高考数学二轮复习:第五讲 等差等比
2020年高考数学(理)总复习:等差数列与等比数列(解析版)
2020年高考数学(理)总复习:等差数列与等比数列题型一等差、等比数列的基本运算【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a1、d(或q)、n、an与Sn这五个量,如果已知其中的三个,就可以求其余的两个.其中a1和d(或q)是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为54,则S5等于()A.29B.31C.33 D.36【例2】.an是公差不为0的等差数列,满足a24+a25=a26+a27,则该数列的前10项和S10等于()A.-10B.-5C.0D.5【例3】.已知递增数列{an}对任意n∈N*均满足an∈N*,aan=3n,记bn=a2•3n-1(n ∈N*),则数列{bn}的前n项和等于()A.2n+n B.2n+1-1C.3n+1-3n2D.3n+1-32题组训练一等差、等比数列的基本运算1.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20等于()A.4B.6C.10D.122.在等差数列{an}中,2(a1+a3+a5)+3(a8+a10)=36,则a6等于()A.8 B.6 C.4 D.33.已知等比数列{an}的前n项和为Sn,a1+a3=30,S4=120,设bn=1+log3an,那么数列{bn}的前15项和为()A.152 B.135 C.80 D.16题型二等差、等比数列的性质及应用【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{an},{bn}满足bn=log2an,n∈N*,其中{bn}是等差数列,且a8•a2 008=14,则b1+b2+b3+…+b2 015等于()A.log22 015 B.2 015 C.-2 015 D.1 0082.各项均为正数的等比数列{an}的前n项和为Sn,若S4=10,S12=130,则S8等于()A.-30 B.40C.40或-30 D.40或-503.等比数列{an}的首项为32,公比为-12,前n项和为Sn,则当n∈N*时,Sn-1Sn 的最大值与最小值之和为()A.-23 B.-712C.14D.56题组训练二等差、等比数列的性质及应用1.在等比数列{an}中,a3,a15是方程x2-7x+12=0的两根,则a1a17a9的值为()A.23 B.4 C.±22 D.±42.设公差为d的等差数列{an}的前n项和为Sn,若a1=1,-217<d<-19,则当Sn 取最大值时n的值为________.3.若{an}是等差数列,首项a1>0,a2 016+a2 017>0,a2 016•a2 017<0,则使前n 项和Sn>0成立的最大正整数n是()A.2 016B.2 017 C.4 032 D.4 033题型三等差、等比数列的综合问题【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{an}的公差为-1,且a2+a7+a12=-6.(1)求数列{an}的通项公式an与前n项和Sn;(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*,总有Sn<Tm+λ恒成立,求实数λ的取值范围.题组训练三等差、等比数列的综合问题已知数列{an}中,a1=1,an•an+1=,记T2n为{an}的前2n项的和,bn=a2n+a2n -1,n∈N*.(1)判断数列{bn}是否为等比数列,并求出bn;(2)求T2n.题型四数列与其他知识的交汇【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】已知等差数列{an}的前n项和为Sn,若OB→=a1OA→+a2 016OC→,且A,B,C三点共线(该直线不过点O),则S2 016等于()A.1 007B.1 008C.2 015D.2 016题组训练四数列与其他知识的交汇1.在由正数组成的等比数列{an}中,若a3a4a5=3π,则sin(log3a1+log3a2+…+log3a7)的值为()A.12B.32C.1 D.-322.已知各项都为正数的等比数列{an}满足a7=a6+2a5,存在两项am,an使得am•an =4a1,则1m+4n的最小值为()A.32B.53C.256D.433.艾萨克•牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)的零点时给出一个数列xn满足xn+1=xn-′,我们把该数列称为牛顿数列.如果函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列xn为牛顿数列,设an=ln xn-2xn-1,已知a1=2,xn>2,则an的通项公式an=________.【专题训练】一、选择题1.等比数列{an}中,a4=2,a7=5,则数列{lg an}的前10项和等于()A.2B.lg 50C.10D.52.在正项等比数列{an}中,已知a3a5=64,则a1+a7的最小值为()A.64 B.32C.16 D.83.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13 B.12C.11 D.104.在数列{an}中,若a1=2,且对任意正整数m,k,总有am+k=am+ak,则{an}的前n项和Sn等于()A.n(3n-1) +C.n(n+1) +5.记Sn为正项等比数列{an}的前n项和,若S12-S6S6-7•S6-S3S3-8=0,且正整数m,n满足a1ama2n=2a35,则1m+8n的最小值是()A.157B.95C.53D.756.数列an是以a为首项,b为公比的等比数列,数列bn满足bn=1+a1+a2+…+an(n =1,2,…),数列cn满足cn=2+b1+b2+…+bn(n=1,2,…),若cn为等比数列,则a+b 等于()A.2 B.3 C.5 D.6二、填空题7.数列{an}的通项an=n2•,其前n项和为Sn,则S30=________.8.已知数列{an}满足a1=2,且an=2nan-1an-1+n-1(n≥2,n∈N*),则an=________.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.8日B.9日C.12日D.16日10.数列{logkan}是首项为4,公差为2的等差数列,其中k>0,且k≠1.设cn=anlg an,若{cn}中的每一项恒小于它后面的项,则实数k的取值范围为________.三、解答题11.已知数列an的前n项和为Sn,且Sn=2an-3n(n∈N*).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得数列{an+λ}为等比数列?若存在,求出λ的值和通项公式an;若不存在,请说明理由.12.已知数列{an}的前n项和为Sn,且Sn-1=3(an-1),n∈N*.(1)求数列{an}的通项公式;(2)设数列{bn}满足an+1=an•bn,若bn≤t对于任意正整数n都成立,求实数t的取值范围.2020年高考数学(理)总复习:等差数列与等比数列题型一 等差、等比数列的基本运算 【题型要点】方程思想在等差(比)数列的基本运算中的运用等差(比)数列的通项公式、求和公式中一共包含a 1、d (或q )、n 、a n 与S n 这五个量,如果已知其中的三个,就可以求其余的两个.其中a 1和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式,求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.【例1】等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5等于( )A .29B .31C .33D .36【解析】 法一:设等比数列{a n }的首项为a 1,公比为q ,由题意知⎩⎪⎨⎪⎧a 1qa 1q 4=2a 1q 2a 1q 3+2a 1q 6=2×54,解得⎩⎪⎨⎪⎧q =12a 1=16,所以S 5=a 1(1-q 5)1-q=31,故选B.法二:由a 2a 5=2a 3,得a 4=2.又a 4+2a 7=52,所以a 7=14,所以q =12,所以a 1=16,所以S 5=a 2(1-q 5)1-q=31,故选B.【答案】 B【例2】.{}a n 是公差不为0的等差数列,满足a 24+a 25=a 26+a 27,则该数列的前10项和S 10等于( )A .-10B .-5C .0D .5【解析】 由题意,得a 24-a 27=a 26-a 25,即()a 4-a 7()a 4+a 7=()a 6-a 5()a 6+a 5,即-3d ()a 4+a 7=d ()a 6+a 5,又因为d ≠0,所以a 4+a 7=a 6+a 5=0,则该数列的前10项和S 10=10(a 1+a 10)2=5()a 6+a 5=0.故选C.【答案】 C【例3】.已知递增数列{a n }对任意n ∈N *均满足a n ∈N *,aa n =3n ,记b n =a 2·3n -1(n ∈N *),则数列{b n }的前n 项和等于( )A .2n +nB .2n +1-1C.3n +1-3n 2D.3n +1-32【解析】 因为aa n =3n ,所以a 1≤3,若a 1=1,那么a 1=aa 1=3×1=3≠1矛盾,若a 1=2,那么a 2=aa 1=3×1=3成立,若a 1=3,那么a 3=aa 1=3×1=3=a 1矛盾,所以a 2=b 1=2,当aa an =3a n =a 3n ,所以b n =a 2·3n -1=a 3·2·3n -2=3a 2·3n -2=3b n -1,即b n b n -1=3,数列{b n }是首项为2,公比为3的等比数列,所以前n 项和为b 1(1-q n )1-q =3(1-33)1-3=3n +1-32,故选D.【答案】 D题组训练一 等差、等比数列的基本运算1.设等差数列{a n }的前n 项和为S n ,若a 3+a 5=4,S 15=60则a 20等于( ) A .4 B .6 C .10 D .12 【解析】 等差数列{a n }的前n 项和为S n , ∵a 3+a 5=4,S 15=60,∴⎩⎪⎨⎪⎧a 1+2d +a 1+4d =415a 1+15×142d =60, 解得a 1=12,d =12,∴a 20=a 1+19d =12+19×12=10.故选C.【答案】 C2.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6等于( ) A .8 B .6 C .4D .3【解析】 由等差数列的性质可知,2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6(a 3+a 9)=6×2a 6=12a 6=36,∴a 6=3.故选D.【答案】 D3.已知等比数列{a n }的前n 项和为S n ,a 1+a 3=30,S 4=120,设b n =1+log 3a n ,那么数列{b n }的前15项和为( )A .152B .135C .80D .16【解析】 设等比数列{a n }的公比为q ,由a 1+a 3=30,a 2+a 4=S 4-(a 1+a 3)=90,所以公比q =a 2+a 4a 1+a 3=3,首项a 1=301+q 2=3,所以a n =3n ,b n =1+log 33n=1+n ,则数列{b n }是等差数列,前15项的和为15×(2+16)2=135,故选B. 【答案】 B题型二 等差、等比数列的性质及应用 【题型要点】(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.【例4】已知数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,且a 8·a 2 008=14,则b 1+b 2+b 3+…+b 2 015等于( ) A .log 22 015B .2 015C .-2 015D .1 008【解析】 ∵数列{a n },{b n }满足b n =log 2a n ,n ∈N *,其中{b n }是等差数列,∴数列{a n }是等比数列,由a 8·a 2 008=14,可得a 21 008=14,即a 1 008=12,∴a 1·a 2 015=a 2·a 2 014=…=a 1 007·a 1 009=a 21 008=14,∴b 1+b 2+b 3+…+b 2 015=log 2(a 1·a 2·…·a 2 015)=log 2201521⎪⎭⎫⎝⎛=-2 015.