1个B.2个C.3个D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个二、填空: 4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.运算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.依照下列语句画图: (1)画∠AOB=100°;(2)在∠AOB 的内部画射线OC,使∠BOC=50°; (3)在∠AOB 的外部画射线OD,使∠DOA=40°;(4)在射线OD 上取E 点,在射线OA 上取F,使∠OEF=90°. 8.任意画一个三角形,估量其中三个角的度数, 再用量角器检验你的估量是否准确.9.分别确定四个都市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有专门多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中显现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.。

数学角的度量试题

数学角的度量试题

数学角的度量试题1.从5:00到5:12,钟面上分钟转动了度,是角.【答案】72;锐【解析】分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°.钟面上从5:00到5:12,共经过12分钟,即可计算出角的度数,再利用角的分类的方法判断角的形状.解:5:12﹣5:00经过了12分钟,360°÷60×12=72°,是锐角.故答案为:72;锐.点评:本题考查了角的度量.求出分针1分钟转动多少度是解答本题的关键.2.如图所示,∠1=70°,那么∠2等于多少度?【答案】∠2是55°【解析】观察图形可知,根据图形折叠的方法,可知∠1与2个∠2的和正好组成一个平角,据此用180度减去70度,再除以2即可解答问题.解:(180°﹣70°)÷2,=110°÷2,=55°,答:∠2是55°.点评:解答此题的关键是根据图形折叠的方法,得出平角是由∠1和两个∠2的度数组成的.3.9时15分时针和分针的夹角是多少度?【答案】此时时针与分针的夹角是172.5°.【解析】由题意知,时针每小时走30°,一刻钟走7.5度;分针每小时走360°,一刻钟走90°;当9点整时,时针、分针的夹角是90°,当9点15分时,时针和分针的夹角,可用分针和时针的速度差加上90即可求得.解:当时间为9点整时,时针、分针的夹角是90°;当9点15分时,时针走了7.5°,分针正好走了90°,此时时针和分针的夹角是:90°﹣7.5°+90°=172.5°;答:此时时针与分针的夹角是172.5°.点评:解答此题要注意时针、分针都在移动,只是速度不一样,可以理解为行程问题来解答.4.下列时刻中,时针与分针所形成的角的度数是多少?(1)9点30分(2)2点20分.【答案】(1)105°(2)100°【解析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.时针每小时转一个大空格即30°,所以每分钟转30°÷60=0.5°,分针每分钟转个大空格,即30°×=6°,由此进行解答即可.解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,(1)所以钟表上下午9点30分时,时针与分针的夹角可以看成时针转过9时0.5°×30=15°,分针在数字6上.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以9点30分时分针与时针的夹角4×30°﹣15°=105°.答:9点30分时针与分针所形成的角的度数是 105(2)钟表上下午2点20分时,时针与分针的夹角可以看成时针转过2时0.5°×20=10°,分针在数字6上.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以下午2点30分时分针与时针的夹角4×30°﹣10°=100°.答:2:30时针与分针所形成的角的度数是100°.点评:本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.5.如图,已知∠AOE是一个直角,∠BOD=45°,图中所有锐角的度数和是多少?【答案】图中所有锐角的度数的和是360度【解析】根据题意知:图中的锐角有∠AOB,∠BOC,∠COD,∠DOE,∠AOC,∠AOD,∠BOD,∠BOE,∠COE.因∠AOB,∠BOC,∠COD,∠DOE组成的是一个直角,∠AOC和∠COE组成了一个直角,∠BOE=∠BOD+∠DOE,∠AOD和∠DOE组成了一个直角,据此解答.解:根据以上分析知:∠AOB+∠BOC+∠COD+∠DOE+∠AOC+∠AOD+∠BOD+∠BOE+∠COE,=∠AOB+∠BOC+∠COD+∠DOE+∠AOC+∠AOD+∠BOD+∠BOD+∠DOE+∠COE,=(∠AOB+∠BOC+∠COD+∠DOE)+(∠AOC+∠COE)+(∠AOD+∠DOE)+∠BOD+∠BOD,=90+90+90+45+45,=360(度).