人教版七年级数学上册 角测试题
人教版2020年七年级数学上册小专题练习十七《角-解答题专练》(含答案)

人教版2020年七年级数学上册小专题练习十七《角-解答题专练》1.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.2.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=_______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.3.如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.(1)图中∠BOD的邻补角为_________;∠AOE的邻补角为____________。
(2)如果∠COD=25°,那么∠COE= ;如果∠COD=60°,那么∠COE= ;(3)试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.4.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.5.①如图1,点A、C、B在同一直线上,CD平分∠ACB,∠ECF=90°.回答下列问题:(1)写出图中所有的直角;(2)写出图中与∠ACE相等的;(3)写图中∠DCE所有的余角;(4)写图中∠ACE所有的余角;(5)写图中∠FCD的补角;(6)写图中∠DCE的补角;②如图2,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.6.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)(2)(3)中你能看出什么规律?7.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?8.已知如图,∠BOC和∠AOC的比是3:2,OD平分∠AOB,∠COD=10°,求∠AOB的度数.9.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.10.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中∠AOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1),(2),(3)的结果中,你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.请你模仿(1)~(4)设计一道以线段为背景的计算题,并写出其中的规律.参考答案1.解:(1)北偏东70°;(2)因为∠AOB=55°,∠AOC=∠AOB,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°,∠COD=180°﹣110°=70°.因为∠COD=70°,OE平分∠COD,所以∠COE=35°又因为∠AOC=55°.所以∠AOE=∠AOC +∠COE =90°.2.解:(1)42°30′;(2)如图,AOD或COE,47°30′;3.解:(1)∠AOD;∠BOE;(2)65°;30°;(3)∠COD+∠COE=90°.理由如下:因为OD平分∠AOC,OE平分∠BOC.所以∠COD=∠AOC,∠COE=∠BOC.所以∠COD+∠COE=∠AOC+∠BOC==∠AOB=×180°=90°.4.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.5.解:①∵CD平分∠ACB,∠ECF=90°,∴∠ACD=∠BCD=90°,∴∠ACE=∠FCD,∠BCF=∠ECD,(1)图中所有的直角有:∠ACD,∠BCD,∠ECF;(2)与∠ACE相等的角有∠DCF;(3)∠DCE所有的余角有∠ACE,∠DCF;(4)∠ACE所有的余角有∠DCE,∠BCF;(5)∠FCD的补角∠BCE;(6)∠DCE的补角∠ACF.故答案为:∠ACD,∠BCD,∠ECF;∠DCF;∠ACE,∠DCF;∠DCE,∠BCF;∠BCE;∠ACF.;(2)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE+∠DOF=(∠AOC+∠BOD)==45°,∴∠EOF=∠COE+∠DOF+∠COD=135°.6.解:(1)因为OM平分∠AOC,所以∠MOC=0.5∠AOC.因为ON平分∠BOC,所以∠NOC=0.5∠BOC,所以∠MON=∠MOC-∠NOC=0.5∠AOC-0.5∠BOC=0.5∠AOB.而∠AOB=∠AOM+∠MOB=90°,所以∠MON=45°.(2)当∠AOB=80°,其他条件不变时,∠MON=0.5×80°=40°.(3)当∠BOC=60°,其他条件不变时,∠MON=45°.(4)分析(1)(2)(3)的结果和(1)的解答过程可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小无关.7.解:8.解:∵∠BOC和∠AOC的比是3:2,∴设∠BOC=3x,则∠AOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=x,则x﹣2x=10,解得:x=20,则∠AOB=100°.9.【解答】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD==57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.10.解:(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.因为OM平分∠BOC,所以∠COM=∠BOC=60°.因为ON平分∠AOC,所以∠CON=∠AOC=×30°=15°,所以∠MON=∠COM-∠CON=60°-15°=45°(2)当∠AOB=α,其它条件不变时,仿(1)可得∠MON=α(3)仿(1)可求得∠MON=∠COM-∠CON=45°(4)从(1)(2)(3)的结果中,可以得出一般规律:∠MON的大小总等于∠AOB的一半,与锐角∠AOC的大小无关(5)问题可设计为:已知:线段AB=a,延长AB到点C,使BC=6,点M,N分别为AC,BC的中点,求MN的长.规律是:MN的长度总等于AB的长度的一半,而与BC的长度无关。
人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

七年级上册第4章单元测试一.选择题(共10小题)1.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°2.下列图形能折叠成正方体的是()A .B .C .D .3.下面各图是圆柱的展开图的是()A .B .C .D .4.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80km第1页(共12页)D.南偏西40°方向,距离为80km5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5B.4C.3D.26.下列各角中,()是钝角.A .周角B .平角C.平角D .平角7.小明家在学校的南偏西50°方向上,则学校在小明家()上.A.南偏西50°B.西偏南50°C.北偏东50°D.北偏东40°8.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)9.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变10.下列语句中,正确的个数是()第2页(共12页)①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个二.填空题(共5小题)11.已知,∠A=46°28',则∠A 的余角=.12.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了cm3.13.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN=.14.已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.15.如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=度.三.解答题(共5小题)16.如图,CD是Rt△ABC斜边上的高,请找出图中各对互余的角.第3页(共12页)17.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.18.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE =cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.第4页(共12页)19.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.20.