【答案】C2.各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8等于( ) A .-30 B .40 C .40或-30D .40或-50【解析】 ∵数列{a n }为等比数列且数列{a n }的前n 项和为S n ,∴S 4,S 8-S 4,S 12-S 8也构成等比数列.∴(S 8-S 4)2=S 4·(S 12-S 8),∵S 4=10,S 12=130,各项均为正数的等比数列{a n }, ∴(S 8-10)2=10·(130-S 8),∴S 8=40.故选B. 【答案】 B3.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56【解析】 依题意得,S n =⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-21121123n=1-n⎪⎭⎫⎝⎛-21.当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n-1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56、-712,其最大值与最小值之和为56-712=312=14,选C.【答案】 C题组训练二 等差、等比数列的性质及应用1.在等比数列{a n }中,a 3,a 15是方程x 2-7x +12=0的两根,则a 1a 17a 9的值为( )A .2 3B .4C .±2 2D .±4【解析】 ∵a 3,a 15是方程x 2-7x +12=0的两根,∴a 3a 15=12,a 3+a 15=7,∵{a n }为等比数列,又a 3,a 9,a 15同号,∴a 9>0,∴a 9=a 3a 15=23,∴a 1a 17a 9=a 29a 9=a 9=2 3.故选A.【答案】 A2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.【解析】 因为等差数列{a n }的公差d 为负值,所以{a n }是递减数列.又a 1=1,所以由a n =a 1+(n -1)d >0得n <d -a 1d ,即n <1-1d ,因为-217<d <-19,所以192<1-1d <10,所以n ≤9,即当n ≤9时,a n >0,当n ≥10时,a n <0.所以当S n 取得最大值时n 的值为9.【答案】 93.若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033【解析】 因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.【答案】 C题型三 等差、等比数列的综合问题 【题型要点】关于等差、等比数列的综合问题多属于两者运算的综合题以及相互之间的转化,关键是求出两个数列的基本量:首项和公差(或公比),灵活运用性质转化条件,简化运算,准确记忆相关的公式是解决此类问题的关键.【例3】已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.【解析】 (1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-m =8⎪⎭⎫ ⎝⎛-m )21(1, ∵m⎪⎭⎫⎝⎛21随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-481292n ,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<8+λ,得λ>2.即实数λ的取值范围为(2,+∞). 题组训练三 等差、等比数列的综合问题已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫ ⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .【解析】 (1)∵a n ·a n +1=n⎪⎭⎫⎝⎛21,∴a n +1·a n +2=121+⎪⎭⎫⎝⎛n ,∴a n +2a n =12,即a n +2=12a n .∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12所以{b n }是公比为12的等比数列.∵a 1=1,a 1·a 2=12,∴a 2=12⇒b 1=a 1+a 2=32.∴b n =32×121-⎪⎭⎫⎝⎛n =32n . (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列. ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=[]21121121211211-⎪⎭⎫ ⎝⎛-+-⎪⎭⎫⎝⎛-nn =3-32n .题型四 数列与其他知识的交汇 【题型要点】数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化,特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.【例4】 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016 【解析】 ∵A 、B 、C 三点共线∴AB →=λAC →∴OB →-OA →=λ(OC →-OA →),OB →=(1-λ)OA →+λOC → 又∵OB →=a 1·OA →+a 2 016OC →,∴a 1=1-λ,a 2 016=λ ∴a 1+a 2 016=1∴S 2 016=2 016(a 1+a 2 016)2=1 008,∴选B.【答案】 B题组训练四 数列与其他知识的交汇1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12B.32C .1D .-32【解析】 因为a 3a 4a 5=3π=a 34,所以a 4=3π3,即log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 【答案】 B2.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.43【解析】 由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理得q 2-q -2=0,解得q =2或q=-1(不合题意,舍去),又由a m ·a n =4a 1,得a m a n =16a 21,即a 212m+n -2=16a 21,即有m +n-2=4,亦即m +n =6,那么1m +4n =16(m +n )⎪⎭⎫⎝⎛+n m 41=16⎪⎪⎭⎫ ⎝⎛+⋅≥⎪⎭⎫ ⎝⎛++5426154m n n m m n n m =32,当且仅当4m n =n m ,即n =2m =4时取得最小值32.【答案】 A3.艾萨克·牛顿(1643年1月4日-1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f (x )的零点时给出一个数列{}x n 满足x n +1=x n -f (x n )f ′(x n ),我们把该数列称为牛顿数列.如果函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{}x n 为牛顿数列,设a n =ln x n -2x n -1,已知a 1=2,x n >2,则{}a n 的通项公式a n =________.【解析】 ∵ 函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,∴⎩⎪⎨⎪⎧ a +b +c =0,4a +2b +c =0, 解得⎩⎪⎨⎪⎧c =2a ,b =-3a . ∴f (x )=ax 2-3ax +2a ,则f ′(x )=2ax -3a .则x n +1=x n -ax 2n -3ax n +2a 2ax n -3a =x n -x 2n -3x n +22x n -3=x 2n -22x n -3,∴x n +1-2x n +1-1=x 2n -22x n -3-2x 2n -22x n -3-1=x 2n -2-2(2x n -3)x 2n -2-(2x n -3)=212⎪⎪⎭⎫⎝⎛--n n x x , 则数列a n 是以2为公比的等比数列,又∵a 1=2 ,∴ 数列{}a n 是以2为首项,以2为公比的等比数列,则a n=2·2n-1=2n.【答案】2n【专题训练】一、选择题1.等比数列{a n}中,a4=2,a7=5,则数列{lg a n}的前10项和等于()A.2B.lg 50C.10D.5【解析】∵等比数列{a n}中,a4=2,a7=5,∴a1a10=a2a9=…=a4a7=10,∴数列{lg a n}的前10项和S=lg a1+lg a2+…+lg a10=lg a1a2…a10=lg 105=5,故选D【答案】 D2.在正项等比数列{a n}中,已知a3a5=64,则a1+a7的最小值为()A.64 B.32C.16 D.8【解析】在正项等比数列{a n}中,∵a3a5=64,∴a3a5=a1a7=64,∴a1+a7≥2a1a7=264=2×8=16,当且仅当a1=a7=8时取等号,∴a1+a7的最小值为16,故选C.【答案】 C3.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A.13 B.12C.11 D.10【解析】设等比数列为{a n},其前n项积为T n,由已知得a1a2a3=2,a n a n-1a n-2=4,可得(a1a n)3=2×4,a1a n=2,∵T n=a1a2…a n,∴T2n=(a1a2…a n)2=(a1a n)(a2a n-1)…(a n a1)=(a1a n)n =2n=642=212,∴n=12.【答案】 B4.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n 等于( )A .n (3n -1)B.n (n +3)2C .n (n +1)D.n (3n +1)2【解析】 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),选C.【答案】 C5.记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) A.157 B.95 C.53D.75【解析】 ∵{a n }是等比数列,设{a n }的公比为q , ∴S 12-S 6S 6=q 6,S 6-S 3S 3=q 3,∴q 6-7q 3-8=0, 解得q =2(负值舍去).又a 1a m a 2n =2a 35,∴a 31·2m+2n -2=2(a 124)3=a 31213,∴m +2n =15,∴1m +8n =115⎪⎭⎫⎝⎛+n m 81(m +2n )=17+2n m +8m n 15≥17+22n m ×8m n 15=53,当且仅当2n m =8mn,即m =3,n =6时等号成立,∴1m +8n 的最小值是53,故选C. 【答案】 C6.数列{}a n 是以a 为首项,b 为公比的等比数列,数列{}b n 满足b n =1+a 1+a 2+…+a n (n =1,2,…),数列{}c n 满足c n =2+b 1+b 2+…+b n (n =1,2,…),若{}c n 为等比数列,则a +b 等于( )A. 2 B .3 C. 5D .6【解析】 由题意知,当b =1时,{c n }不是等比数列,所以b ≠1.由a n =ab n -1,则b n =1+a (1-b n )1-b =1+a 1-b -ab n 1-b ,得c n =2+nb a ⎪⎭⎫ ⎝⎛-+11-a 1-b ·b (1-b n )1-b =2-ab (1-b )2+1-b +a 1-b n +abn +1(1-b )2,要使{}c n为等比数列,必有⎩⎪⎨⎪⎧2-ab(1-b )2=0,1-b +a1-b =0,得⎩⎪⎨⎪⎧a =1,b =2,a +b =3,故选B.【答案】 B 二、填空题7.数列{a n }的通项a n =n 2·⎪⎭⎫ ⎝⎛-3sin 3cos22ππn n ,其前n 项和为S n ,则S 30=________. 