答:图中所有锐角的度数的和是360度.点评:本题的关键是把所的锐角找出,再根据哪些角可组成直角和由已知的角组成来进行解答.6.如图中∠1+∠2=150°,∠1=60°,那么∠2=°,∠3=°.【答案】90,30【解析】根据加法各部分的关系可求出∠2的度数.再根据∠1、∠2、∠3组成的角是平角可求出∠3的度数.据此解答.解:∠1+∠2=150°,∠1=150°﹣∠2,=150°﹣60°,=90°,∠1+∠2+∠3=180°,∠3=180°﹣∠1﹣∠2,=180°﹣60°﹣90°,=30°.答:∠2是90°,∠3是30°.故答案为:90,30.点评:本题主要考查了学生根据组成的角是平角及加法各部分之间的关系来解答问题的能力.7.先量出两个角的度数,再比较大小.【答案】130°,=,130°【解析】用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.解:故答案为:130°,=,130°.点评:本题主要考查了学生测量角的能力.8.已知∠1=65°,∠2=.【答案】115°【解析】∠1和∠2组成了一个平角,平角是180°.据此解答.解:∠2=180°﹣∠1,=180°﹣65°,=115°.答:∠2是115°.故答案为:115°.点评:本题主要是根据两个角组成的角是什么样的角来进行解答.9.如图中的∠1和∠2是不是相等?说说你的理由.【答案】∠1和∠2相等【解析】根据题意知,本题的图形是一个长方形沿顺时针旋转得到的,∠1和∠2都是90°的角减去中间的∠3.解:∠1=90°﹣∠3,∠2=90°﹣∠3,所以∠1=∠2.答案∠1和∠2相等,因这两个角都是90度的角减去中间的角.点评:本题主要考查了学生根据简单的等量代换解答问题的能力.10.先估计,再量出图中各角的度数,并判断是什么角∠1=;角.∠2=;角.∠3=;角.∠4=;角.【答案】50°,锐;140°,钝;60°,锐;100°,钝.【解析】先根据自己的对角的了解估计,再用量角器测量出角的实际度数,再根据小于90度的角是锐角;等于90度的角是直角,大于90度而小于180度的角是钝角进行分类.解:(1)估计是45°,经测量是50°;是锐角;(2)估计是150°,经测量是140°,是钝角;(3)估计是60°,经测量是60°,是锐角;(4)估计是100°,经测量是100°,是钝角.故答案为:50°,锐;140°,钝;60°,锐;100°,钝.点评:此题主要考查测量角的度数和角的分类.11.求出下面各三角形中未知角的度数.∠A=;∠B=;∠C=.【答案】32°,54°,119°【解析】(1)用三角形的内角和减去直角再减去已知角58度,就是未知角的度数.(2)用三角形的内角和减去已知角54度,再减去已知72度,就是未知角的度数,(3)用三角形的内角和减去去已知角26度,再减去已知角35度,就是未知角的度数.解:(1)180﹣90﹣58=32(度).答:未知角是32度.(2)180﹣54﹣72=54(度).答:未知角是54度.(3)180﹣26﹣35=119(度).答:未知角是119度.故答案为:32°,54°,119°.点评:本题主要考查了学生对求三角形未知角的数量关系:未知角=180﹣已知角,这一数量关系的掌握情况.12.小川用两根小棒摆成了一个66°的角,小丽摆出的一个角比小川摆的2倍还多48°,小丽摆的角是多少度?这是什么角?【答案】小丽摆的角是180度,是平角【解析】用小川摆出的度数乘2再加上48度就是小丽摆出的度数,再根据角的分类解答即可.解:小丽摆出的度数:66°×2+48°=132°+48°=180°,是平角.答:小丽摆的角是180度,是平角.点评:此题主要考查角的计算和分类.13.如图中∠1=65°求∠2、∠3和∠4的度数,计算这4个角的总和是多少.∠2=∠3=∠4=∠1+∠2+∠3+∠4=.【答案】115°,65°,115°,360°【解析】根据平角的定义可求∠2、∠3和∠4的度数,再将∠1、∠2、∠3、∠4的度数相加即可求解.解:∠2=180﹣65°=115°,∠3=180﹣115°=65°,∠4=180﹣65°=115°,∠1+∠2+∠3+∠4=65°+115°+65°+115°=360°.故答案为:115°,65°,115°,360°.点评:解题的关键是熟悉平角的度数等于180°的性质.14.(1)(2)【答案】135°,30°【解析】(1)由图示知:∠2=180°﹣∠1,代入数据计算即可;(2)由图示知:中间的角是直角,所以:∠2=180°﹣∠1﹣90°,代入数据计算即可.解:(1)∠2=180°﹣∠1=180°﹣45°=135°;(2)∠2=180°﹣90°﹣∠1=180°﹣90°﹣60°=30°.故答案为:135°,30°.点评:解决本题要根据图示找出已知角与所求角的关系,再利用它们之间的关系计算.15.(1)如图1,量一量∠1=;∠2=(2)如图2,画一画【答案】(1)∠1=35°,∠2=55°(2)【解析】(1)分别测量∠1,∠2的度数:把量角器放在角上,先将量角器的中心与角的顶点重合,0刻度线与角的其中一边重合,看角的另外一条边所对的量角器上的刻度就是角的度数;(2)依据垂线段最短,作出毓英小学到国道所在直线的垂线段即可解答.