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:Ⅰ、画射线DC;Ⅱ、画直线AC与线段BD相交于点F ;(2)图中以F为顶点的角中,请写出∠AFB的补角.第5页(共12页)参考答案一.选择题(共10小题)1.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.2.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.3.解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.4.解:如图:第6页(共12页)∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.5.解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.7.解:∵小明家在学校的南偏西50°方向上,∴学校在小明家北偏东50°方向上.故选:C.8.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.9.根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和第7页(共12页)底面半径为边长的长方形的面积,所以表面积变大了.故选:B.10.解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.二.填空题(共5小题)11.解:∵∠A=46°28′,∴∠A的余角=90°﹣46°28′=43°32′.故答案为:43°32′.12.解:长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.故答案为:(10a2+80a).13.解:∵AB=10,AC=6,∴CB=10﹣6=4,第8页(共12页)∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.14.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.15.解:由折叠可得∠AEF=∠A'EF,∠BEG=∠B'EG,∵∠AEB=180°,∴∠FEG=∠A'EF+∠B'EG =∠AEB=90°,故答案为90.三.解答题(共5小题)16.解:∵CD⊥AB,∴△ABC,△BCD是直角三角形,又∵△ABC是直角三角形,∴∠A与∠B,∠A与∠ACD,∠B与∠BCD互余(直角三角形的两个锐角互余),又∵∠ACB=90°,∴∠ACD与∠BCD互余.∴图中互余的角有:∠A与∠B,∠A与∠ACD,∠B与∠BCD,∠ACD与∠BCD.17.解:(1)因为点C为OP的中点,第9页(共12页)所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.18.解:(1)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB),即DE =AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.第10页(共12页)19.解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,∠AOD=22°,则∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,∠AOD=22°则∠COD=∠AOC+∠AOD=110°;(3)∵OE平分∠AOD,∴∠AOE =,当射线OD在∠AOC内部时,∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,∠BOE=∠AOB+∠AOE=44°+11°=55°.∴∠BOE度数为33°或55°.故答案为:33°或55°20.解:(1)作图如下:第11页(共12页)(2)∠AFB的补角为∠BFC,∠AFD.第12页(共12页)。
人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合练习题汇编1.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)当∠BOC=140°时,求∠AOM的度数;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=x度时,则∠MON=度.(请直接写出答案)2.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.3.如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.4.如图,已知A、O、B三点在一条直线上,OC平分∠AOD,∠AOC+∠EOB=90°.(1)求∠COE的度数;(2)判断∠DOE和∠EOB之间有怎样的关系,并说明理由.5.填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC因为OE是∠BOC的平分线,所以∠COE=所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+ =°6.如图,O为直线AB上一点,∠BOE=80°,直线CD经过点O.。
人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。
新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
人教版七年级上册数学角练习题及答案

4.3.1角1、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为B、45°C、55°2、如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A、90°<α<180°B、0°<α<90°C、α=90°D、α随折痕GF位置的变化而变化3、如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=1:2,则∠BOD等于()A、30°B、36°C、45°D、72°B、一对同位角的平分线互相平行C、一对内错角的平分线互相平行D、一对同旁内角的平分线互相平行6、如图,AB∥CD,CE⊥BD,则图中与∠1 互余的角有()B、2 个7、如图,已知AB∥CD,直线EF 分别交AB,CD 于点E、F,EG 平分∠AEF,若∠2=40°,则∠1 的度数是()A、70°B、65°C、60°D、50°8、如图,已知l ∥l ,AC、BC、AD 为三条角平分线,则图中与∠1 互为余角的角有()1 2的余角C、∠=∠D、∠AOD与∠COE互补________.11、如图,AB、CD相交于O,OE⊥AB,若∠EOD=65°,则∠AOC=________.12、如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=________度.13、如图,已知直线AE∥BC,AD平分∠BAE,交BC于点C,∠BCD=140°,则∠B的度数为________14、已知:OA⊥OC,∠AOB:∠AOC=2:3,画出图形,并求∠BOC的度数.15、如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.16、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.17、如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?(1)已知n正整数,且,求的值;(2)如图,AB、CD交于点O,∠AOE=90°,若∠AOC︰∠COE=5︰4,求∠AOD的度数.20、仅用无刻度的直尺作出符合下列要求的图形.(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上).试过点O作射线OM、ON,使得OM⊥ON.一、单选题1、【答案】A【考点】角平分线的定义,对顶角、邻补角,垂线【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.2、【答案】C【考点】角的计算【解析】【解答】解:∵∠CFG=∠EFG 且FH 平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH= ∠EFC+ ∠EFB= (∠EFC+∠EFB)= ×180°=90°.故选C.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH 平分∠BFE 即可求解.3、【答案】A【考点】角平分线的定义,对顶角、邻补角∴∠AOC= ∠EOC= ×60°=30°,∴∠BOD=∠AOC=30°.故选:A.【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.4、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.5、【答案】D【考点】角平分线的定义,平行线的性质【解析】【解答】解:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;故选:D.