【解析】 由题意可知,a n =n 2·cos 2n π3,若n =3k -2,则a n =(3k -2)2·⎪⎭⎫⎝⎛-21=-9k 2+12k -42(k ∈N *);若n =3k -1,则a n =(3k -1)2·⎪⎭⎫ ⎝⎛-21=-9k 2+6k -12(k ∈N *);若n =3k ,则a n =(3k )2·1=9k 2(k ∈N *),∴a 3k -2+a 3k -1+a 3k =9k -52,k ∈N *,∴S 30=9-52+90-522×10=470.【答案】 4708.已知数列{a n }满足a 1=2,且a n =2na n -1a n -1+n -1(n ≥2,n ∈N *),则a n =________.【解析】 由a n =2na n -1a n -1+n -1,得n a n =n -12a n -1+12,于是n a n -1=12⎪⎪⎭⎫ ⎝⎛---111n a n (n ≥2,n ∈N *). 又1a 1-1=-12,∴数列⎭⎬⎫⎩⎨⎧-1nan 是以-12为首项,12为公比的等比数列,故n a n -1=-12n ,∴a n =n ·2n2n -1(n ∈N *).【答案】 n ·2n2n -19.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A .8日B .9日C .12日D .16日【解析】由题可知,良马每日行程a n 构成一个首项为103,公差13的等差数列,驽马每日行程b n 构成一个首项为97,公差为-0.5的等差数列,则a n =103+13(n -1)=13n +90,b n =97-0.5(n -1)=97.5-0.5n ,则数列{a n }与数列{b n }的前n 项和为1125×2=2250,又∵数列{a n }的前n 项和为n 2×(103+13n +90),数列{b n }的前n 项和为n 2×(97+97.5-0.5n ),n 2(103+3n +90)+n2(97+97.5-0.5n )=2250,整理得:25n 2+775n -9 000=0,即n 2+31n -360=0,解得:n =9或n =-40(舍),即九日相逢.故选B.【答案】B10.数列{log k a n }是首项为4,公差为2的等差数列,其中k >0,且k ≠1.设c n =a n lg a n ,若{c n }中的每一项恒小于它后面的项,则实数k 的取值范围为________.【解析】 由题意得log k a n =2n +2,则a n =k2n +2,∴a n +1a n =k 2(n +1)+2k2n +2=k 2,即数列{a n }是以k 4为首项,k 2为公比的等比数列,c n =a n lg a n =(2n +2)·k 2n +2lg k ,要使c n <c n +1对一切n ∈N *恒成立,即(n +1)lg k <(n +2)·k 2·lg k 对一切n ∈N *恒成立;当k >1时,lg k >0,n +1<(n +2)k 2对一切n ∈N *恒成立;当0<k <1时,lg k <0,n +1>(n +2)k 2对一切n ∈N *恒成立,只需k 2<⎪⎭⎫ ⎝⎛++21n n min .∵n +1n +2=1-1n +2单调递增,∴当n =1时,n +1n +2取得最小值,即⎪⎭⎫⎝⎛++21n n min =23,∴k 2<23,且0<k <1,∴0<k <63.综上,k ∈⎪⎪⎭⎫ ⎝⎛36,0∪(1,+∞).【答案】 ⎪⎪⎭⎫ ⎝⎛36,0∪(1,+∞) 三、解答题11.已知数列{}a n 的前n 项和为S n ,且S n =2a n -3n (n ∈N *).(1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得数列{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.【解】 (1)当n =1时,由S 1=2a 1-3×1,得a 1=3; 当n =2时,由S 2=2a 2-3×2,可得a 2=9; 当n =3时,由S 3=2a 3-3×3,得a 3=21.(2)令(a 2+λ)2=(a 1+λ)·(a 3+λ),即(9+λ)2=(3+λ)·(21+λ),解得λ=3. 由S n =2a n -3n 及S n +1=2a n +1-3(n +1),两式相减,得a n +1=2a n +3. 由以上结论得a n +1+3=(2a n +3)+3=2(a n +3),所以数列{a n +3}是首项为6,公比为2的等比数列,因此存在λ=3,使得数列{a n +3}为等比数列,所以a n +3=(a 1+3)×2n -1,a n =3(2n -1)(n ∈N *).12.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n +1=⎪⎭⎫ ⎝⎛23a n ·b n ,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.【解】 (1)由已知得S n =3a n -2,令n =1,得a 1=1,又a n +1=S n +1-S n =3a n +1-3a n ⇒a n +1=32a n ,所以数列{a n }是以1为首项,32为公比的等比数列,所以a n =123-⎪⎭⎫ ⎝⎛n .(2)由a n +1=⎪⎭⎫⎝⎛23a n ·b n ,得b n =1a n log 32a n +1=(23)n -1log 32(32)n =n ·123-⎪⎭⎫ ⎝⎛n ,所以b n +1-b n =(n +1)·n ⎪⎭⎫ ⎝⎛32-n ·132-⎪⎭⎫ ⎝⎛n =2n -13n (2-n ),所以(b n )max =b 2=b 3=43,所以t ≥43.。
高考数学复习:等差数列与等比数列
Sn=an2+bn(a,b为 常数)
Sn=kqn-k(k≠0,q≠0,1)
证明数列为等差(比)数列一般使用定义法.
例3 (2019·全国Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an- bn+4,4bn+1=3bn-an-4. (1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)已知函数 f(x)=1+2 x2(x∈R),若等比数列{an}满足 a1a2 020=1,则 f(a1)
+f(a2)+f(a3)+…+f(a2 020)等于
√A.1 D.2
解析 ∵a1a2 020=1,
∴f(a1)+f(a2 020)=1+2 a21+1+2a22 ∵{an}为等比数列,
a3+a4=2,则a6+a7+a8等于
A.12
B.24
√ C.30
D.32
解析 设等比数列{an}的公比为q, 则 q=aa21++aa32++aa43=21=2,
所以a6+a7+a8=(a1+a2+a3)·q5=1×25=32.
(2)已知正项等比数列{an}的前n项和为Sn,且S10=10,S30=130,则S40等于
∴an=2×2n-1=2n. 又∵ak+1+ak+2+…+ak+10=215-25,
∴2k+111--2210=215-25,
即2k+1(210-1)=25(210-1),
∴2k+1=25,∴k+1=5,∴k=4.
(2)(多选)(2020·威海模拟)等差数列{an}的前n项和记为Sn,若a1>0,S10=
证明 由题设得4(an+1+bn+1)=2(an+bn),
即 an+1+bn+1=12(an+bn). 因为a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得4(an+1-bn+1)=4(an-bn)+8, 即an+1-bn+1=an-bn+2. 又a1-b1=1, 所以{an-bn}是首项为1,公差为2的等差数列.
等差 等比知识点总结
等差等比知识点总结一、等差数列1. 定义等差数列又叫等差数列,是一种特殊的数列,它的相邻两项之间的差都是相同的,这个差值称为公差。
比如一个等差数列通常的形式是a,a+d,a+2d,a+3d,…其中a是首项,d 是公差。
2. 通项公式设等差数列的首项为a,公差为d,那么它的通项公式为:an = a + (n - 1)d,其中n为数列的项数。
3. 性质① 等差数列的任意一项可以表示成它的首项和公差的线性组合;② 等差数列的前n项和为Sn = n(a + l)/2,其中l为数列的最后一项;③ 若等差数列的前n项和为Sn,则Sn+k = Sn + kn(k为常数);④ 若Tn为等差数列的前n项和,那么Sn = Tn - (n-1)d;⑤ 若Tn为等差数列的前n项和,那么T1、T2、…、Tn为等差数列;⑥ 等差数列的和与项数成正比例。
4. 应用等差数列的应用非常广泛,它可以用在数学、物理、工程学等各个领域。
在数学中,利用等差数列可以解决关于求和、求通项公式、求公差、求项数等各种问题。
在物理中,等差数列可以用来描述各种运动的位移、速度、加速度等之间的关系。
在工程学中,等差数列也可以用来描述一些周期性变化的规律。
二、等比数列1. 定义等比数列又叫等比数列,是一种特殊的数列,它的相邻两项之间的比值都是相同的,这个比值称为公比。
比如一个等比数列通常的形式是a,ar,ar²,ar³,…其中a是首项,r是公比。
2. 通项公式设等比数列的首项为a,公比为r,那么它的通项公式为:an = a * r⁽ⁿ⁻¹⁾,其中n为数列的项数。
3. 性质① 等比数列的任意一项可以表示成它的首项和公比的乘积;② 对于等比数列,前n项和的公式为Sn = a(1-rⁿ)/(1-r);③ 若Tn为等比数列的前n项和,那么Sn = Tn - a;④ 若Tn为等比数列的前n项和,那么T1、T2、…、Tn为等比数列;⑤ 等比数列的和与项数成正比例。
高考数学文(二轮复习)课件《等差与等比数列》
4.(2014· 安徽高考)数列{an}是等差数列,若a1+1,a3+ 3,a5+5构成公比为q的等比数列,则q=________.
答案:1
解析:解法一:因为数列{an}是等差数列,所以a1+1,a3 +3,a5+5也成等差数列,又a1+1,a3+3,a5+5构成公比为q 的等比数列,所以a1+1,a3+3,a5+5是常数列,故q=1. 解法二:因为数列{an}是等差数列, 所以可设a1=t-d,a3=t,a5=t+d, 故由已知得(t+3)2=(t-d+1)(t+d+5),得d2+4d+4=0, 即d=-2, 所以a3+3=a1+1,即q=1.
等差与等比数列
该类小题一般考查等差、等比数列的基本量的运算及性质 的灵活运用.有时等差数列、等比数列相交汇考查.该类小题具有 “新”“巧”“活”的特点.在备考中,一要重视与两种数列基 本量有关的公式的理解与应用,二要重视两种数列基本性质的 应用,三要重视方程组思想或整体思想在求解数列问题中的应 用.
(2)已知等差数列某两项的和(或等比数列某两项的积)求数 列中的某一项或求数列和(或积)的问题,运用等差数列(或等比 数列)的性质或整体代入的思想较为快捷.该类题目在平时的练 习中要学会使用性质,在短时间内准确求解.
[回访名题] (1)(2014· 福建高考)等差数列{an}的前n项和为Sn,若a1=2, S3=12,则a6等于( )
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死”,就不能“用活”! 1.把握两个定义 若一个数列从第二项起,每项与前一项的差(比)为同一个常 数,则这个数列为等差(比)数列. 2.等差、等比中项 (1)若x,A,y成等差数列⇔A为x,y的等差中项⇔2A=x+y. (2)若x,G,y成等比数列⇔G为x,y的等比中项⇒G2= xy(G≠0).
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。
高中数学必修5《等差、等比数列的综合应用》PPT
4.已知数列{an}满足an+2-an+1=an+1-an,n∈N*
π 且a5= 2 ,若函数f(x)=sin
2x+2cos2x2,记yn=f(an),
则数列{yn}的前9项和为(Βιβλιοθήκη C )A.0B.-9
C.9
D.1
【解析】∵数列{an}满足an+2-an+1=an+1-an, n∈N*,∴数列{an}是等差数列,∵a5=π2 , ∴a1+a9=a2+a8=a3+a7=a4+a6=2a5=π,
+1,n∈N*,λ为常数.
(1)证明:a1,a4,a5 成等差数列;
2 (2)设 cn= an2 an ,求数列{cn}的前 n 项和 Sn;
(3)当 λ≠0 时,数列an-1中是否存在三项 as+1- 1,at+1-1,ap+1-1 成等比数列,且 s,t,p 也成等比 数列?若存在,求出 s,t,p 的值;若不存在,说明 理由.