解:(1)把量角器放在角上,先将量角器的中心与角的顶点重合,0刻度线与角的其中一边重合,看角的另外一条边所对的量角器上的刻度40度就是这个角的度数;所以经过测量∠1=35°,∠2=55°.(2)画图如下:线段AB即为所求.点评:此题主要考查角的度量,同时考查了学生对点到直线距离知识的掌握和画垂线段的能力.16.看图算一算:(1)如图1,∠2=(2)如图2,已知:∠1=50°∠2=∠3=.【答案】(1)140°;(2)50°、130°【解析】(1)由图意得:∠1和∠2组成一个平角,所以∠2=180°﹣∠1;(2)因为∠1和∠2是对顶角,所以∠1=∠2,∠1和∠3组成平角,所以∠3=180°﹣∠1;据此计算即可.解:(1)由分析得出:∠2=180°﹣∠1=180°﹣40°=140°;(2)∠2=∠1=50°;∠3=180°﹣∠1=180°﹣50°=130°;故答案为:(1)140°;(2)50°、130°.点评:解决本题的关键是由图意得出各个角之间的关系,再计算.17.已知∠AOC=∠BOD=90°,∠1=30°.∠2=∠3=.【答案】60°30°.【解析】∠1和∠2、2和∠3都组成直角,是90°,据此解答即可.解:因为∠AOC=∠BOD=90°,∠1=30°.所以,∠2=∠BOD﹣∠1=90°﹣∠1=90°﹣30°=60°;∠3=∠AOC﹣∠2=90°﹣∠2=180°﹣60°=30°;故答案为:60°30°.点评:本题结合直角的有关知识考查了组合角的度量,注意直角=90°.18.已知∠1=20°,∠2=120°,求∠3的度数.【答案】∠3是40度【解析】观察图形可知,∠1、∠2、∠3组成了一个平角,所以∠3的度数等于180度减去∠1和∠2的度数即可解答.解:180﹣20﹣120=40(度),答:∠3是40度.点评:根据平角的定义,即可解到此类问题.19.已知∠1=28°,∠2=.【答案】62°.【解析】观察图形可知,∠1与∠2组成了一个直角,据此可得∠2就等于90°∠1的度数,据此即可解答.解:90°﹣28°=62°,答:∠2=62°,故答案为:62°.点评:解答此类问题的关键是利用图形中特殊角的度数进行计算解答.20.量出下面的角各是多少度?∠1=°,是角∠2=°,是角.【答案】60;锐;120;钝【解析】先把量角器放在∠1的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.因为∠2与∠1组成了一个平角,所以∠1与∠2的和是180度,据此计算出∠2的度数,再根据锐角与钝角的定义即可解答.解:经过测量可得:∠1=60°,是锐角;∠2=180﹣60=120(度),所以钝角;故答案为:60;锐;120;钝.点评:此题考查学生测量角的方法以及平角、锐角、钝角的定义的灵活应用.21.算一算.已知∠1=36°;∠2=;∠3=;∠4=;∠5=.【答案】54°;90°;36°;144°【解析】观察图形可知,∠3是一个直角,是90度;∠1与∠2组成一个直角,所以∠2=90﹣36=54度;∠2与∠4也能组成一个直角,所以∠4=90﹣54=36度;∠1与∠5组成一个平角,所以∠5=180﹣36=144度,据此即可填空.解:根据题干分析可得:∠3是直角,是90°;∠2=90°﹣36°=54°;∠4=90°﹣54°=36°;∠5=180°﹣36°=144°,故答案为:54°;90°;36°;144°.点评:解答此题的关键是利用图形中的特殊角如:直角和平角的度数进行计算即可解答.22.量出角的度数.【答案】【解析】用量角器的圆点和角的顶点重合,0刻度线和其中一条边重合,另一条边指向的刻度,就是这个角的度数.解:经过测量可知:这个角是120°.点评:本题考查了学生运用量角器测量角的度数的能力.23.求出下面图形中的角的度数∠1=∠2=∠3=∠4=.【答案】60°,125°,80°,100°【解析】(1)这是一个直角三角形,其中一个角是直角,90°;还有一个角是30°,用三角形的内角和减去已知的这两个角就是要求的∠1;(2)用三角形的内角和减去已知的两个内角就是要求的∠2;(3)先根据三角形的内角和,用180°减去40°,再减去60°,就是∠3的度数,然后再根据∠3和∠4构成一共平角,运用平角的度数180°减去∠3的度数就是∠4的度数.解:(1)180°﹣90°﹣30°,=90°﹣30°,=60°;∠1=60°;(2)180°﹣20°﹣35°,=160°﹣35°,=125°;∠2=125°;(3)180°﹣40°﹣60°,=140°﹣60°,=80°;∠3=80°;∠4=180°﹣80°=100°.故答案为:60°,125°,80°,100°.点评:本题利用三角形的内角和是180度,以及平角是180度进行求解即可.24.量出下面角的度数.【答案】【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量出这两个角的度数分别是40°、120°.在图上标出如图:点评:此题主要是考查根据角的度量方法正确量出各角度数.25.先估计,在量出下面各角的度数.∠1=;∠2=.【答案】145°,35°【解析】(1)根据角的开口大小,先估测角的度数;(2)把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:(1)观察图形,估测结果是:∠1约150度,∠2是30度;(2),∠1=145°;∠2=35°.