【分析】由两条平行线被第三条直线所截,内错角的平分线互相平行、同旁内角的平分线互相垂直、内错角6、【答案】C∵AB∥CD,∴∠1=∠D,∵∠C+∠D=90°,∴∠C+∠1=90°,即∠C与∠1互余;图中与∠1互余的角有3个,故选:C.【分析】由垂线的定义得出∠ABC+∠1=90°,∠1+∠EBF=90°,得出∠ABC、∠EBF与∠1互余;由平行线的性质和余角关系得出∠C+∠1=90°,得出∠C与∠1互余.7、【答案】A【考点】角平分线的定义,平行线的性质【解析】【解答】解:∵直线AB∥CD,∠2=40°,∴∠AEG=∠1,∠AEF=140°,∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF=70°,∴∠1=70°.故选:A.【分析】利用平行线的性质得出∠AEG=∠1,∠AEF=140°,再利用角平分线的性质得出∠AEG=∠GEF=70°,8、【答案】D【考点】角平分线的定义,平行线的性质12∴∠1与∠2互余,又∵∠2=∠3,又∵∠4=∠5,∴∠1与∠5互余,【分析】根据平行线的性质,以及角平分线的定义,可得∠1与∠2互余,∠1与∠3互余,∠1与∠4互余,∠1【分析】二、填空题10、【答案】50°【考点】余角和补角,平行线的性质【解析】【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,【考点】余角和补角,对顶角、邻补角【分析】根据垂直的定义可得∠BOE=90°,然后求出∠BOD ,再根据对顶角相等可得∠AOC=∠BOD .12、【答案】56∵∠MFE 是△EOF 的外角,【分析】先根据平行线的性质得出∠NOE=∠FEO ,再根据角平分线的性质得出∠NOE=∠EOF ,由三角形外角 的性质即可得出结论.【考点】角平分线的定义,平行线的性质,三角形内角和定理 【解析】【解答】解:∵∠BCD =140°,∴∠ACB =180°-140°=40°.AE BC ∵ ∥ ∵AD 平分∠BAE , ∴∠ =∠B= ∴∠ 180°-40°-40°=100°.【分析】三、解答题∴∠AOB=60°.【考点】角的计算,垂线【解析】【分析】根据垂直关系知∠AOC=90°,由∠AOB :∠AOC=2:3,可求∠AOB ,根据∠AOB 与∠AOC 的 位置关系,分类求解.【考点】角平分线的定义,对顶角、邻补角,平行线的性质【解析】【分析】运用角平分线的定义、平行线的性质和邻补角的定义进行解答即可.16、【答案】解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.【考点】角平分线的定义,对顶角、邻补角【解析】【分析】根据角的和差,可得∠EOF的度数,根据角平分线的性质,可得∠AOC的度数,根据补角的性质,可得答案.17、【答案】解:∠1=∠2,∴∠EBC=∠ABC,∠2=∠ADC,∴∠EBC+∠2=∠ABC+∠ADC=90°,∵FG⊥BE,∴∠FGB=90°,∴∠1+∠EBC=90°,∴∠1=∠2【考点】余角和补角,角平分线的性质,多边形内角与外角【解析】【分析】先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论.四、综合题18、【答案】(1)解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴BF∥DE;(2)解:∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【考点】余角和补角,垂线【解析】【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数19、【答案】(1)解:原式=9a-4a=9(a)-4(a)6n4n2n32n22n3(2)解:∵∠AOE=90°,∴∠AOC+∠EOC=90°,∵∠AOC:∠COE=5:4,=50°,【考点】幂的乘方与积的乘方,角的计算,余角和补角,对顶角、邻补角【解析】【分析】(1)先利用积的乘方计算,再利用积的逆运算化成含有a的形式,再把a=2代入计算2n2n即可;(2)由于∠AOC与∠EOC互余,∠AOC:∠COE=5:4,所以∠AOC的度数可求,再根据邻补角的定义求解即可.20、【答案】(1)解:如图所示(2)解:如图所示【考点】角平分线的定义,垂线,全等三角形的判定与性质,作图—基本作图【解析】【分析】根据题意画出图形,再利用SSS定理证明△ACO≌△BCO,根据全等三角形的性质可得∠AOC=∠BOC,进而得到射线OC就是∠MON的平分线.(2)由(1)可知OM、ON分别是∠POQ、∠QOG的平分线,则∠MON=90°。
人教版七年级上数学几何初步--线段与角的经典题(含答案)

几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。
2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷及答案解析

2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷一.选择题(共10小题)1.若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′2.与30°的角互为余角的角的度数是()A.30°B.60°C.70°D.90°3.已知∠α=60°32′,则∠α的余角是()A.29°28′B.29°68′C.119°28′D.119°68′4.如果∠1和∠2互补,且∠1>∠2,则下列表示∠2的余角的式子中:①90°﹣∠1;②∠1﹣90°;③(∠1+∠2);④(∠1﹣∠2).正确的有()A.1个B.2个C.3个D.4个5.下列说法:①射线AB和射线BA是同一条射线;②锐角和钝角互补;③若一个角是钝角,则它的一半是锐角;④一个锐角的补角比这个角的余角大90度.其中正确的个数是()A.1个B.2个C.3个D.4个6.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定7.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为()A.30°B.60°C.120°D.150°8.如图,在△ABC中,∠BAC=90°,点D,E分别在BC,CA边的延长线上,EH⊥BC 于点H,EH与AB交于点F.则∠1与∠2的数量关系是()A.∠1=∠2B.∠1与∠2互余C.∠1与∠2互补D.∠1+∠2=100°9.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1+∠2B.∠1﹣∠2C.∠1﹣90°D.90°﹣∠1 10.如图,一副三角板按不同的位置摆放,摆放位置中∠1≠∠2的是()A.B.C.D.二.填空题(共9小题)11.如果∠α=35°,那么∠α的余角等于°.12.如图,∠AOB与∠BOD互为余角,OB是∠AOC的平分线,∠AOB=25°,则∠COD 的度数是.13.已知∠α和∠β互为余角,且∠β比∠α大40°,则∠β=°.14.一个角的余角的度数为30°,则这个角的补角的度数为.15.如图,∠AOC与∠BOD都是直角,且∠AOD:∠AOB=7:2,则∠AOB等于度.16.已知∠α+∠β=90°,且∠α=35°41′,则∠β=.17.如图,将一副直角三角尺的直角顶点C叠放在一起,若∠ECD比∠ACB的小6°,则∠BCD的度数为.18.如图将一副三角板的直角顶点重合,摆放在桌面上,若∠AOC=110°,则∠BOD=°.19.如图,将一副三角板按不同位置摆放,∠α与∠β互余的是,∠α与∠β互补的是,∠α与∠β相等的是.三.解答题(共8小题)20.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.若∠AOC=40°.(1)求∠DOE的度数;(2)图中互为余角的角有.21.一个角的余角比它的补角的还少15°,求这个角的度数.22.如图,O为直线AB上一点,OM是∠AOC的角平分线,ON是∠COB的平分线(1)指出图中所有互为补角的角.(2)求∠MON的度数.(3)指出图中所有互为余角的角.23.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.24.将一副三角板中的两块直角三角板按如图的方式叠放在一起,直角顶点重合.(1)若∠ACB=115°时,则∠DCE的度数等于;(2)当CE平分∠ACD时,求∠ACB的度数;(3)猜想并直接写出∠ACB与∠DCE的数量关系(不必说明理由).25.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.26.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB 的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.27.