-an+λ,
令 bn=an+1-an,
则 bn+1-bn=λ,b1=a2-a1=0,
所以 b 是以
n
0
为首项,公差为
λ
的等差数列,所
以 bn=b1+(n-1)λ=(n-1)λ,
即 an+1-an=(n-1)λ,
所以 an+2-an=2(an+1-an)+λ=(2n-1)λ,
所以
c = n
2an2 an
等差、等比数列的综合问题(1)
【知识要点】
1.等差、等比数列的定义 (1)等差数列:如果一个数列从__第__二__项___起,每一 项与它的前一项的差等于__同__一__个__常__数____,则称这个数 列为等差数列,这个常数叫做等差数列的公差,通常用
字母 d 表示. (2)等比数列:如果一个数列从__第__二__项___起,每一
2021届高考数学二轮复习专题五三角函数与解三角形梳理纠错预测学案文
三角函数与解三角形1.三角函数(1)以正弦函数、余弦函数、正切函数为载体,考查函数的定义域、最值、单调性、对称性、周期性.(2)考查三角函数式的化简,三角函数的图象的性质以及平移和伸缩变换. 2.解三角形(1)利用正余弦定理进行三角形边和角的计算,三角形形状的判断、面积的计算,以及有关的参数的范围.(2)考查运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、三角函数 1.公式(1)诱导公式:(2)同角三角函数关系式:22sin cos 1αα+=,sin tan cos ααα=(3)两角和与差的三角函数:sin()sin cos cos sin αβαβαβ+=+ sin()sin cos cos sin αβαβαβ-=- cos()cos cos sin sin αβαβαβ+=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+(4)二倍角公式:sin 22sin cos ααα=2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 22tan tan 21tan ααα=- (5)降幂公式:21cos2sin2αα-=,21cos2cos2αα+=2.三角函数性质3.函数y=A sin(ωx+φ)的图象及变换(1)φ对函数y=sin(x+φ)的图象的影响(2)ω(ω>0)对y=sin(ωx+φ)的图象的影响(3)A(A>0)对y=A sin(ωx+φ)的图象的影响4.函数y =A sin(ωx +φ)的性质(1)函数y =A sin(ωx +φ)(A >0,ω>0)中参数的物理意义(2)函数y =A sin(ωx +φ)(A >0,ω>0)的有关性质二、解三角形 1.正余弦定理(为外接圆半径); ;,,;,,;;;;2.利用正弦、余弦定理解三角形(1)已知两角一边,用正弦定理,只有一解.(2)已知两边及一边的对角,用正弦定理,有解的情况可分为几种情况.在ABC△中,已知,和角A时,解得情况如下:上表中A为锐角时,,无解.A为钝角或直角时,,均无解.(3)已知三边,用余弦定理,有解时,只有一解.(4)已知两边及夹角,用余弦定理,必有一解.3.三角形中常用的面积公式(1)(表示边上的高);(2);(3)(为三角形的内切圆半径).4.解三角形应用题的一般步骤一、选择题.1.若1sin 33πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .79-B .23C .23-D .79【答案】A【解析】1sin cos cos 32363ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 2217cos 2cos 22cos 12136639πππααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选A .【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想, 属于基础题.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为()A.1BC. D .3【答案】B【解析】因为()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭,所以()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+,则()2sin 2sin cos 2sin sin 2f θθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令f ′(θ)=0,得cos 1θ=-或1cos 2θ=,经典训练题(70分钟)当11cos 2θ-<<时,f ′(θ)<0;1cos 12θ<<时,f ′(θ)>0,所以当1cos 2θ=时,f (θ)取得最大值,此时sin 2θ=,所以()max2f x =,故选B .【点评】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值. 3.已知锐角ϕ满足cos 1ϕϕ-=.若要得到函数()()21sin 2f x x ϕ=-+的图象,则可以将函数1sin 22y x =的图象() A .向左平移7π12个单位长度B .向左平移π12个单位长度C .向右平移7π12个单位长度D .向右平移π12个单位长度【答案】A 【解析】由cos 1ϕϕ-=,知2sin()16πϕ-=,即1sin()62πϕ-=, ∴锐角3πϕ=,故()()221112sin sin cos(2)22323f x x x x ππϕ⎛⎫=-+=-+=+ ⎪⎝⎭,又12117cos(2)sin(2)sin(2)232626x x x πππ+=-+=+, ∴()17sin(2)26f x x π=+,故f(x)是将1sin 22y x =向左平移7π12个单位长度得到,故选A .【点评】由辅助角公式化简已知条件求锐角ϕ,根据f(x)的函数式,应用二倍角、诱导公式将f(x)化为正弦型函数,即可判断图象的平移方式.4.已知函数f (x )=2sin (ωx +φ),(0,)2πωϕ><的部分图象如图所示,f (x )的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将f (x )的图象向左平移712π个单位得到g (x )的图象,则函数g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A .−√2B .√2C .−√3D .−1【答案】A【解析】由图象知,5244T πππ=-=,∴T =2π,则1ω=, ∴f (x )=2sin (x +φ),将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=- ⎪⎝⎭, 将f (x )的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x xπππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴g (x )在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π=,故选A .【点评】本题主要考查三角函数图象,需要利用三角函数的周期性以及对称性进行处理,再结合图象的平移,三角函数的单调性进行解题,本题属于中档题.5.已知函数f (x )=sin ωx −√3cos ωx (0ω>,x ∈R )的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数g (x )的图象,则下列关于函数g (x )的命题中正确的是() A .函数g (x )是奇函数B .g (x )的图象关于直线6x π=对称C .g (x )在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数D .当,66ππx ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[0,2] 【答案】B【解析】()πsin 2sin 3f x x x x ωωω⎛⎫==- ⎪⎝⎭,由题意知函数周期为π,则2T ππω==,2ω=,从而()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,把函数f (x )的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()2sin π3g x x ⎛⎫=+ ⎪⎝⎭,g (x )不是奇函数,A 错;g (x )在,36ππ⎡⎤-⎢⎥⎣⎦是单调递增,C 错;,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数g (x )的值域是[1,2],D 错;g (x )的图象关于直线π6x =对称,B 对,只有选项B 正确,故选B .【点评】本题考查三角函数,图象的变换,以及图象的性质,属于中档题.6.在△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若3A π=,b =4,△ABC的面积为3√3,则sin B =()A BC .13D 【答案】A【解析】1sin 2S bc A ===c =3,由余弦定理可得2222cos 13ab c bc A =+-=,得a =√13,又由正弦定理可得sin sin a b A B=,所以sin sin 13b A B a ==,故选A .【点评】本题主要考了三角形的面积公式以及余弦定理公式的运用,属于基础题型.7.已知a 、b 、c 分别是△ABC 的内角A 、B 、C 的对边,若sin cos sin CA B<,则ΔABC 的形状为() A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 【答案】A【解析】因为在三角形中,sin cos sin CA B<变形为sin sin cos C B A <, 由内角和定理可得sin()cos sin A B A B +<,化简可得sin cos 0A B <,cos 0B ∴<,所以2B π>,所以三角形为钝角三角形,故选A .【点评】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题.8.已知(0,π)α∈,且有1−2sin 2α=cos 2α,则cos α=_________.【答案】5【解析】2212sin 2cos 214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,π)α∈,所以sin 0α≠, 因此由2πsin 2sin cos sin 2cos tan 20,2ααααααα⎛⎫=⇒=⇒=⇒∈ ⎪⎝⎭,而()22sincos 11αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=2π0,α⎛⎫∈ ⎪⎝⎭,因此cos 5α=,故答案为5.【点评】本题考查了三角恒等变换与三角函数求值问题,是基础题.9.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边经过点P (3,4),则tan π2α⎛⎫+= ⎪⎝⎭___________.【答案】34-【解析】由三角函数的定义可得4sin 5α==,3cos 5α==,因此,3sin cos 325tan 42sin 4cos 52παπααπαα⎛⎫+ ⎪⎛⎫⎝⎭+====- ⎪-⎛⎫⎝⎭-+ ⎪⎝⎭, 故答案为34-.【点评】本题考查任意角的三角函数的应用,诱导公式的应用,是基本知识的考查.三、解答题.10.已知函数2()cos 222x x xf x =+.(1)求函数f(x)在区间[0,π]上的值域;(2)若方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,求ω的取值范围. 【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)()2πcos 2sin()2224x x x f x x x x =+-=+=+,令4U x π=+,[]0,x π∈,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦,由y =sin U 的图象知,sin U ⎡⎤∈⎢⎥⎣⎦,即sin 4πx ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 2π4x ⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数f(x)的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>, ∵f(ωx)=√3,2sin()4x πω∴+=,即sin()42x πω+=,∵x ∈[0,π],,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,且()243x k k ππωπ+=+∈Z 或()2243x k k ππωπ+=+∈Z , 由于方程f(ωx)=√3(ω>0)在区间[0,π]上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥, 所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭. 