故答案为:145°,35°.点评:此题主要是考查根据角的度量方法正确量出各角度数.26.(1)把下面的梯形分割成一个平行四边形和一个三角形.(2)下面∠1的大小是度.【答案】(2)70.【解析】(1)将三角板的一条直角边和直尺的上边缘都与梯形的一个腰重合,然后平移直尺,当直尺的上边缘正好与梯形上底的另一个端点重合时,过这个端点沿直尺上边缘画线段,与梯形的下底交于一点,此线段即为平行于梯形腰的线段,从而可以得到符合要求的平行四边形和三角形.(2)用量角器测量出角的度数即可.解:如图所示:;(1)红色线段即为所求;(2)∠1的大小为70度.故答案为:(2)70.点评:此题主要考查:过直线外一点作已知直线的平行线的方法.27.如图,一个角被遮住了一部分.先估一估,这是一个角;再量一量,这个角是度.【答案】锐,75.【解析】先延伸两边交于一点,把量角器放在该角的上面,使量角器的中心和角的顶点重合,零刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:如图,这是一个锐角,经测量,这个角是75度.故答案为:锐,75.点评:此题主要考查根据角的度量方法正确量出角度数,解题的关键是得到角的顶点.28.(1)测量:∠A=.(2)以A为顶点,在∠A 内画一个60°的角.【答案】(1)根据测量可知,∠A=145°;(2)在∠A的内部画出60°的角如下:【解析】(1)先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.(2)用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,在这个角的内部,画出60°的角即可.解:(1)根据测量可知,∠A=145°;(2)在∠A的内部画出60°的角如下:点评:此题主要是考查根据角的度量方法以及正确量出各角度数和利用量角器画已知度数的角的方法.29.算一算,这些角各是多少度.已知∠2=40°求得:∠1=°,∠3=°,∠4=°.【答案】50;140;40【解析】因为∠1与∠2组成了一个直角,∠2与∠3组成了一个平角,所以∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠3与∠4又组成了一个平角,所以∠4=180°﹣140°=40°;由此即可填空.解:根据题干分析可得:∠1=90°﹣40°=50°;∠3=180°﹣40°=140°;∠4=180°﹣140°=40°;故答案为:50;140;40.点评:根据图形中的特殊角进行计算即可解答.30.量出图中各角的度数.【答案】50°;130°【解析】先把量角器放在角的上面,使量角器的中心和角的顶点重合,零度刻度线和角的一条边重合,角的另一条边所对的量角器上的刻度,就是这个角的度数.解:根据角的度量方法量可得:∠1=50°、∠2=130°.故答案为:50°;130°.点评:此题主要是考查根据角的度量方法正确量出各角度数.31.算一算.已知∠1=65°,求出:∠2、∠3、∠4的度数.【答案】∠2=115°,∠3=65°,∠4=115°【解析】观察图形可知,∠1与∠3是对顶角,所以∠3也是65°;因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,由此即可解答.解:∠1与∠3是对顶角,所以∠3也是65°;因为∠1与∠2组成了一个平角,∠2与∠4又是对顶角,所以∠2=∠4=180°﹣65°=115°,答:∠2=115°,∠3=65°,∠4=115°.点评:解答此类问题时,要注意灵活应用图形中的特殊角,如对顶角相等,平角和直角等.32.请在下面的钟面中画出两个时刻,使时针与分针形成的角一样大吗?【答案】【解析】根据具体整时时间观察,时针和分针中间相差大格子的数量,然后用“30°×相差的大格子的数量”解答即可.解:如图,时针和分针所成的角是直角,时分针指着12,分针正指着3或9时,时针和分针所成的角是直角,所以3时或9时,时针和分针所成的角相等是直角;点评:本题考查了钟表时针与分针的夹角度数的计算和运用角的分类及各种角的特点,利用起点时间时针和分针的位置关系建立角的图形.33.填空(1)1平角=直角一周角=直角 1周角=平角(2)89○的角是角,89○的2倍是角.170○的角的一半是角,70○的2倍的角是角(3)45○角和度角的和是直角,45○角和度角的和是平角.(4)30○角的倍是直角,30○角的倍是平角,30○角的倍是周角.【答案】2,4,2,锐,钝,锐,钝,45,135,3,6,12.【解析】根据锐角、钝角、直角、平角、周角的含义进行解答:锐角:大于0°小于90°的角;钝角:大于90°小于180°的角;直角:等于90°的角;平角:等于180°的角;周角:等于360°的角;据此依次解答即可.解:(1)1平角=2直角一周角=4直角 1周角=2平角(2)89○的角是锐角,89○的2倍是钝角.170○的角的一半是锐角,70○的2倍的角是钝角(3)45○角和45度角的和是直角,45○角和135度角的和是平角.(4)30○角的3倍是直角,30○角的6倍是平角,30○角的12倍是周角.故答案为:2,4,2,锐,钝,锐,钝,45,135,3,6,12.