如图,若O是直线AB上一点,∠COD=90°,OE平分∠BOC,∠AOC=40°,求∠DOE的度数.2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷参考答案与试题解析一.选择题(共10小题)1.若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′【解答】解:∵α=29°45′,∴α的余角等于:90°﹣29°45′=60°15′.故选:B.2.与30°的角互为余角的角的度数是()A.30°B.60°C.70°D.90°【解答】解:与30°的角互为余角的角的度数是:60°.故选:B.3.已知∠α=60°32′,则∠α的余角是()A.29°28′B.29°68′C.119°28′D.119°68′【解答】解:∵∠α=60°32′,∠α的余角是为:90°﹣60°32′=29°28′,故选:A.4.如果∠1和∠2互补,且∠1>∠2,则下列表示∠2的余角的式子中:①90°﹣∠1;②∠1﹣90°;③(∠1+∠2);④(∠1﹣∠2).正确的有()A.1个B.2个C.3个D.4个【解答】解:∵∠1和∠2互补,∴∠1+∠2=180°.因为90°﹣∠2=∠1﹣90°,所以①错误,②正确;(∠1+∠2)+∠2=×180°+∠2=90°+∠2≠90°,所以③错误;(∠1﹣∠2)+∠2=(∠1+∠2)=×180°=90°,所以④正确.综上可知,②④均正确.故选:B.5.下列说法:①射线AB和射线BA是同一条射线;②锐角和钝角互补;③若一个角是钝角,则它的一半是锐角;④一个锐角的补角比这个角的余角大90度.其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:①射线AB和射线BA表示的方向不同,不是同一条射线,故原说法错误;②锐角和钝角是相对于直角的大小而言,没有一定的数量关系,不一定构成互补关系故原说法错误;③一个角是钝角,则这个角大于90°小于180°,它的一半大于45°小于90°,是锐角,正确;④锐角为x°,它的补角为(180﹣x°),它的余角为(90﹣x°),相差为90°,正确.故正确的说法有③④共2个.故选:B.6.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定【解答】解:∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.7.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为()A.30°B.60°C.120°D.150°【解答】解:∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C.8.如图,在△ABC中,∠BAC=90°,点D,E分别在BC,CA边的延长线上,EH⊥BC 于点H,EH与AB交于点F.则∠1与∠2的数量关系是()A.∠1=∠2B.∠1与∠2互余C.∠1与∠2互补D.∠1+∠2=100°【解答】解:∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.9.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1+∠2B.∠1﹣∠2C.∠1﹣90°D.90°﹣∠1【解答】解:∵∠1,∠2互为补角∴∠1+∠2=180°∴∠2的余角是90°﹣∠2=∠1﹣90°,故选:C.10.如图,一副三角板按不同的位置摆放,摆放位置中∠1≠∠2的是()A.B.C.D.【解答】解:A.∠1=45°,所以∠1=∠2=45°,故本选项不合题意;B.根据等角的补角相等可得∠1=∠2=135°,故本选项不合题意;C.图中∠1≠∠2,故本选项符合题意;D.根据同角的补角相等可得∠1=∠2,故本选项不合题意.故选:C.二.填空题(共9小题)11.如果∠α=35°,那么∠α的余角等于55°.【解答】解:∵∠α=35°,∴∠α的余角等于90°﹣35°=55°故答案为:55.12.如图,∠AOB与∠BOD互为余角,OB是∠AOC的平分线,∠AOB=25°,则∠COD 的度数是40°.【解答】解:∵OB是∠AOC的平分线,∴∠BOC=∠AOB=25°,∵∠AOB与∠BOD互为余角,∴∠BOD=90°﹣∠AOB=90°﹣25°=65°,∴∠COD=∠BOD﹣∠BOC=65°﹣25°=40°.故答案为:40°13.已知∠α和∠β互为余角,且∠β比∠α大40°,则∠β=65°.【解答】解:设∠α为x,则∠β为90°﹣x,由题意得,90°﹣x=x+40°,解得x=65°.故答案为:65.14.一个角的余角的度数为30°,则这个角的补角的度数为120°.【解答】解:∵一个角的余角的度数是30°,∴这个角的补角的度数是90°+30°=120°,故答案为:120°.15.如图,∠AOC与∠BOD都是直角,且∠AOD:∠AOB=7:2,则∠AOB等于36度.【解答】解:设∠AOB=x,则∠AOD=90°+x,∵∠AOD:∠AOB=7:2,∴,解得:x=36°.故答案为:36.16.已知∠α+∠β=90°,且∠α=35°41′,则∠β=54°19′.【解答】解:∵∠α+∠β=90°,∠α=35°41′,∴∠β=90°﹣35°41′=54°19′,故答案为:54°19′.17.如图,将一副直角三角尺的直角顶点C叠放在一起,若∠ECD比∠ACB的小6°,则∠BCD的度数为65°.【解答】解:∵∠ACE=90°﹣∠ECD,∴∠ACB=90°+∠ACE=90°+90°﹣∠ECD=180°﹣∠ECD,∴∠ECD=(180°﹣∠ECD)﹣6°,解得:∠ECD=25°,∴∠BCD=90°﹣∠ECD=90°﹣25°=65°,故答案为:65°.18.如图将一副三角板的直角顶点重合,摆放在桌面上,若∠AOC=110°,则∠BOD=70°.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOC﹣∠COD=110°﹣90°=20°,∴∠BOD=∠AOB﹣∠AOD=90°﹣20°=70°.故答案为:70.19.如图,将一副三角板按不同位置摆放,∠α与∠β互余的是(1),∠α与∠β互补的是(4),∠α与∠β相等的是(2)(3).【解答】解:(1)根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;(2)根据两个直角的位置得:∠α=∠β;(3)根据三角尺的特点和摆放位置得:∠α+45°=180°,∠β+45°=180°,∴∠α=∠β;(4)根据图形可知∠α与∠β是邻补角,∴∠α+∠β=180°;综上所述:(1)中∠α与∠β互余;(4)中∠α与∠β互补;(2)(3)中,∠α=∠β.故答案为:(1),(4),(2)(3).三.解答题(共8小题)20.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.若∠AOC=40°.(1)求∠DOE的度数;(2)图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE.【解答】解:(1)∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°.(2)∵∠COE=90°,∴∠AOC+∠BOE=90°,∠COD+∠DOE=90°,∵OD平分∠BOC,∴∠COD=∠BOD,∴∠BOD+∠DOE=90°,∴图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE;故答案为:∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE.21.一个角的余角比它的补角的还少15°,求这个角的度数.【解答】解:设这个角的度数为x,根据题意得:90°﹣x=(180°﹣x)﹣15°,解得:x=30°.答:这个角的度数为30°.22.如图,O为直线AB上一点,OM是∠AOC的角平分线,ON是∠COB的平分线(1)指出图中所有互为补角的角.(2)求∠MON的度数.(3)指出图中所有互为余角的角.【解答】解:(1)∠AOM与∠MOB,∠AOC与∠BOC,∠AON与∠BON,∠COM与∠MOB,∠CON与∠AON;(2)∵∠AOC的平分线是OM,∠BOC的平分线是ON,∴∠COM=∠AOC,∠CON=∠BOC,∵∠AOB=∠AOC+∠BOC=180°,∴∠MON=∠COM+∠CON=(∠AOC+∠BOC)=×180°=90°,(3)∠AOM与∠BON,∠COM与∠BON,∠CON与∠AOM,∠CON与∠COM.23.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=25°;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.【解答】解:(1)∠COE=∠DOE﹣∠AOC=90°﹣65°=25°,故答案为:25°.(2)∵OC恰好平分∠AOE,∠AOC=65°,∴∠AOC=EOC=65°,∴∠COD=∠DOE﹣∠EOC=90°﹣65°=25°,答:∠COD=25°,(3)∠COE﹣∠AOD=25°,理由如下:当OD始终在∠AOC的内部时,有∠AOD+∠COD=65°,∠COE+∠COD=90°,∴∠COE﹣∠AOD=90°﹣65°=25°,24.