【点评】考查三角函数的值域时,常用的方法:(1)将函数化简整理为f(x)=A sin (ωx +φ),再利用三角函数性质求值域;(2)利用导数研究三角函数的单调区间,从而求出函数的最值.11.已知函数()2sin 2cos 232f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭.(1)求函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调区间;(2)若0,2πβ⎛⎫∈ ⎪⎝⎭,1123f πβ⎛⎫-= ⎪⎝⎭,求cos 26πβ⎛⎫+ ⎪⎝⎭的值.【答案】(1)递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦,递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦;(2)3-.【解析】(1)由题意得()21sin 2cos 2cos 2sin 2sin 23222f x x x x x x ππ⎛⎫⎛⎫=++-=-+ ⎪ ⎪⎝⎭⎝⎭12sin 2sin 223x x x π⎛⎫=+=+ ⎪⎝⎭, 因为5,66x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]20,23x ππ+∈, 令0232x ππ≤+≤,解得,612x ππ⎡⎤∈-⎢⎥⎣⎦; 令32232x πππ≤+≤,解得7,1212x ππ⎡⎤∈⎢⎥⎣⎦;令32223x πππ≤+≤,得75,126x ππ⎡⎤∈⎢⎥⎣⎦. 所以函数f (x )在5,66ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间为,612ππ⎡⎤-⎢⎥⎣⎦,75,126ππ⎡⎤⎢⎥⎣⎦, 单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦.(2)由(1)知1sin 21263f ππββ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭.因为2π0,β⎛⎫∈ ⎪⎝⎭,所以7π2,66ππ6β⎛⎫+∈ ⎪⎝⎭, 又因为1π1sin 2632β⎛⎫+=< ⎪⎝⎭,所以2,π62ππβ⎛⎫+∈ ⎪⎝⎭,所以cos 2π6β⎛⎫+== ⎪⎝⎭.【点评】三角函数的化简求值的规律总结:1.给角求值:一般给出的角是非特殊角,要观察所给角与特殊角的关系,利用三角变换转化为求特殊角的三角函数值问题; 2.给值求值:即给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使相关角相同或具有某种关系; 3.给值求角:实质上可转化为“给值求值”即通过求角的某个三角函数值来求角(注意角的范围). 12.在四边形ABCD 中,AB //CD ,AD =CD =BD =1. (1)若32AB =,求BC ;(2)若AB =2BC ,求cos BDC ∠.【答案】(1)2BC =;(2)cos 1BDC ∠=.【解析】(1)在△ABD 中,由余弦定理可得2223cos 24AB BD AD ABD AB BD +-∠==⋅,∵CD //AB,∴∠BDC =∠ABD ,在△BCD 中,由余弦定理可得22212cos 2BC BD CD BD CD BDC =+-⋅∠=,2BC =.(2)设BC =x ,则AB =2x ,在△ABD 中,22224cos 24AB BD AD x ABD x AB BD x +-∠===⋅, 在△BCD 中,22222cos 22BD CD BC x BDC BD CD +--∠==⋅,由(1)可知,∠BDC =∠ABD ,所以,cos ∠BDC =cos ∠ABD ,即222x x -=,整理可得x2+2x −2=0,因为x >0,解得x =√3−1, 因此,cos cos 1BDC ABD x ∠=∠==.【点评】在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角"或“角化边",变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角"; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足(2b −c )cos A =acosC.(1)求角A ;(2)若a =√13,b +c =5,求△ABC 的面积. 【答案】(1)π3A =;(2)√3.【解析】(1)在三角形ABC 中,∵(2b −c )cos A =acos C , 由正弦定理得()2sin sin cos sin cos B C A A C -=,化为:()2sin cos sin cos sin cos sin sin B A C C A C A C B =+=+=, 三角形中sin 0B ≠,解得1cos 2A =,A ∈(0,π),∴π3A =.(2)由余弦定理得2222cos ab c bc A =+-,∵a =√13,b +c =5,∴13=(b +c )2−3cb =52−3bc,化为bc =4,所以三角形ABC 的面积11sin 4222S bc A ==⨯⨯=【点评】本题考查正余弦定理和三角形面积公式的综合运用,涉及三角函数恒等变换,属基础题.熟练掌握利用正弦定理边化角,并结合三角函数两角和差公式化简,注意余弦定理与三角形面积公式的综合运用.14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin (A +B −C )=c sin (B +C ).(1)求角C 的大小;(2)若2a +b =8,且△ABC 的面积为2√3,求△ABC 的周长.【答案】(1)π3C =;(2)6+2√3.【解析】(1)∵a sin(A +B −C)=c sin(B +C),sin sin(π2)sin sin A C C A ∴-=,2sin sin cos sin sin A C C C A ∴=, sin sin 0A C ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2)由题意可得12=∴ab =8,∵2a +b =8联立可得,a =2,b =4,由余弦定理可得c2=12,c =2√3,此时周长为6+2√3.【点评】本题主要考查了三角形的内角及诱导公式在三角形化简中的应用,还考查了三角形的面积公式及余弦定理,属于基础题.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知2c sin B =3a sin C ,1cos 3C =. (1)求证:△ABC 为等腰三角形;(2)若△ABC 面积为2√2,D 为AB 中点,求线段CD 的长. 【答案】(1)证明见解析;(2).【解析】(1)由2c sin B =3a sin C ,根据正弦定理可得2cb =3ac ,所以2b =3a ,则32b a =, 又1cos 3C =,根据余弦定理可得222222222913144cos 332322a a c a c abc C ab a a a +--+-====⋅,则222134aa c =-,所以32c a b ==, 因此△ABC 为等腰三角形.(2)因为角C是三角形内角,所以sin C>0,则sin C==因为△ABC面积为2√2,所以113sin222ab C a a==⋅a=2,所以b=c=3,又D为AB中点,所以cos cosADC BDC∠=-∠,则222222333222332222CD CDCD CD⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,整理得2174CD=,所以CD=.【点评】本题主要考查正余弦定理、三角形的面积公式的综合运用,利用正弦定理进行边角转换等,属于中档题型.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sin cos2Aa C c=.(1)求A;(2)已知b=1,c=3,且边BC上有一点D满足3ABD ADCS S=△△,求AD.【答案】(1)π3A=;(2)4AD=.【解析】(1)因为sin cos2Aa C c=,由正弦定理得sin sin sin cos2AA C C=,因为sin C≠0,所以sin cos2AA=,所以2sin cos cos222A A A=,因为0π22A<<,所以cos02A≠,所以1sin22A=,即π26A=,所以π3A=.(2)设△ABD的AB边上的高为ℎ1,△ADC的AC边上的高为ℎ2,因为3ABD ADCS S=△△,c=3,b=1,所以1211322c h b h⋅=⨯⋅,所以ℎ1=ℎ2,AD 是△ABC 角A 的内角平分线,所以π6BAD ∠=,因为S△ABD=3S △ADC,可知34ABDABC SS =△△, 所以131sin sin 26423ππAB AD AB AC ⨯⨯=⨯⨯⨯,所以4AD =.【点评】关键点点睛:本题考查了正弦定理的边角互化、三角形的面积公式,解题的关键是确定AD 是△ABC 角A 的内角平分线,考查了运算能力.一、选择题.1.已知函数()2sin 2π6f x x ⎛⎫=+ ⎪⎝⎭,现将()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的解析式为()A .221124x y +=B .πsin 3y x ⎛⎫=+ ⎪⎝⎭C .2sin 4π3y x ⎛⎫=+ ⎪⎝⎭D .π2sin 3y x ⎛⎫=+ ⎪⎝⎭【答案】C【解析】将()y f x =的图象向左平移π12个单位得2sin 22sin 21πππ263y x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()2in 4πs 3y g x x ⎛⎫==+ ⎪⎝⎭,高频易错题故选C .【点评】在三角函数平移变换中,y =sin ωx 向左平移ϕ个单位得到的函数解析式为y =sin [ω(x +φ)]=sin (ωx +ωφ),而不是y =sin (ωx +ϕ),考查运算求解能力,是基础题.二、填空题.2.设锐角三角形ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a =2,B =2A ,则b 的取值范围为___________. 【答案】(2√2,2√3)【解析】由sin2sin b aA A=,得b =4cos A ,由0290045A A ︒<<︒⇒︒<<︒, 01803903060A A ︒<︒-<︒⇒︒<<︒,故3045cos 2A A ︒<<︒⇒<<,cos A <<b =4cos A ∈(2√2,2√3).【点评】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理,以及锐角三角形的条件,属于简单题目.一、选择题.1.如图,角α,β的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边与单位圆O 分别交于A ,B 两点,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =()A .cos(α−β)B .cos(α+β)C .sin(α−β)D .sin(α+β)精准预测题【答案】A【解析】由图可知()cos ,sin A αα,()cos ,sin B ββ, 所以cos cos sin sin cos()OA OB αβαβαβ⋅=+=-,故选A .【点评】本题考查运用向量进行余弦定理的证明,属于基础题型.2.已知()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,则tan π4α⎛⎫-= ⎪⎝⎭()A .4-B .4C .13-D .13【答案】C【解析】因为()cos 2c 2πos παα⎛⎫+=- ⎪⎝⎭,利用诱导公式可得()sin 2cos αα-=⨯-,即tan 2α=,所以tantan 1214tan 41231tan 4πta πn πααα--⎛⎫-===- ⎪+⎝⎭+⋅,故选C .【点评】本题主要考查诱导公式,正切的两角和差公式的应用,属于基础题.二、解答题. 3.已知函数()22cos 12xf x x =-+. (1)若()π6f αα⎛⎫=+ ⎪⎝⎭,求tan α的值;(2)若函数f(x)图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数g(x)的图象,求函数g(x)在0,π2⎡⎤⎢⎥⎣⎦得的值域.【答案】(1);(2)[−1,2].【解析】(1)()22cos 1cos π2sin 26x f x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,因为()π6f αα⎛⎫=+ ⎪⎝⎭,所以πsin 6αα⎛⎫-= ⎪⎝⎭,即1cos 22ααα-=,所以−3√3sin α=cos α,所以tan 9α=-.(2)f(x)图象上所有点横坐标变为原来的12倍得到函数g(x)的图象,所以g(x)的解析式为()()π22sin 26g x f x x ⎛⎫==- ⎪⎝⎭,因为π02x ≤≤,所以ππ5π2666x -≤-≤,则1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭,所以−1≤g(x)≤2,故g(x)在0,π2⎡⎤⎢⎥⎣⎦上的值域为[−1,2].【点评】本题主要考查三角恒等变换,同角三角函数的基本关系,函数y =A sin (ωx +φ)的图象变换规律,正弦函数的定义域和值域,属于中档题. 4.设函数()212coscos 5f x x x x =--.(1)求f(x)的最小正周期和值域;(2)在锐角△ABC 中,角A 、B 、C 的对边长分别为a 、b 、c .若f(A)=−5,a =√3,求△ABC 周长的取值范围.【答案】(1)π,[−4√3+1,4√3+1](2)(3+√3,3√3]. 【解析】(1)()2212coscos 512cos 25f x x x x x x =--=--6cos 221π216x x x ⎛⎫=-+=++ ⎪⎝⎭,πT ∴=,值域为[−4√3+1,4√3+1].(2)由f(A)=−5,可得212coscos A A A=,因为三角形为锐角△ABC ,sin A A=,即tan A =π3A =,由正弦定理sin sin sin a b c A B C ==,得2sin b B =,2π2sin 2sin()3c C B ==-,所以2π12sin sin()2(sin sin )322a b c B B B B B ⎡⎤++=+-=++⎢⎥⎣⎦32(sin cos ))22π6B B B =++=++.因为△ABC 为锐角三角形,所以π02B <<,π02C <<, 即022π3π02πB B ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得π6π2B <<, 所以ππ2π363B <+<sin()16πB <+≤,即3)6πB ++≤,所以周长的取值范围为区间(3+√3,3√3].【点评】在解三角形的周长范围时,将a +b +c 转化为含一个角的三角函数问题,利用三角函数的值域, 求周长的取值范围,是常用解法.。