点评:解答此题应结合题意,并结合钝角、锐角、直角、平角、周角的含义进行解答.34.根据图中的信息解答下列问题:(1)车站到学校的路线与游乐园到学校的路线的夹角的度数是.(2)电影院位置在车站的方向,在游乐园的方向.(3)量一量学校到电影院的图上距离是多少厘米?根据图上比例尺,求出学校到电影院的实际距离是多少?【答案】125°,东偏南20°,北偏西40°【解析】(1)用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.(2)根据图例,量出角度,在生活中一般我们先说与物体所在方向离的较近(夹角较小)方位.(3)量得学校到电影院的图上距离是2厘米,根据图上距离÷实际距离=比例尺,求出实际距离,据此解答.解:(1)量得车站到车站到学校的路线与游乐园到学校的路线的夹角的度数是125°,(2)测量如下图:(3)2÷=50000(厘米)=500米.答:学校到电影院的实际距离是500米.故答案为:125°,东偏南20°,北偏西40°.点评:本题的难点是画图求出电影院在车站和游乐园的方向,以及根据比例尺求实际距离.35.请画一个锐角,量出它的度数并标出来.【答案】见解析【解析】先在纸上固定一点O,用直尺画出射线OA,用量角器的底边对准射线OA,量出∠AOB=50°,作出射线OB.解:先在纸上固定一点O,用直尺画出射线OA,用量角器的底边对准射线OA,量出∠AOB=50°,作出射线OB.点评:此题考查学生角的度量以及画角的知识.36.求下面各角的度数.图1 中∠A=;图2中∠C=;图3中∠B=.【答案】77°,55°,115°【解析】根据三角形的内角和是180度,用180度减去已知的两个角的和,就是第三个角的度数.解:(1)180﹣(75+28),=180﹣103,=77(度);(2)180﹣(90+35),=180﹣125,=55(度);(3)180﹣(45+20),=180﹣65,=115(度);故答案为:77°,55°,115°.点评:本题考查了三角形的内角和定理:三角形的内角和是180度.37.如图所示的角是度,以A点为顶点,再在这个角内画一个60度的角.【答案】160【解析】(1)用量角器的圆点和角的顶点A重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数.(2)用量角器的圆点和角的顶点A重合,0刻度线和角的一边重合,在量角器60°的刻度上点上点(点在角的内部),过角的顶点和刚作的点,画射线即可.解:(1)量得角的度数是160度,(2)画图如下:故答案为:160.点评:本题考查了学生测量角和画角的能力.38.想一想.(1)图1中∠1度,∠2度,∠3度.(2)图2中∠A度,∠B度,∠C度.【答案】90;130;50;50;100;70.【解析】(1)观察图形,根据直角的定义可得,∠1是90°;根据平角的定义可得,∠2=180°﹣50°=130°,∠3与50°的角是对顶角,所以∠3=50°;(2)根据三角形内角和定理可先求出∠C=180﹣80﹣30=70度,根据平角的定义可求出∠B=180﹣80=100度,再利用三角形内角和定理即可求出∠A=180﹣100﹣30=50度.解:(1)观察图形可知,∠1=90°,∠2=180°﹣50°=130°,∠3=50°,(2)∠C=180﹣80﹣30=70(度),∠B=180﹣80=100(度),∠A=180﹣100﹣30=50(度),故答案为:90;130;50;50;100;70.点评:此题要根据三角形的内角和定理,平角的定义以及对顶角相等建立角之间的等量关系.39.一个三角形的三个角分别为A、B、C,其中角A度数的4倍比角C多20度,角C度数是角B的两倍,则角A的度数为.【答案】30°【解析】设角B的度数为x,则角C的度数为2x,角A的度数为=x+5,于是利用三角形的内角和是180度,列方程即可求解.解:设角B的度数为x,则角C的度数为2x,角A的度数为=x+5,x+5+x+2x=180,x=175,x=50,×50+5=30°;答:角A的度数为30度.故答案为:30°.点评:解答此题的关键是:弄清楚每个角之间的关系,利用三角形的内角和定理求解.40.将分别含有30°和45°角的一副三角板如图放置,且30°和45°角的顶点重合在一起,OM平分∠AOC,ON平分∠DOC,画出几何图形,并求∠MON的大小.【答案】∠MON=22.5°【解析】由图可得角之间的关系:∠COM=∠AOC=(∠BOC+∠A0B),∠CON=∠COD=(∠BOC+∠A0B+∠AOD),∠MON=∠COD﹣∠AOC=(∠BOC+∠A0B+∠AOD)﹣(∠BOC+∠A0B),由此解答即可.解:根据题意可作图如下:根据图中所示:∠COM=∠AOC=(∠BOC+∠A0B);∠CON=∠COD=(∠BOC+∠A0B+∠AOD);∠MON=∠COD﹣∠AOC,=(∠BOC+∠A0B+∠AOD)﹣(∠BOC+∠A0B),=(30°+∠A0B+45°)﹣(30°+∠A0B),=×75°﹣×30°,=22.5°;故答案为:∠MON=22.5°.点评:此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,对同学们的作图、分析、计算能力有较高要求.在计算分析的过程中注意动手操作,在计算中消去共同的未知量.。