将一副三角板中的两块直角三角板按如图的方式叠放在一起,直角顶点重合.(1)若∠ACB=115°时,则∠DCE的度数等于65°;(2)当CE平分∠ACD时,求∠ACB的度数;(3)猜想并直接写出∠ACB与∠DCE的数量关系(不必说明理由).【解答】解:(1)∵∠ACE+∠DCE=∠ACD=90°,∠BCD+∠DCE=∠BCE=90°,∴∠ACE=∠BCD=∠ACB﹣90°=25°,∴∠DCE═∠ACB﹣∠ACE﹣∠BCD=115°﹣25°﹣25°=65°;故答案为:65°(2)由CE平分∠ACD可得CE平分∠ACD=∠DCE=45°,由(1)可知∠ACE=∠BCD=45°,∴∠ACB=∠ACE+∠BCD+∠DCE=135°;(3)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°.25.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.【解答】解:(1)由∠α、∠β都是∠γ的补角,得∠α=∠β,即(2n+5)°=(65﹣n)°.解得n=20;(2)∠α与∠β互余,理由如下:∠α=(2n+5)°=45°,∠β=(65﹣n)°=45°,∵∠α+∠β=90°,∴∠α与∠β互为余角.26.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB 的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为30°;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.【解答】解:(1)∵OM平分∠BOC,∠BOC=120°,∴∠BOM=∠MON=60°,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣60°=30°;(2)①∠AOM﹣∠NOC=30°;故答案为:30°②∠AOM﹣∠NOC=30°,理由如下:∵∠AOM=∠MON﹣∠AON=90°﹣∠AON,∠NOC=∠AOC﹣∠AON=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.27.如图,若O是直线AB上一点,∠COD=90°,OE平分∠BOC,∠AOC=40°,求∠DOE的度数.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠COE=∠BOE=∠BOC=×140°=70°,∴∠DOE=∠COD﹣∠COE=90°﹣70°=20°.。
七年级数学上关于角的计算题

关于角的计算题
1.如图,已知∠AOB=120°,OC是∠AOB的一条角平分线,OD是∠BOC的平分线,求∠AOD的度数。
2.如图,已知O是直线AB上的点,OD是∠AOC的平分线,OE是∠COB的平分线,求∠DOE的度数。
3.如图,已知∠AOC=∠BOD=78°,∠BOC=35°,求∠AOD。
4.如图,已知∠AOB=150°,∠AOC=∠BOD=90°,求∠COD的度数。
5.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,
求∠BOD 的度数。
6.如图,OA⊥BC 于O ,OA 平分∠DOE ,∠COE =80°,求∠AOD 的度数。
7.如图,已知∠1=24°40′,OD 平分∠BOC ,求∠AOD 的度数。
8.如图,已知直线AB 、CD 相交于O ,OA 平分∠EOC ,∠EOC=70°,求∠BOE 的度数。
A B C D E
O
9.(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数。
(2)如果(1)中的∠AOB=α,其他条件不变,求∠MON的度数。
(3)如果(1)中∠BOC= β(β为锐角),其他条件不变,求∠MON的度数。
人教版七年级上册数学第15周角测试题

【人教版七年级(上)数学周周测】第15周测试卷(测试范围:4.3角)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题3分,共30分)1.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是( )A. B. C. D.2.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )A. 85°B.160°C.125°D.105°第2题图第5题图第6题图3.已知∠α=35°19′,则∠α的余角等于( )A.144°41′B.144°81′C.54°41′D.54°81′4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于( )A.30°10′B.60°10′C.59°50′D.60°50′5.如图,对图中各射线表示的方向下列判断错误的是( )A.OA表示北偏东15°B.OB表示北偏西50°C.OC表示南偏东45°D.OD表示西南方向6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于( )A.40°B.35°C.30°D.20°第6题图第7题图7.如图,∠AOB是平角,OC是射线,OD平分∠AOC,OE平分∠BOC,∠BOE=18°,则∠AOD的度数为( )A.78°B.62°C.88°D.72°8.钟表在3点时,它的时针和分针所组成的角(小于180°)是( )A.30°B.60°C.75°D.90°9.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为( )A.40°B.45°C.50°D.60°第9题图 第10题图10.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( ) ①AD 平分∠BAF ;②AF 平分∠DAC ;③AE 平分∠DAF ;④AE 平分∠BA C. A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.12.∠A =32°36′它的补角为 。
新人教版七年级数学上册专题训练:角的计算(含答案)

七年级数学上册专题训练:角的计算(含答案)类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图所示,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DA C=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图所示,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1所示,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2所示,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图所示,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图所示,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图所示,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。
人教版七年级上册数学全册单元试卷测试题(Word版 含解析)

人教版七年级上册数学全册单元试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.4.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
七年级数学上册 4.3角《角》典型例题素材 新人教版

《角》典型例题例1.图中,以B为顶点的角有几个?把它们表示出来.以D为顶点的角有几个?把它们表示出来.解:以B为顶点的角有3个,分别是:∠ABD、∠ABC、∠DBC,以D为顶点的角有4个,分别是∠ADE、∠EDC、∠ADB、∠BD C.注意:(1)也可用数字或希腊字母来表示,但需在靠近顶点处加上弧线.(2)一般我们在初中阶段研究的角是小于平角的角.例2.(1)57.32°=_____度_____分_____秒.(2)27°14′24″=_____度.分析:从大的单位化为小的单位用乘法,像(1)题,反之用除法,如(2).57.32°=57°+0.32°=57°+60′×0.32=57°+19.2′=57°+19′+0.2′=57°+19′+60″×0.2=57°19′12″27°14′24″=27°14′+24″÷60°=27°14′+0.4′=27°+14.4′=27°+14.4÷60=27°+0.24°=27.24°解:(1)57 39 12 (2)27.24例3.小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时和到家时时针和分针的夹角各为多少度.答案:出发时的时针和分针的夹角为120°,回到家时时针与分针的夹角为165°.例4.如图4所示的是两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出各角的度数,并把图中6个角从小到大排列,然后用“<”或“=”号连接.[分析]叠合法就是把两个角的一边重合,根据另一边的位置就可以比较出角的大小.解:(1)如图所示把两块三角板叠在一起,可得∠1<∠α,用同样的方法可得∠α<∠2,所以∠1<∠α∠2.(2)用量角器量出各角的度数分别是∠1=30°, ∠2=60°, ∠3=90°,∠α=45°, ∠β=45°, ∠γ=90°,∴∠1<∠α=∠β<∠2<∠3=∠γ.例5. 小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离.解:①如图所示,任取一点A,经过点A画一条东西方向的直线WE和一条南北方向的直线NS(两条直线相交成90°角).②在∠NAW内作∠NAB=33°,量取AB=1.1cm.③在∠NAE内作∠NAC=20°,量取AC=2.2cm.④连接BC,量得BC=1.8cm,∴BC的实际距离是5.4m.。