(完整版)高考等差等比数列知识点总结
高考数列知识点等差数列1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)
第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。
高中等差等比数列的通项求和公式
高中等差等比数列的通项求和公式高中等差等比数列的通项求和公式_高频考点学好数学的关键是公式的掌握,数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
下面是小编为大家整理的高中等差等笔数列的通项求和公式,希望能帮助到大家!等差数列的通项求和公式an=a1+(n-1)d或an=am+(n-m)d前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2若m+n=2p则:am+an=2ap以上n均为正整数等比数列的通项求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)(4)性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;②在等比数列中,依次每 k项之和仍成等比数列.③若m、n、q∈N,且m+n=2q,则am×an=aq^2(5)G是a、b的等比中项G^2=ab(G ≠ 0).(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。
等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q)q__Sn=a1__q+a2__q+a3__q+...+an__q =a2+a3+a4+...+a(n+1) Sn-q__Sn=a1-a(n+1) (1-q)Sn=a1-a1__q^n Sn=(a1-a1__q^n)/(1-q) Sn=(a1-an__q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k__(1-q^n)~y=k__(1-a^x)。
高考数学总复习等差(等比)数列的性质及应用 新课标 人教版
高考数学总复习等差(等比)数列的性质及应用【复习目标及教学建议】 复习目标:利用等差(比)数列的性质进行有关简捷运算. 如: (1)“成对和”相等或“成对积”相等问题. (2)等差数列求和S 2n –1与中项a n 转化问题. (3)分组求和技巧. (4)整体运算..教学建议:本节主要内容是利用等差(比)性质进行简捷运算;通过基础训练题,让学生归纳几种常见简捷运算的方法,在后面的例题中再强化与与提升.【基础训练】1.在等差数列{a n }与等比数列{b n }中,下列结论正确的是 ( C ) A .a 1 + a 9 = a 10,b 1·b 9 = b 10B .a 1 + a 9 = a 3 + a 6,b 1 + b 9 = b 3 + b 6C .a 1 + a 9 = a 4 + a 6,b 1·b 9 = b 3·b 6D .a 1 + a 9 = 2a 5,b 1·b 9 = 2b 5【解析】当m + n = p + q 时,等差数列中有a m + a n = a p + a q ,等比数列中有b m ·b n = b p ·b q .,但要防止出现A 、B 、D 错误. 故选C.2.在等差数列{a n }中,前15项和S 15=90,a 8为( A ) A .6 B .3 C .12 D .4【解析】S 15=215)(151⨯+a a = 90.又a 1 + a 15 = 2a 8,∴15a 8 = 90,∴a 8 = 6,故选A. 【点评】等差数列S n 与a 1、a n 的等差中项21n a a + 有关,而题目中常给出21na a +来求S n . 特别地n n a n S )12(12-=-3.等比数列的前n 项的和为54,前2n 项的和为60,则前3n 项的和为 ( D )A .66B .64C .6632 D .6032【解析】设a 1 + a 2 +…+a n = A 1, a n +1 +…+a 2n = A 2, a 2n +1 +…+a 3n = A 3.可知A 1、A 2、A 3仍是等比数列, 由A 1 = 54,A 2 = 6,得A 3 =32, 得S 3n = A 1 + A 2 + A 3 =6032. 故选D 【点评】体现“分组”思想.4.设等差数列{a n }共有3n 项,它的前2n 项和为100,后2n 项和是200,则该数列的中间n 项和等于 75 .【解析】设前n 项和,中间n 项和,后n 项和分别为A 1、、A 2、A 3,则 ⎩⎨⎧=+=+2001003221A A A A①+②:A 1、+2A 2+A 3=300,即4A 2=300. ∴ A 2=75.5.等差数列{a n }中,S 2 = S 19且公差d <0,当n = 10或11 时,S n 最大.【解析】S n 是n 二次函数,由a 2 = a 19知对称轴n ==+21929.5 故当n = 10或11时,S n 最大.6.已知等差数列{a n }中,前三项之和为6,末三项和60,S n = 231,则n = 21 . 【解析】前三项+末三项=3 (a 1 + a n ) = 66,a 1 + a n = 22,21nn a a S +=×n = 231,n = 21.点评:等差求和与“首末等距离的成对和”【知识要点】1.在等差数列{a n }中,有 (1)若m + n = p + q ,其中m 、n 、p 、q ∈N *,则一定有a m + a n = a p + a q ;当m+n=2p 时,a m + a n = 2a p . (2)若d 为{a n }的公差,则其子数列为a k , a k+m ,a k+2m ,…(m ∈N*)也成等差数列,且公差为md ; (3)间隔等长的连续几项的和构成的新数列仍成为等差数列; (4)前n 项和是n 的二次函数(常数项为0), 即S n = an 2+ bn . 且a =21d ,b = a 1–21d ; (5)奇、偶数项分别求和时,有(a 2 + a 4 +…+a 2n ) – (a 1 + a 3 +…+a 2n –1) = nd ,nn n n a aa a a a a a 11231242)()(+-=++++++(a 1 + a 3 +…+a 2n –1) – (a 2 + a 4 +…+a 2n –2) = a n . 2.等比数列的部分项构成的等比数列.(1)等比数列中间隔相同的项,仍构成等比数列. 如 ①a 1,a 3,a 5,…,(奇数项). ②a 2,a 4,a 6,…,(偶数项). ③a 1,a 4,a 7,….④a p ,a q ,a r (其中p 、q 、r ∈N *,p 、q 、r 成等差数列). (2)等比数列中的部分项之和(或差)可构成等比数列. 如: ①a 1 + a 2 + a 3,a 2 + a 3 + a 4,a 3 + a 4 + a 5. ②a 1 + a 2 + a 3, a 4 + a 5 + a 6,a 7 + a 8 +a 9.③S k ,S 2k – S k ,S 3k – S 2k (k ∈N *,S k 为等比数列{a n }的前k 项和(S k 0≠) ④q ≠1时,a 2 – a 1,a 3 – a 2,a 4 – a 3等也构成等比数列,且公比为q .【双基固化】 1.求最值问题例1 若{a n }为等差数列,首项a 1>0,a 2003 + a 2004>0,a 2003·a 2004<0. (1)求使S n >0的最大自然数n . (2)求S n 最大值时的n 值.①②【解析】法一:∵a 1>0,a 2003 + a 2004>0,a 2003·a 2004<0,且{a n }为等差数列. ∴{a n }表示a 1为正数,公差为负数的递减等差数列, 且a 2003>0,a 2004<0,|a 2003|>|a 2004|, ∴S 4006 =220061a a +×4006 =220042003a a +×4006>0, 而2400714007a a S +=×4007 = a 2004×4007<0. ∴S n >0成立的最大自然数是4006. (2)由已知得:n ≤2003时,a 1,a 2,…,a 2003均为正数,n ≥2004时,a 2004,a 2005,…均为负数,故n = 2003时,S 2003最大. 【点评】把a n 看成n 的一次函数,n 不加限制的话,要S n =n a a n⋅+21>0,即要21+n a >0,题中可得a 2003.5>0,且a 2004<0⇒S 4006 = a 2003.5×4006>0. 而求S n 最大(小)值时即把{a n }中所有正(负)项相加,即n 出现在数列正负项交界处。
专题5-1 等差等比性质综合(14题型+解题攻略)-2024年高考数学二轮热点题型归纳与变式含答案
【变式1-1】(2019秋·河南洛阳·高三统考)已知数列{}n a 为等差数列,其前n 项和为n S ,若9n n S S -=(n N *Î且9n <),有以下结论:①90S =;②50a =;③{}n a 为递增数列;④90a =.则正确的结论的个数为A .1B .2C .3D .4【变式1-2】(2019春·上海杨浦·高三复旦附中校考)已知数列{}n a 是公差不为零的等差数列,函数()f x 是定义在R 上的单调递增的奇函数,数列{()}n f a 的前n 项和为n S ,对于命题:①若数列{}n a 为递增数列,则对一切*n ÎN ,0n S >②若对一切*n ÎN ,0n S >,则数列{}n a 为递增数列③若存在*m N Î,使得0m S =,则存在*k ÎN ,使得0k a =④若存在*k ÎN ,使得0k a =,则存在*m N Î,使得0m S =其中正确命题的个数为A .0B .1C .2D .3【变式1-3】(2022·全国·高三专题练习)已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ÎN ,都有6n b b ³成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--题型02等比数列单调性【解题攻略】函数图象法:求出数列{}n a 的前n 项和()n S f n =,利用函数()y f x =的图象性质来研究n S 的最大最小值问题.【典例1-1】无穷数列{}n a 的前n 项和为n S ,满足2nn S =,则下列结论中正确的有( )A .{}n a 为等比数列B .{}n a 为递增数列【典例1-2】等比数列{}n a 的公比为q ,则“1q >”是“对于任意正整数n ,都有1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【变式1-1】已知数列{}n a 满足12a =,12(N )n n a a n *+=Î,设()()*N n n b n a n l =-×Î,且数列{}n b 是单调递增数列,则实数l 的取值范围是( )A .()3-¥,B .()3+¥,C .(]3-¥,D .[)3+¥,【变式1-2】.数列{}n a 是等比数列,首项为1a ,公比为q ,则()110a q -<是“数列{}n a 递减”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【变式1-3】数列{an }满足an +1=2an +1,a 1=1,若bn =l an ﹣n 2+4n 为单调递增数列,则l 的取值范围为( )A .18l >B .14l >C .38l >D .12l >题型03等差数列不等式正负分界【解题攻略】邻项变号法:若当n m £时,0n a ³,当1n m ³+时,0n a £,则数列{}n S 中,m S 最大;若当n m £时,0n a £,当1n m ³+时,0n a ³,则数列{}n S 中,m S 最小.