贝塞尔函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贝塞尔函数

当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

§5.1 贝塞尔方程的引出

下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。

这个问题可以归结为求解下述定解问题:

22222

2222

22222

0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪

⎪⎪⎩

用分离变量法解这个问题,先令

(,,)(,)()

u x y t V x y T t =

代入方程(5.1)得

2

2

2

2

2

(

)V V VT a T

x

y

∂∂'=+

∂∂

2

2

2

2

2

(0)V V T x

y

a T

V

λλ∂∂+'∂∂=

=->

由此得到下面关于函数()T t 和(,)V x y 的方程

2

0T a T λ'+=

(5.4)

2

2

2

2

0V V V x

y

λ∂∂+

+=∂∂

(5.5)

从(5.4)得

2

()a t

T t Ae

λ-=

方程(5.5)称为亥姆霍兹(Helmholtz )方程。为了求出这个方程满足条件

2

2

2

0x y R

V

+== (5.6)

的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得

22

222

110,,02, (5.7)0,02, (5.8)R

V v V

V R V ρλρθπρρρρθθπ=⎧∂∂∂+++=<≤≤⎪∂∂∂⎨⎪=≤≤⎩ 再令 (,)()()V P ρθρθ=Θ, 代入(5.7)并分离变量可得

()()0θμθ''Θ+Θ=

(5.9)

2

2

()()()()0P P P ρρρρλρμρ'''++-=

(5.10)

由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值得,因此()θΘ应该是以2π为周期的周期函数,这就决定了μ只能等于如下的数:

2

2

2

0,1,2,,,n

对应于2

n

n

μ

=,有

00()2

a θΘ=

(为常数)

()cos sin ,(1,2,)n n n a n b n n θθθΘ=+=

以2

n

n

μ

=代入(5.10)得

2

2

2

()()()()0P P n P ρρρρλρρ'''++-=

(5.11)

这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,所以,它是n 阶贝塞尔方程。

若再作代换

r =

并记

()F r P

=,

则得

2

2

2

()()()()0r F r rF r r n F r '''++-=.

这是n 阶贝塞尔方程最常见的形式。

由条件(5.8)及温度u 是有限的,分别可得

()0

(0)P R P =⎧⎪⎨<+∞

⎪⎩ (5.12)

因此,原定解问题的最后解决就归结为求贝塞尔方程(5.11)在条件(5.12)下的特征值与特征函数((5.12中第一个条件是在R

ρ

=处的

第一类边界条件,第二个条件是在0

ρ

=处的自然边界条件,由于

2

()k ρρ

=在0

ρ

=处为零,所以在这一点应加自然边界条件)。在下一

节先讨论方程(5.11)的解法,然后在§5.5中再回过头来讨论这个特征值问题。

§5.2 贝塞尔方程的求解

在上一节中,从解决圆盘的瞬时温度分布问题引出了贝塞尔方程,本节来讨论这个方程的解法。按惯例,仍以x 表示自变量,以y 表示未知函数,则n 阶贝塞尔方程为

2

2

2

22

()0d y dy x

x

x n y dx

dx

++-=

(5.13)

其中n 为任意实数或复数。我们仅限于n 为任意实数,且由于方程中的系数出现2n 的项,所以在讨论时,不妨先假定0n ≥。

设方程(5.13)有一个级数解,其形式为

20120

()c k

c k

k k

k y x a a x a x a x a

x

+==+++++=

∑ ,0

0a ≠ (5.14)

其中常数c 和(0,1,2,)k a k = 可以通过把y 和它的导数,y y '''代入(5.13)

来确定。

将(5.14)及其导数代入(5.13)后得

2

20

{[()(1)()()]}0c k

k k c k c k c k x

n a x

+=++-+++-=∑

化简后写成

22221

2

20122

()[(1)]{[()

]}0c c c k

k k k c n a x c n a x

c k n a a x

++-=-++-+

+-+=∑

相关文档
最新文档