4.3 《角》一课一练习题2(含答案)2021-2022学年七年级数学人教版上册

4.3 《角》习题2一、选择题1.设时钟的时针与分针所成角是α,则正确的说法是( )A .八点一刻时,α∠是平角B .十点五分时,α∠是锐角C .十一点十分时,α∠是钝角D .十二点一刻时,α∠是直角2.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°3.若钟表分针走30分钟,则钟表的时针转 ( )A .5︒B .15︒C .30D .120︒4.上午9:30,时钟上分针与时针之间的夹角为( )A .90B .105C .120D .1355.如图所示,射线OP 表示的方向是( )A .东偏北65°B .北偏东25°C .北偏西65°D .北偏东65°6.图,点A 位于点O 的( )A .南偏东35°方向上B .北偏西65°方向上C .南偏东65°方向上D .南偏西65°方向上7.射线OA 位于北偏东25︒方向,射线OB 位于南偏东20︒方向,则AOB ∠的度数是( )A.135︒B.95︒C.45︒D.25︒8.某人在点A处看点B在北偏东40的方向上,看点C在北偏西35的方向上,则∠的度数为( )BACA.65B.75C.40D.359.如图所示,由点A测点B的方向是( )A.南偏东38°B.南偏东52°C.北偏西38°D.北偏西52°10.若点B在点A北偏东30°处,点C在点A南偏东40°处,那么BAC∠的度数是( )A.70°B.80°C.100°D.110°11.如图,OA是表示北偏东55︒方向的一条射线,则OA的反向延长线OB表示的是( )A.北偏西55︒方向上的一条射线B.北偏西35︒方向上的一条射线C.南偏西35︒方向上的一条射线D.南偏西55︒方向上的一条射线12.用两个三角板(一个是30,一个是45︒)不可能画出的角度是( )A.105︒B.115︒C.120︒D.135︒13.如图,将一副直角三角尺叠放在一起,使直角顶点重合与点O,若∠DOC=28°,则∠AOB的度数为( )A .62°B .152°C .118°D .无法确定14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°15.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′16.如图,将两块三角尺AOB 与COD 的直角顶点O 重合在一起,若∠AOD=4∠BOC ,OE 为∠BOC 的平分线,则∠DOE 的度数为( )A .36°B .45°C .60°D .72°17.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-18.在同一平面内,若∠AOB =90º,∠BOC =40º,则∠AOB 的平分线与∠BOC 的平分线的夹角等于( ).A .65ºB .25ºC .65º或25ºD .60º或20º19.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°20.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM 、ON 分别是∠AOC 、∠BOD 的平分线,∠MON 等于( )A .90°B .135°C .150°D .120°21.如图,点O 为直线AB 上一点,OC ⊥OD .如果∠1=35°,那么∠2的度数是( )A .35°B .45°C .55°D .65°二、填空题1.某校七年级在下午5:00开展“阳光体育”活动,下午5:00时刻,时钟上分针与时针所夹的角等于_______度.2.上午8:25时,时钟的时针和分针的夹角(小于平角的角)度数是_______.3.由2点30分到2点55分,时钟的时针旋转了________度,分针旋转了________度,此刻时针与分针的夹角是_________度4.时钟的分针从4点整的位置起,顺时针方向转_______度时,分针才能第一次与时针重合.5.如图,上午6:30时,时针和分针所夹锐角的度数是_____.6.若从点A 看点B 的方向是南偏东30,那么从点B 看点A 的方向是_______.7.A 、B 两个城市的位置如图所示,那么B 城在A 城的_______方向.8.根据图填空:点A 在点O 的______________方向,点C 在点O 的______________方向.9.如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.10.(1)已知13010'∠=︒,24519'∠=︒,则12∠+∠=_______;(2)已知160∠=︒,23520'∠=︒,则12∠-∠=_______.11.计算:581934165542'''''︒+︒'=________________;903124︒-︒'=________________.12.计算:48°37'+53°35'=_____.13.计算:90°﹣18°35'=__.14.计算30°52′+43°50′=______15.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.16.如图,将一副三角板叠在一起,使它们的直角顶点重合于O 点,且∠AOB =155°,则∠COD =_____.17. 将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=_______.18.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.三、解答题1.如图,O 为直线AB 上一点,∠AOC =48°,OD 平分∠AOC ,∠DOE =90°.(1)图中有 个小于平角的角;(2)求出∠BOD 的度数;(3)试判断OE 是否平分∠BOC ,并说明理由.2.如图,已知50AOB ∠=︒,OD 是COB ∠的平分线.(1)如图1,当AOB ∠与COB ∠互补时,求COD ∠的度数;(2)如图2,当AOB ∠与COB ∠互余时,求COD ∠的度数.3.如图,以点O 为端点按顺时针方向依次作射线OA 、OB 、OC 、OD .(1)若∠AOC 、∠BOD 都是直角,∠BOC =60°,求∠AOB 和∠DOC 的度数.(2)若∠BOD =100°,∠AOC =110°,且∠AOD =∠BOC +70°,求∠COD 的度数.(3)若∠AOC =∠BOD =α,当α为多少度时,∠AOD 和∠BOC 互余?并说明理由.4.点O 在直线AB 上,射线OC 上的点C 在直线AB 上方,4AOC BOC ∠=∠(1)如图(1),求AOC ∠的度数;(2)如图(2),点D 在直线AB 上方,AOD ∠与BOC ∠互余,OE 平分COD ∠,求∠BOE 的度数;(3)在(2)的条件下,点,F G 在直线AB 下方,OG 平分FOB ∠,若FOD ∠与BOG ∠互补,求EOF ∠的度数.5.如图,直线AB与CD相交于点O,OE平分∠AOD,OF平分∠BOD.(1)若∠AOC=70°,求∠DOE和∠EOF的度数;(2)请写出图中∠AOD的补角和∠AOE的余角.6.如图,一副三角板的两个直角顶点重合在一起.(1)比较∠EOM与∠FON的大小,并写出理由;(2)求∠EON+∠MOF的度数.答案一、选择题1.B .2.B . 3.B .4.B 5.D 6.B .7.A .8.B .9.A10.D11.D12.B 13.B 14.B 15.B 16.D 17.C 18.C 19.C 20.B 21.C二、填空题1.1502.102.5°.3.12.5 150 117.54.1013011. 5.15°.6.北偏西30.7.北偏东30.8.东偏北50° 西南9.20º.10.7529'︒,2440'︒.11.751516'''︒;5836︒'.12.10212'︒13.7125'︒14.74°42′.15.18016.2517.53°18.180°三、解答题1.