【典例1-1】(2023·全国·高三专题练习)已知等差数列{}n a 的前n 项和为n S ,且满足()552sin 2350a a +--=,()201820182sin 2370a a +--=,则下列结论正确的是( )A .20222022S =,且52018a a >B .20222022S =-,且52018a a <C .20224044S =-,且52018a a >D .20224044S =,且52018a a <【典例1-2】(2022·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则选项不正确的是( )A .数列n n S a ìüíýîþ的最小项为第6项B .2445d -<<-C .50a >D .0n S >时,n 的最大值为5【变式1-1】(2021·全国·高三专题练习)设数列{}n a 为等差数列,n S 为其前n 项和,若113S £,410S ³,515S £,则4a 的最大值为A .3B .4C .7-D .5-【变式1-2】(2022·全国·高三专题练习)已知公差非零的等差数列{}n a 满足38a a =,则下列结论正确的是( )A .110S =B .*11()110N n n S S n n -=££Î,C .当110S >时,5n S S ³D .当110S <时,5n S S ³【变式1-3】(2023·全国·高三专题练习)在等差数列{}n a 中,n S 为其前n 项和.若20200S <,20210S >,则下列判断错误的是( )A .数列{}n a 递增B .10100a <C .数列{}n a 前2020项和最小D .10110a >题型04等比数列“1”比较型不等式【解题攻略】等比数列“平衡点”型不等式,主要从以下几个性质思考:1.若p +q =m +n ,则a p ·a q =a m ·a n ,特别地,若p +q =2k ,则a p ·a q =a k 22.如果等比数列是正项递增数列,则若p +q >m +n ,则a p ·a q >a m ·a n.【典例1-1】(2023·全国·高三专题练习)设等比数列{}n a 的公比为q ,其前n 项之积为n T ,并且满足条件:11a >,201920201a a >,20192020101a a -<-,给出下列结论:①01q <<;② 2019202110a a ->;③2019T 是数列{}n T 中的最大项;④使1n T >成立的最大自然数等于4039;其中正确结论的序号为( )A .①②B .①③C .①③④D .①②③④【典例1-2】(2022秋·江西赣州·高三校联考阶段练习)设公比为q 的等比数列{}n a 的前n 项和为n S ,前n项积为n T ,且11a >,202120221a a >,20212022101a a -<-,则下列结论正确的是( )A .1q >B .2021202210S S ->C .2022T 是数列{}n T 中的最大值D .数列{}n T 无最大值【变式1-1】(2023秋·高三课时练习)设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202020211a a >,()()20202021110a a --<,则下列选项错误的是( )A .01q <<B .202020211S S +>C .2020T 是数列{}n T 中的最大项D .40411T >【变式1-2】(2022秋·黑龙江齐齐哈尔·高三齐齐哈尔市恒昌中学校校考期末)设等比数列{}n a 的公比为q ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( )A .681a a >B .01q <<C .1q >D .n T 没有最大值【变式1-3】(2023·全国·高三专题练习)设等比数列{}n a 的公比为q ,其前n 项和为n S ,并且满足条件()()178781,1,110a a a a a >>--<,则下列结论正确的是( )A .791a a >B .01q <<C .6879a a a a +<+D .n S 的最大值为8S 题型05等差数列“高斯”性质【解题攻略】.一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q Î+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ìüíýîþ为等差数列;(4)232,,,n n n n n S S S S S --L 为等差数列.【典例1-1】(2021·江苏·高三专题练习)已知等差数列{}n a 满足225910a a +=,则12345a a a a a ++++的最大值为( )A .55B .20C .25D .100【典例1-2】(2022·全国·高三专题练习)已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N+=+Î,则下列判断正确的是( )A .22p pS p a =×B .p q m na a a a >C .1111p q m na a a a +<+D .1111p q m nS S S S +>+【变式1-1】(2022秋·山东临沂·高三校考期中)已知等差数列{}n a 的前n 项和为n S ,若63a =,则11S =( )A .22B .33C .44D .55【变式1-2】(2023秋·高三课时练习)在等差数列{}n a 中,91110a a +=,则数列{}n a 的前19项之和为( )A .98B .95C .93D .90【变式1-3】(2023秋·重庆沙坪坝·高三重庆南开中学校考)在等差数列{}n a 中,若31730a a +=,则91011a a a ++=( )A .30B .40C .45D .60.题型06 等比数列“高斯”性质【解题攻略】等比数列“高斯技巧”(1)“高斯”技巧:若p +q =m +n ,则ap·aq =am·an ,特别地,若p +q =2k ,则ap·aq =ak2; (2)“跳项”等比:数列an ,an +k ,an +2k ,an +3k ,…为等比数列,公比为qk.(3)“和项”等比:数列Sn ,S2n -Sn ,S3n -S2n 仍成等比数列,其公比为__qn__.【典例1-1】(2023秋·山西太原·高三统考)已知数列{}n a 为等比数列,且3542a a a ×=,设等差数列{}n b 的前n 项和为n S ,若44b a =,则7S =( )A .7B .14C .62D .72【典例1-2】(2023春·内蒙古通辽·高三校联考开学考试)已知等比数列{}n a 满足:24682820,8a a a a a a +++=×=,则24681111a a a a +++的值为( )A .20B .10C .5D .52【变式1-1】(2023春·河南郑州·高三河南省实验中学校考)已知等比数列{}n a 的各项均为正数,且3781a a =,则313539log log log a a a ++=( )A .3B .4C .5D .6【变式1-2】(2022秋·湖南常德·高三临澧县第一中学校考阶段练习)已知方程()()22880x mx x nx -+-+=的四个根组成以1为首项的等比数列,则m n -=( )A .32B .32或23C .32±D .3±【变式1-3】(2023秋·甘肃·高三校考阶段练习)若等比数列{}n a 中的5a ,2019a 是方程2430x x -+=的两个根,则31323332023log log log log a a a a ++++L 等于( )A .20243B .1011C .20232D .1012题型07等差中项比值型【解题攻略】双数列等差中项比值转化型{}n a 、{}n b 均为等差数列且其前n 项和为n S 、nT则2121=n n n n a S b T --.【典例1-1】(2023春·新疆伊犁·高三校考)设等差数列{}n a 、{}n b 的前n 项和分别是n S ,n T ,若337n n S nT n =+,则66a b =( )A .1720B .1120C .3340D .1217【典例1-2】(2023春·江西吉安·高三永丰县永丰中学校考)等差数列{}n a 和{}n b 的前n 项和分别记为n S 与n T ,若2835n n S nT n =+,则293a ab +=( )A .127B .3217C .167D .2【变式1-1】(2023·全国·高三专题练习)已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有481n n S n T n -=+,则3153111572a a a b b b b ++=++( )A .3B .6C .327D .8013【变式1-2】(2023春·新疆·高三八一中学校考)若两个等差数列{}n a ,{}n b 的前n 项和,n n A B 满足()71427n n A n n B n *+=Î+N ,则1111a b =( )A .141107B .43C .74D .7871【变式1-3】(2023·全国·高三专题练习)已知等差数列{}n a 和{}n b 的前n 项和分别为n S ,()0,n n n T S T ¹,且()()1723n n n S n T +=+,则66a b 的值为( )A .657B .253C .10713D .10112题型08 等比中项比值型【典例1-1】已知各项均为正数的等比数列{}n a 中,13a ,312a ,22a 成等差数列,则1113810a a a a +=+( )A .27B .3C .1或3D .1或27【典例1-2】已知等比数列{}n a 中,14a ,312a ,23a 成等差数列.则2018202020172019a a a a --=( )A .4或1﹣B .4C .1-D .4﹣【变式1-1】设等比数列{}n a 的前n 项和为n S ,且7104a a =,则612S S =( )A .910B .1617C .1716D .817【变式1-2】已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( )A .13B .43C .3D .4【变式1-3】已知等比数列{}n a 中,各项都是正数,且1a ,312a ,22a 成等差数列,则91078a a aa +=+( )A .12+B .12-C .322+D .322-题型09整数型比值【解题攻略】整数型比值,可以通过分离常数,因式分解,整除等知识点来构造求解【典例1-1】已知等差数列{}n a 的公差d 不为0,等比数列{}n b 的公比151,22q éö-Î÷ê÷ëø,若211,a d b d ==,且222123123a a ab b b ++++是正整数,则实数q =( )A .4B .2C .12D .14【典例1-2】(2023春·江西抚州·高三江西省乐安县第二中学校考)已知两个等差数列{}n a 和{}n b 的前n 项和分别为Sn 和Tn ,且n n S T =2703n n ++,则使得n n a b 为整数的正整数n 的个数为( )A .4B .5C .6D .7【变式1-1】(2022春·安徽安庆·高三安庆市第七中学校考阶段练习)已知等差数列{}n a 和等差数列{}n b 的前n 项和分别为n S ,n T 且()()1723n n n S n T +=+,则使nna b 为整数的正整数n 的个数是( )A .2B .6C .4D .5【变式1-2】(2023·全国·高三专题练习)已知数列{}n a ,{}n b 均为等差数列,其前n 项和分别为n A ,n B ,且1n n A n B n =+,则使n n a b l ³恒成立的实数l 的最大值为( )A .12B .13C .1D .2题型10 等差等比函数性质:恒成立求参【典例1-1】(2020·江苏·高三专题练习)已知{}n a 是公比不为1的等比数列,数列{}n b 满足:2a ,nb a ,2na 成等比数列,2221n n n c b b +=,若数列{}n c 的前n 项和n T l ³对任意的*n ÎN 恒成立,则l 的最大值为A .13B .16C .115D .215【典例1-2】(2020·全国·高三专题练习)已知{}n a 为递增的等差数列,23a =且1342,1,1a a a -+构成等比数列.若*n N "Î,数列11{}n n a a +的前n 项和n T M <恒成立,则M 的最小值为A .16B .14C .13D .12【变式1-1】(2021秋·山西朔州·高三校考阶段练习)等比数列{}n a 的前n 项和1132+=×+n n S c (c 为常数),若23n a n S l £+恒成立,则实数l 的最大值是A .3B .4C .5D .6【变式1-2】(2023秋·辽宁·高三校考阶段练习)已知数列{}n a 满足:11a =,12n n a a +=.设()232n n b n n a =--×,若对于任意的N n *Î,n b l £恒成立,则实数l 的取值范围为【变式1-3】(2023秋·甘肃定西·高三甘肃省临洮中学校考阶段练习)在数列{}n a 中,14a =,132n n a a +=-,若对于任意的*n ÎN ,()125n k a n -³-恒成立,则实数k 的最小值为 .题型11等差等比函数性质:奇偶型讨论【解题攻略】奇偶型讨论:1.奇偶项正负相间型求和,可以两项结合构成“常数数列”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 等差等比★★★高考在考什么 【考题回放】 1.在等差数列}{n a 中,836a a a +=,则=9S ( A )A.0B.1C.1-D. -1或12.(安徽)直角三角形三边成等比数列,公比为q ,则2q 的值为( D )A.2B. 215- C. 215+ D. 215±3.已知数列{na }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B )A .9B .8 C. 7 D .64.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( D )A .2B .3C .4D .5 5.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =(B )A.2 B.4 C.6 D.86. 等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S成等差数列,则{}n a 的公比为13.★★★高考要考什么等差数列的证明方法:1. 定义法:2.等差中项:对于数列{}n a ,若212+++=n n n a a a等差数列的通项公式:dn a a n )1(1-+=------该公式整理后是关于n 的一次函数等差数列的前n 项和 1.2)(1n n a a n S +=2. d n n na S n 2)1(1-+= 3.Bn An S n +=2等差中项: 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