人教版四年级上册数学第三单元《角的度量》单元测试题

人教版四年级上册数学第三单元《角的度量》单元测试题

人教版四年级上册数学第三单元《角的度量》单元测试题量一、选择题(共5题,每题3分,共15分)1.数一数,下图中一共有()条线段。

A.3 B.4 C.5 D.62.下图中,一共有()个角。

A.5 B.6 C.8D.43.用一副三角板不能画出的角的度数是()。

A.150°B.60°C.135°D.160°4.用量角器量一个角时,角的一条边对着刻度“0”,另一条边对着刻度“30”,这个角可能是()。

A.30°B.50°C.30°或50°D.150°或30°5.两个锐角不可能拼出一个()。

A.锐角B.钝角C.直角D.平角二、判断题(共5题,每题3分,共15分)6.一条射线长30厘米。

()7.角的边越长,角越大。

()8.人们将圆平均分成360份,将其中1份所对的角作为度量角的单位。

()9.平角是一条直线,周角是一条射线。

()10.下午3:30时,钟面上时针和分针组成的较小夹角是直角。

()三、填空题(共5题,每空3分,共27分)11.过一点可以画条射线,过两点可以画条直线。

12.从一点引出的两条所组成的图形叫作角,这个点叫作角的。

13.直角与平角的和比周角少°。

14.图中,10:00时针与分针形成的角是°;12:30时针与分针形成的角是°。

15.把一副三角尺按图方式摆放,则∠1=°,∠2=°。

四、操作题(共2题,共15分)16.(5分)请画一条线段,让这条线段比8厘米短一些,比5厘米长一些。

17.(10分)以A为顶点:(1)画一个60度的角。

(2)画一个150度的角。

五、解决问题(共3题,共28分)18.(9分)一个三角形有一个钝角和两个锐角,已知钝角是105°,其中一个锐角是另一个锐角的2倍,这两个锐角分别是多少度?19.(9分)已知∠1=55°,∠2=90°,求∠3的度数。

人教版四年级上册数学第二单元《角的度量》测试卷8套

人教版四年级上册数学第二单元《角的度量》测试卷8套

⼈教版四年级上册数学第⼆单元《⾓的度量》测试卷8套(⼈教新课标)四年级数学上册第⼆单元(⾓的度量)测试题班级_______姓名_______分数_______⼀、想⼀想,填⼀填。

1.从⼀点出发可以画()条射线。

2.从⼀点引出两条()组成的图形叫做⾓,这个点叫做⾓的()。

3.①②③④⑤⑥⑦⑧⑨()是直线()是射线()是线段()是直⾓()是锐⾓()是平⾓()是周⾓()是钝⾓4.先写出每个钟⾯上的时间,再量⼀量钟⾯上的分针和时针所组成的⾓的度数。