(1)小于平角的角有:,,,,,,,,AOD AOC AOE DOC DOE DOB COE COB EOB ∠∠∠∠∠∠∠∠∠,共有9个 故答案是: 9;(2)∵OD 平分AOC ∠,48AOC ∠=︒∴1242AOD COD AOC ∠=∠=∠=︒ ∴180********BOD AOD ∠=︒-∠=︒-︒=︒;(3)OE 平分BOC ∠,理由如下:∵90DOE ∠=︒,48AOC ∠=︒∴902466COE DOE COD ∠=∠-∠=︒-︒=︒180180249066BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒∴COE BOE ∠=∠∴OE 平分BOC ∠.2.(1)65°;(2)20°3.(1)∵∠AOC =90°,∠BOD =90°,∠BOC =60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,∠DOC =∠BOD ﹣∠BOC =90°﹣60°=30°;(2)设∠COD =x °,则∠BOC =100°﹣x °.∵∠AOC =110°,∴∠AOB =110°﹣(100°﹣x °)=x °+10°.∵∠AOD =∠BOC +70°,∴100°+10°+x °=100°﹣x °+70°,解得:x =30,即∠COD =30°;(3)当α=45°时,∠AOD 与∠BOC 互余.理由如下:要使∠AOD 与∠BOC 互余,即∠AOD +∠BOC =90°,∴∠AOB +∠BOC +∠COD +∠BOC =90°,即∠AOC +∠BOD =90°.∵∠AOC =∠BOD =α,∴∠AOC =∠BOD =45°,即α=45°,∴当α=45°时,∠AOD 与∠BOC 互余.4.解:(1)设∠BOC=α,则∠AOC=4α,∵∠BOC+∠AOC=180°,∴α+4α=180°,∴α=36°,∴∠AOC=144°;(2)∵∠AOD与∠BOC互余,∴∠AOD=90°-∠BOC=90°-36°=54°,∴∠COD=180°-∠AOD-∠BOC=180°-54°-36°=90°,∵OE平分∠COD,∴∠COE=12∠COD=12×90°=45°,∴∠BOE=∠COE+∠BOC=45°+36°=81°,(3)①如图1,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,设∠BOG=x°,∠BOF=2x°,∠BOD=∠DOC+∠BOC=36°+90°=126°,∵∠FOD=∠BOD+∠BOF,∴126+2x+x=180,解得:x=18,∴∠EOF=∠BOE+∠BOF=81°+2×18°=117°;②如图2,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,∴∠FOD+∠FOG=180°,∴D,O,G共线,∴∠BOG=∠AOD=54°,∴∠AOF=180°-∠BOF=72°,∴∠AOE=180°-∠BOE=180°-81°=99°,∴∠EOF=∠AOF+∠AOE=72°+99°=171°.5.(1)因为∠AOC=70°,所以∠AOD=180°-∠AOC=110°,所以∠BOD=180°-∠AOD=70°.又因为OE平分∠AOD,所以∠DOE=12∠AOD=55°,又因为OF平分∠BOD,所以∠DOF=12∠BOD=35°.所以∠EOF=∠DOE+∠DOF=90°.(2)∠AOD的补角:∠AOC和∠BOD;∠AOE的余角:∠DOF和∠BOF.6.(1)∠EOM=∠FON.∵∠EOM+∠MOF=90°=∠FON+∠MOF,∴∠EOM=∠FON;(2)∵∠EON+∠MOF=∠EOM+∠MOF+∠FON+∠MOF,∴∠EON+∠MOF=∠EOF+∠MON=180°.。
七年级数学上册《第四章 角》章节测试卷及答案(人教版)

七年级数学上册《第四章角》章节测试卷及答案(人教版)班级姓名学号一、选择题(共8题)1.已知A,B两地的位置如图所示,且∠BAC=150∘,那么下列语句正确的是( )A.A地在B地的北偏东60∘方向B.A地在B地的北偏东30∘方向C.B地在A地的北偏东60∘方向D.B地在A地的北偏东30∘方向2.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=( )A.90∘B.180∘C.160∘D.120∘3.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是A.∠1=∠3B.∠1=180∘−∠3C.∠1=90∘+∠3D.以上都不对4.只用一副三角板不能拼出来的角度是( )A.125度B.105度C.75度D.15度5.如图,一张地图上有A,B,C三地,C地在A地的北偏东38∘方向,在B地的西北方向,则∠ACB等于( )A.73∘B.83∘C.90∘D.97∘6.下列时刻中,时针与分针所成的角(小于平角)最大的是( )A.9:00B.3:30C.6:40D.5:457.把10∘36ʺ用度表示为( )A.10.6∘B.10.001∘C.10.01∘D.10.1∘8. 位于点O处的军演指挥部观测到军舰A位于点O的北偏东70∘方向(如图),同时观测到军舰B位于点O处的南偏西15∘方向,那么∠AOB的大小是( )A.85∘B.105∘C.115∘D.125∘二、填空题(共5题)9.如图∠AOC=50∘,OB平分∠COE,∠COE=36∘则∠AOB=度.10.若一个锐角∠α=32∘18ʹ,则∠α的余角为.11.如图,已知∠AOB=129∘,∠1=(5x+18)∘,∠2=(57−2x)∘那么∠2=度.12.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.13.如图,直线AB交CD于点O,OE平分∠BOC,OF平分∠BOD,∠AOC=3∠COE则∠AOF等于.三、解答题(共6题)14.如图,直线AB,CD相交于点O,OA平分∠EOC.(1) 若∠EOC=70∘,求∠BOD的度数.(2) 若∠EOC:∠EOD=2:3,求∠BOD的度数.∠EOC,∠COD=15∘.15.如图,OE为∠AOD的平分线∠COD=14(1) 求∠EOC的大小.(2) 求∠AOD的大小.16.如图,OA的方向是北偏东15∘,OB的方向是西偏北50∘,OD是OB的反向延长线.(1) 若∠AOC=∠AOB,求OC的方向.(2) 在(1)问的条件下,作∠AOD的角平分线OE,求∠COE的度数.17.如图,OD是∠BOC的平分线,OE是∠AOC的平分线∠AOB:∠BOC=3:2若∠BOE=13∘求∠DOE的度数.18.如图,直线AB,CD相交于点O,OE平分∠AOD,∠FOC=90∘,∠1=40∘.求:(1) ∠3的度数;(2) 求∠2的度数.19.如图,点O是直线AB上一点,OC是∠AOB的平分线∠COD=31∘28ʹ求∠AOD的度数.答案1. C2. B3. C4. A5. B6. D7. C8. D9. 6810. 57∘42ʹ11. 2112. 18013. 126°14.(1) ∵OA平分∠EOC∴∠AOC=12∠EOC=12×70∘=35∘∴∠BOD=∠AOC=35∘.(2) 设∠EOC=2x∠EOD=3x根据题意得2x+3x=180∘,解得x=36∘∴∠EOC=2x=72∘∴∠AOC=12∠EOC=12×72∘=36∘∴∠BOD=∠AOC=36∘.15.(1) ∵∠COD=14∠EOC∠COD=15∘∴∠EOC=60∘.(2) ∵OE平分∠AOD∴∠DOE=∠AOE∵∠EOC=60∘∠COD=15∘∴∠DOE=45∘,则∠AOD=2∠DOE=90∘.16.(1) ∵OB的方向是西偏北50∘∴∠BOF=90∘−50∘=40∘∴∠AOB=40∘+15∘=55∘∵∠AOC=∠AOB∴∠AOC=55∘∴∠FOC=∠AOF+∠AOC=15∘+55∘=70∘∴OC的方向是北偏东70∘.(2) 由题意可知∠AOD=90∘−15∘+50∘=125∘∵OE是∠AOD的角平分线∴∠AOE=12∠AOD=62.5∘∴∠COE=∠AOE−∠AOC=62.5∘−55∘=7.5∘.17. 设∠AOB=3x∠BOC=2x.则∠AOC=∠AOB+∠BOC=5x.∵OE是∠AOC的平分线∴∠AOE=12∠AOC=52x∴∠BOE=∠AOB−∠AOE=3x−52x=12x∵∠BOE=13∘∴12x=13∘,解得x=26∘∵OD是∠BOC的平分线∴∠BOD=12∠BOC=x=26∘∴∠DOE=∠DOB+∠BOE=26∘+13∘=39∘.18.(1) ∵∠AOB=180∘∴∠1+∠3+∠COF=180∘∵∠FOC=90∘,∠1=40∘∴∠3=180∘−∠1−∠FOC=50∘.(2) ∠BOC=∠1+∠FOC=130∘∴∠AOD=∠BOC=130∘∵OE平分∠AOD∴∠2=12∠AOD=65∘.19. ∵∠AOB=180∘,OC是∠AOB的平分线∴∠AOC=12∠AOB=12×180∘=90∘又∵∠COD=31∘28ʹ∴∠AOD=∠AOC−∠COD∴∠AOD=90∘−31∘28ʹ=58∘32ʹ.。
人教版七年级上册数学《角的计算》专题训练

(2)∠DOE=21∠AOC,理由如下:∵∠BOC=180°-∠AOC,OE
平
分
∠BOC
,
∴∠COE
=
1 2
∠BOC
=
1 2
(180°-
∠AOC)
=
90°-
1 2
∠AOC.∴∠DOE=90°-∠COE=90°-(90°-21∠AOC)=21∠AOC
3.如图,∠AOB=∠COD=90°,OC 平分∠AOB,∠BOD= 3∠DOE.试求∠COE 的度数.