即:2ba A +=或b a A +=2等差数列的性质:1.等差数列任意两项间的关系:如果na 是等差数列的第n 项,ma 是等差数列的第m 项,且n m ≤,公差为d ,则有dm n a a m n )(-+=对于等差数列{}n a ,若q p m n +=+,则qp m n a a a a +=+。
也就是:=+=+=+--23121n n n a a a a a a ,3.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列。
如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++4.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:○1当n 为偶数时,d 2n S =-奇偶S , ○2当n 为奇数时,则中偶奇a S =-S ,=偶奇S S n n 1+, 等比数列的判定方法:①定义法:若)0(1≠=+q q a a nn ②等比中项:若212++=n n n a a a ,则数列{}n a 是等比数列。
等比数列的通项公式:如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 。
等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q qqa a S n n ○3当1=q 时,1na S n =等比中项:如果使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。
那么ab G =2。
等比数列的性质:1.等比数列任意两项间的关系:如果na 是等比数列的第n 项,ma 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m n q a a -=对于等比数列{}n a ,若v u m n +=+,则vu m n a a a a ⋅=⋅也就是:=⋅=⋅=⋅--23121n n n a a a a a a 。
3.若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列。
如下图所示:kkk k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++★★ 突 破 重 难 点【范例1】n S 设是等差数列{}n a 的前n 项和,已知434131S S 与的等比中项为551S ,434131S S 与的等差中项为1,求数列{}n a 的通项.解析 由已知得234534111()34511234S S S S S ⎧⋅=⎪⎪⎨⎪+=⎪⎩, 即2113505222a d d a d ⎧+=⎪⎨+=⎪⎩ ,解得101d a =⎧⎨=⎩或11254d a ⎧=-⎪⎨⎪=⎩ 1n a ∴= 或321255n a n =- 经验证 1=n a 或n a n 512532-=均满足题意,即为所求.【点睛】若n S 是等差数列{}n a 的前n 项和,则数列{}nS n 也是等差数列.本题是以此背景设计此题.【变式】已知等差数列{an }的公差和等比数列{bn }的公比相等,且都等于d (d >0,d ≠1).若a1=b1,a3=3b3,a5=5b5,求an ,bn .解:由已知2114112345a d a d a d a d ⎧+=⎪⎨+=⎪⎩①②由①,得a1(3d2-1)=2d ③由②,得a1(5d4-1)=4d ④因为d ≠0,由③与④得2(3d2-1)=5d4-1, 即5d4-6d2+1=0,解得d =±1,d =±55. ∵d >0,d ≠1,∴d =55.代入③,得a1=-5,故b1=-5. an =-5+55(n -1)=55(n -6),bn =-5×(55)n -1.本小题考查等差数列和等比数列的概念、性质,方程(组)的解法以及运算能力和分析能力.【范例2】下表给出一个“三角形数阵”:4121,4143,83,163… … … … 已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都相等.记第i 行第j 列的数为aij ( i≥j , i , j ∈N*). (1) 求a83;(2) 试写出a ij 关于i , j 的表达式; (3) 记第n 行的和为An ,求.21nn n n n a a a A +++=解析 (1)由题知{}1n a 成等差数列,且21,412111==a a ,所以公差811,24d a ==。
又{}3na 成等比数列,且83,433231==a a .又公比都相等,∴每行的公比是21=q .∴21)21(2283=⨯=a .(2)由(1)知,441)1(411i i a i =⋅-+=,∴1111)21()21(4)21(---=⋅=⋅=j j j i ij i i a a .(3)])21()21(211[121-++++=n n n a A 11)21(2])21(2[4---=-=n n n n n .【点睛】在新颖背景——数表中运用数列知识.【文】在等比数列{a n}中,前n 项和为Sn ,若Sm ,Sm+2,Sm+1成等差数列,则am , am+2, am+1成等差数列(1)写出这个命题的逆命题;(2)判断逆命题是否为真,并给出证明解析(1)逆命题:在等比数列{an}中,前n 项和为Sn ,若am , am+2, am+1成等差数列,则 Sm ,Sm+2,Sm+1成等差数列(2)设{an}的首项为a1,公比为q. 由已知得2am+2= am + am+1∴2a1qm+1=a11-m q +a1qm ∵a1≠0 q≠0 ,∴2q2-q -1=0 , ∴q=1或q=-21当q=1时,∵Sm=ma1, Sm+2= (m+2)a1,Sm+1= (m+1)a1,∴Sm+Sm+1≠2 Sm+2, ∴Sm ,Sm+2,Sm+1不成等差数列当q=-21时,2212112[1()]4122113212m m m a S a +++--⎡⎤⎛⎫==--⎢⎥⎪⎝⎭⎢⎥⎣⎦+,12111111[1()][1()]4122111321122m m m m m a a S S a +++----⎡⎤⎛⎫+=+=--⎢⎥⎪⎝⎭⎢⎥⎣⎦++∴Sm+Sm+1=2 Sm+2 , ∴Sm ,Sm+2,Sm+1成等差数列综上得:当公比q=1时,逆命题为假;当公比q≠1时,逆命题为真 【点睛】逆命题中证明需分类讨论是本题的亮点和灵活之处.【变式】等差数列{}n a 的前n 项和为1312932n S a S =+=+,,.(Ⅰ)求数列{}n a 的通项na 与前n 项和nS ;(Ⅱ)设()nn S b n n *=∈N ,求证:数列{}n b 中任意不同的三项都不可能成为等比数列.解:(Ⅰ)由已知得112133932a a d ⎧=+⎪⎨+=+⎪⎩,,2d ∴=, 故212(2)n n a n S n n =-+=+,.(Ⅱ)由(Ⅰ)得2nn S b n n ==+.假设数列{}n b 中存在三项p q rb b b ,,(p q r ,,互不相等)成等比数列,则2q p r b b b =.即2(2)(2)(2)q p r +=++.2()(2)20q pr q p r ∴-+--=p q r *∈N ,,,2020q pr q p r ⎧-=∴⎨--=⎩,, 22()02p r pr p r p r +⎛⎫∴=-=∴= ⎪⎝⎭,,.与p r ≠矛盾.所以数列{}n b 中任意不同的三项都不可能成等比数列.【范例3】若有穷数列12,...na a a (n 是正整数),满足1211,....n n n a a a a a a -===即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”。
(1)已知数列{}n b 是项数为7的对称数列,且1234,,,b b b b 成等差数列,142,11b b ==,试写出{}n b 的每一项(2)已知{}n c 是项数为()211k k -≥的对称数列,且121,...k k k c c c +-构成首项为50,公差为4-的等差数列,数列{}n c 的前21k -项和为21k S -,则当k 为何值时,21k S-取到最大值?最大值为多少?(3)对于给定的正整数1m >,试写出所有项数不超过2m 的对称数列,使得211,2,2...2m -成为数列中的连续项;当1500m >时,试求其中一个数列的前2008项和2008S 解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d ,∴数列{}n b 为25811852,,,,,,. (2)12112112-+--+++++++=k k k k k c c c c c c Skk k k c c c c -+++=-+)(2121 ,50134)13(42212-⨯+--=-k S k ,∴当13=k 时,12-k S取得最大值为626.(3)所有可能的“对称数列”是: ①22122122222221m m m --- ,,,,,,,,,,; ②2211221222222221m m m m ---- ,,,,,,,,,,,;③122221222212222m m m m ---- ,,,,,,,,,,; ④1222212222112222m m m m ---- ,,,,,,,,,,,.对于①,当2008m ≥时,1222212008200722008-=++++= S .当15002007m <≤时,200922122008222221----+++++++=m m m m S2009212212---+-=m m m1222200921--+=--m m m .对于②,当2008m ≥时,1220082008-=S .当15002m <≤时,20S 12220821--=-+m m .对于③,当2008m ≥时,200200822--=m m S ;当15002007m <≤时,200S 3222009-+=-m m .对于④,当2008m ≥时,200200822--=m m S;当15002007m <≤时,2008S 2222008-+=-m m .【点睛】在看懂题目意思基础上,注意各种情况的讨论,考察观察,分析,运用能力 【文】如果有穷数列123m a a a a ,,,,(m 为正整数)满足条件ma a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m = ,,,),我们称其为“对称数列”.例如,数列12521,,,,与数列842248,,,,,都是“对称数列”.(1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中252649cc c ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100dd d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n = ,,,.解:(1)设数列{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d ,∴数列{}n b 为25811852,,,,,,.(2)4921c c c S +++= 25492625)(2c c c c -+++=()122212242-++++= ()3211222625-=--==67108861. (3)51100223(501)149d d ==+⨯-=,.由题意得 1250d d d ,,,是首项为149,公差为3-的等差数列.当50n ≤时,n n d d d S +++= 21n n n n n 230123)3(2)1(1492+-=--+= .当51100n ≤≤时,n n d d d S +++= 21()n d d d S ++++= 525150(50)(51)37752(50)32n n n --=+-+⨯ 75002299232+-=n n .综上所述,22330115022329975005110022n n n n S n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩,≤≤,,≤≤.。