时间(∶)(∶)(∶)(∶)⾓度()()()()5.1周⾓=()平⾓1平⾓=()直⾓⼆、请你来当⼩裁判。

1.右图中有2个⾓。

()2.钝⾓⼀定⽐直⾓⼤。

()3.⼩军画了⼀条4厘⽶长的直线。

()4.钟⾯上是6时整时,时针和分针所夹的⾓是180°。

()5.∠1=45°()6.过两点只可以画⼀条直线。

()7.⾓的⼤⼩与边的长短没有关系。

()三、⽤⼼选⼀选。

(把正确答案的序号填在括号内)1.线段有()个端点。

A.1B.2C.⽆数2.通过⼀点,可以画()条直线。

A.1B.2C.⽆数3.平⾓的两条边()。

A.在⼀条直线上B.在两条直线上C.⽆法确定4.⽤⼀副三⾓板可以画出的⾓是()。

A.160°B.40°C.120°四、按要求做⼀做。

1.⽤量⾓器画⾓。

65°120°40°2.数⼀数下图中各有⼏个⾓。

()个()个()个五、求下⾯图中指定⾓的度数。

1.已知∠1=35°∠2=2.已知∠1=90°∠2=45°∠3=3.已知∠1=130°∠2=∠3=∠4=※六、数⼀数。

()个⾓()条线段⾓的度量习题⼀⼀、请画出线段、射线和直线。

⼆、按要求画⾓。

1.锐⾓2.钝⾓3.直⾓4.45°的⾓5.平⾓6.120°的⾓三、填空题。

1.从⼀点引出两条()所组成的图形叫做⾓,这个点叫做⾓的(),这两条射线叫做⾓的()。

角的度量100道题可打印

角的度量100道题可打印

角的度量100道题可打印当涉及到角的度量时,有许多问题可以提出。

以下是一些可能的问题,一共有100个:1. 什么是角的度量单位?2. 角的度量单位有哪些?3. 角的度量单位之间的换算关系是什么?4. 如何用角的度量单位来表示一个角的大小?5. 角的度量单位与弧度的关系是什么?6. 如何将角的度量单位转换为弧度?7. 如何将弧度转换为角的度量单位?8. 角的度量单位在数学和物理中有什么应用?9. 角的度量单位在工程和建筑中有什么应用?10. 角的度量单位在天文学中有什么应用?11. 角的度量单位在地理学中有什么应用?12. 角的度量单位在计算机图形学中有什么应用?13. 什么是直角?如何度量直角的大小?14. 什么是钝角?如何度量钝角的大小?15. 什么是锐角?如何度量锐角的大小?16. 什么是平角?如何度量平角的大小?17. 角的度量单位在三角函数中有什么作用?18. 如何用角的度量单位来计算三角函数的值?19. 角的度量单位在三角恒等式中有什么应用?20. 如何用角的度量单位证明三角恒等式?21. 什么是角平分线?如何构造角平分线?22. 什么是角的对顶角?如何确定一个角的对顶角?23. 什么是补角和余角?如何计算补角和余角的度量?24. 什么是同位角?如何计算同位角的度量?25. 什么是相对角?如何计算相对角的度量?26. 什么是相互补角和相互余角?如何计算相互补角和相互余角的度量?27. 什么是同旁内角和同旁外角?如何计算同旁内角和同旁外角的度量?28. 什么是同旁异角?如何计算同旁异角的度量?29. 什么是同位异角?如何计算同位异角的度量?30. 什么是同旁对角?如何计算同旁对角的度量?31. 什么是同旁顶角?如何计算同旁顶角的度量?32. 什么是同旁底角?如何计算同旁底角的度量?33. 什么是同旁角和对顶角的关系?34. 什么是同旁角和同位角的关系?35. 什么是同旁角和相互补角的关系?36. 什么是同旁角和相互余角的关系?37. 什么是同旁角和同旁内角的关系?38. 什么是同旁角和同旁外角的关系?39. 什么是同旁角和同位异角的关系?40. 什么是同旁角和同旁对角的关系?41. 什么是同旁角和同旁顶角的关系?42. 什么是同旁角和同旁底角的关系?43. 什么是同位角和对顶角的关系?44. 什么是同位角和相互补角的关系?45. 什么是同位角和相互余角的关系?46. 什么是同位角和同旁内角的关系?47. 什么是同位角和同旁外角的关系?48. 什么是同位角和同位异角的关系?49. 什么是同位角和同旁对角的关系?50. 什么是同位角和同旁顶角的关系?51. 什么是同位角和同旁底角的关系?52. 什么是相互补角和相互余角的关系?53. 什么是相互补角和同旁内角的关系?54. 什么是相互补角和同旁外角的关系?55. 什么是相互补角和同位异角的关系?56. 什么是相互补角和同旁对角的关系?57. 什么是相互补角和同旁顶角的关系?58. 什么是相互补角和同旁底角的关系?59. 什么是相互余角和同旁内角的关系?60. 什么是相互余角和同旁外角的关系?61. 什么是相互余角和同位异角的关系?62. 什么是相互余角和同旁对角的关系?64. 什么是相互余角和同旁底角的关系?65. 什么是同旁内角和同旁外角的关系?66. 什么是同旁内角和同位异角的关系?67. 什么是同旁内角和同旁对角的关系?68. 什么是同旁内角和同旁顶角的关系?69. 什么是同旁内角和同旁底角的关系?70. 什么是同旁外角和同位异角的关系?71. 什么是同旁外角和同旁对角的关系?72. 什么是同旁外角和同旁顶角的关系?73. 什么是同旁外角和同旁底角的关系?75. 什么是同位异角和同旁顶角的关系?76. 什么是同位异角和同旁底角的关系?77. 什么是同旁对角和同旁顶角的关系?78. 什么是同旁对角和同旁底角的关系?79. 什么是同旁对角和同旁顶角的关系?80. 什么是同旁顶角和同旁底角的关系?81. 什么是同旁顶角和同旁底角的关系?82. 如何用角的度量单位来计算一个多边形内部的所有角的度量?83. 如何用角的度量单位来计算一个多边形的外角和内角的和?84. 如何用角的度量单位来计算一个多边形的外角和内角的差?85. 如何用角的度量单位来计算一个多边形的外角和内角的乘积?86. 如何用角的度量单位来计算一个多边形的外角和内角的比值?87. 如何用角的度量单位来计算一个多边形的外角和内角的平均值?88. 如何用角的度量单位来计算一个多边形的外角和内角的最大值和最小值?89. 如何用角的度量单位来计算一个多边形的外角和内角的中位数?90. 如何用角的度量单位来计算一个多边形的外角和内角的众数?91. 如何用角的度量单位来计算一个多边形的外角和内角的方差和标准差?92. 如何用角的度量单位来计算一个多边形的外角和内角的范围?93. 如何用角的度量单位来计算一个多边形的外角和内角的四分位数和中位数?94. 如何用角的度量单位来计算一个多边形的外角和内角的偏度和峰度?95. 如何用角的度量单位来计算一个多边形的外角和内角的离散系数和变异系数?96. 如何用角的度量单位来计算一个多边形的外角和内角的相关系数和协方差?97. 如何用角的度量单位来计算一个多边形的外角和内角的回归方程和残差?98. 如何用角的度量单位来计算一个多边形的外角和内角的方程和解?99. 如何用角的度量单位来计算一个多边形的外角和内角的最优化问题?100. 如何用角的度量单位来计算一个多边形的外角和内角的几何问题?以上是一些关于角的度量的问题,希望能对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的度量测试题
一、填空 1.把序号填在括号里。

1、 ( )是线段,( )是直线,( )是射线。

2、把下面这些角分别填入适当的圈里。

340 1150 3600 860 150 **** **** 1350 900 640 1600 390 990 920
锐角 直角
钝角 平角
周角
3、从一点引出两条(
)所组成的图形叫做角,这一点叫做角的( ),这两条射线叫做角的( )。

( )的角叫做锐角,直角等于( ),大于( )而小于( )的角叫做钝角。

4、量角的大小,要用( ),角的计量单位是( )。

量角时,角的( )要与量角器的( )对齐,角的一边要与量角器的( )重合,而角的另一边所对量角器的度数就是这个角的大小。

5.把(
)平均分成(
),每一分所对应的角是( ),记作( )。

6、一个锐角和一个直角可以组成一个( )角。

7、角的大小与( )有关,与( )无关。

8.直线上两点间的一段叫做( ),线段有( )个端点,( )和( )是( )的一部分。

直线有( )端点,它可以向两端( );射线有( )端点,它可以向( )。

9.用一副三角板拼出的最小角是( )度,它是( )角;最大角是( )度,它是( )角;拼出的锐角是( )度和( )度,拼出的钝角是( )度、( )度、( )度和( )度;
10.每个三角尺上三个角度数的和是( )度;每个三角形的内角和是( )度。

11、将一张圆形纸片对折( )次可以得到一个平角,对折( )次可以得到一个直角,对折3次后,得到一个( )度的角。

12、时针和分针夹角成直角时,钟面上( )时整;钟面上( )时整,时针和分针成平角。

13、过一点可以画( )条直线,过两点可以画( )条直线。

14、一条射线绕过着它的端点旋转半周形成的角是( ),绕过着它的端点旋转一周形成的角是( )。

1平角 =( )直角 1周角 =( )平角 =( )直角
二、判断,请在括号里对的画“√”,错的画“×”。

1.角的两边越长,角的度数越大。

( )
2.直线比射线长,射线比线段长。

( )
3.大于90°的角叫钝角,小于90°的角叫锐角。

( )
4.平角没有顶点,平角是一条直线。

( )
5. 周角是一条射线,它只有一条边。

( )
6.钝角一定比直角大。

( )
7.小军画了一条4厘米长的直线。

( )
8.将圆平均分成360份,人们把其中一份所对的角作为角的单位。

( )
9. 两个锐角的和一定比直角大。

( )
10.线段是直线上两点之间的部分。

( )
11.过一点只能画出一条直线。

( ) ① ② ③ ④ ⑤ ⑥
12.一条射线长6厘米。

()
13.手电筒射出的光线可以被看成是线段。

()
14.过两点可以画无数条直线。

()
三、选一选:(选择正确答案的序号填在括号里)
1、从3∶00走到3∶15,分针转动了()度。

①15 ②60③90④120⑤180
2、下面各角中,()度的角能用一副三角板画出来。

①5②10③15④20⑤25
3、下面每对时刻中,时钟的时针和分针所成的角不一样的有()
①1:30和2:30 ②3:30和8:30 ③9:00和3:00
4、用放大镜看800的角,角的度数()。

①变大了②变小了③不变
5、两个角刚好平成一个平角,如果其中一个是锐角,那么另一个一定是()。

①直角②钝角③锐角
6.时针和分针呈150度角是()。

①2时②5时③8时
7、两个锐角拼成的角不可能是()。

①直角②平角③锐角
8、一个角的两边的长度扩大到原来的3倍,这个角的度数()。

A、不变。

B、扩大到原来的3倍。

C、缩小到原来的3倍。

9、下面说法错误的是()。

①一条直线长6厘米。

②角的两边叉开的越大角越大。

③钟面上4时整,分针和时针成钝角。

10、我们用的三角板上有一个(),两个();我们戴的红领巾上有一个(),两个()。

①锐角②直角③钝角④平角⑤周角
11、()﹥()﹥()﹥()﹥()
①钝角②平角③周角④直角⑤锐角
四、操作题
1、过A点画一条射线,再在这条射线上截取一段3厘米长的线段BC。


2、画角。

(1)45°(2)155°(3)80°(4)120°
3、量出下面各角分别是多少度,并在图上标出来。

再写出它们各是什么角。

()()()()()()()
4、右图中有()条射线,组成了()个角,分别是多少度?
5、用一副三角板可以拼出不同的角,请拼出105°、75°、150°、180°、120°、15°的角。

五、数一数。

1、数一数下图中各有几个角。

()个()个()个2、数线段。

3、数三角形。

()条()条()个()个六、计算:(1)、已知∠1=29°求∠2、∠3、∠4和∠5各是多少度?
∠2=∠3=
∠4=∠5=
七、先写出每个钟面上的时间再写出钟面上的分针和时针所形成的角的度数。

时间( ∶) ( ∶) ( ∶) ( ∶)
角度( ) ( ) ( ) ( )
(2)、(3)
∠1=∠1=
∠2=∠2=
∠3=∠3=
35°
2
30
3
1
2
3
1
(正方。

相关文档
最新文档