解:∵∠AOB=90°,OC 平分∠AOB,∴∠BOC=12∠AOB=45°, ∵∠BOD=∠COD-∠BOC=90°-45°=45°,∠BOD=3∠DOE, ∴∠DOE=15°,∴∠COE=∠COD-∠DOE=90°-15°=75°
类型三:整体思想 6.如图,已知∠AOB=110°,OD 为∠AOB 内一条射线,OE 平 分∠AOD,OF 平分∠BOD,求∠EOF 的度数.
解:∵OE 平分∠AOD,OF 平分∠BOD,∴∠EOD=12∠AOD,
∠DOF
=
1 2
∠DOB
,
又
∵∠EOF
=
∠EOD
+
∠DOF
=
1 2
∠AOD
+
1 2
解:(1)A:∵∠AOC=60°,∴∠BOC=180°-∠AOC=180°-60°
= 120°.∵OE平分 ∠BOC Nhomakorabea,
∴∠COE =
1 2
∠BOC
= 21
×120°= 60°. 又
∵∠COD=90°,∴∠DOE=∠COD-∠COE=90°-60°=30°.
B:∠DOE=90°-12(180°-α)=90°-90°+12α=12α
2020年秋人教版七年级数学上册课时训练:4.3.1《角》 含答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020年人教版七年级数学上册课时训练:4.3.1《角》一.选择题1.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定2.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°3.下列各角中,()是钝角.A.周角B.平角C.平角D.平角4.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°5.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)6.11点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°7.在下列说法中:①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上差一刻六点时,时针和分针形成的角是直角;③钟表上九点整时,时针和分针形成的角是直角.其中正确的个数是()A.1B.2C.3D.48.当钟表上显示1点30分时,时针与分针所成夹角的度数为()A.130°B.135°C.150°D.210°二.填空题9.35.48°=度分秒.10.计算:18°13′×5=.11.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)12.4点30分时,时钟的时针与分针所夹的锐角是度.13.A、B两城市的位置如图所示,那么B城市在A城市的位置.三.解答题14.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′15.如图,在一次活动中,位于A处的1班准备前往相距5km的B处与2班会合,请用方向和距离描述1班相对于2班的位置:方向:,距离.16.(1)钟表上2时15分时,时针与分针所成的锐角的度数是多少?(2)若时针由2点30分走到2点55分,问分针转过多大的角度?17.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?18.知识的迁移与应用问题一:甲、乙两车分别从相距180km的A、B两地出发,甲车速度为36km/h,乙车速度为24km/h,两车同时出发,同向而行(乙车在前甲车在后),后两车相距120km?问题二:将线段弯曲后可视作钟表的一部分,如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)3:40时,时针与分针所成的角度;(2)分针每分钟转过的角度为,时针每分钟转过的角度为;(3)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?参考答案一.选择题1.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.2.解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.3.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.4.解:射线OA表示的方向是南偏东65°,故选:C.5.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.6.解:11点40分时针与分针相距3+=(份),30°×=110°,故选:D.7.解:①钟表上九点一刻时,时针和分针形成的角是180°﹣30°÷4,不是平角,原说法错误;②钟表上六点整时,时针指向6,分针指向12,形成的角是平角,原说法正确;③钟表上差一刻六点时,时针和分针形成的角是90+30°÷4,不是直角,原说法错误;④钟表上九点整时,时针指向9,分针指向12,形成的角是直角,原说法正确.∴正确的个数是2个.故选:B.8.解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是30°×4.5=135°,故选:B.二.填空题9.解:0.48°=(0.48×60)′=28.8′,0.8′=(0.8×60)″=48″,所以35.48°=35°28′48″.故答案为:35,28,48.10.解:原式=90°+65′=91°5′.故答案是:91°5′.11.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.12.解:因为4点30分时针与分针相距1+=,所以4点30分时针与分针所夹的锐角是30°×=45°,故答案为:45.13.解:A、B两城市的位置如图所示,那么B城市在A城市的南偏东30°位置,故答案为南偏东30°.三.解答题14.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.15.解:1班相对于2班的位置:方向:北偏东60°,距离:5千米;故答案为:北偏东60°,5千米.16.解:(1)2点15分时分针指向数字3,而时针从数字2开始转动的角度为15×0.5°=7.5°,所以钟表上2时15分时,时针与分针所成的锐角的度数为30°﹣7.5°=22.5°;(2)分针转过的角度为25×6°=150°.17.解:由分析知:(1)①图中有2条射线,则角的个数为:=1(个);(2)②图中有3条射线,则角的个数为:=3(个);(3)③图中有4条射线,则角的个数为:=6(个);(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为个.18.解:问题一:设xh后两车相距120km,若相遇前,则36x﹣24x=180﹣120,解得x=5,若相遇后,则36x﹣24x=180+120,解得x=25.故两车同时出发,同向而行(乙车在前甲车在后),5或25后两车相距120km;(1)30°×(5﹣)=130°.故3:40时,时针与分针所成的角度130°;(2)分针每分钟转过的角度为6°,时针每分钟转过的角度为0.5°;(3)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:(3+)×30﹣6x=60,解得:x=;②当分针在时针下方时,由题意得:6x﹣(3+)×30=60,解得:x=.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.故答案是:5或25;130°;6°;0.5°.。
人教版七年级数学上册期末求角的度数及证明专题练习-带答案

人教版七年级数学上册期末求角的度数及证明专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,⊥EOC=35°.求⊥BOD的度数.2.如图,⊥AOC=30°,⊥BOC=80°,OC平分⊥AOD.求⊥BOD的度数.3.如图,直线AB,CD相交于点O,OE平分⊥BOC,OF⊥OE,且⊥AOD=66°.求⊥BOF的度数.4.如图,已知OB,OC,OD是⊥AOE内的三条射线,OB平分⊥AOE,OD平分⊥COE.(1)若⊥AOB=70°,⊥DOE=20°,求⊥BOC的度数.(2)若⊥AOE=136°,AO⊥CO,求⊥BOD的度数.(3)若⊥DOE=20°,⊥AOE+⊥BOD=220°,求⊥BOD的度数.5.如图,直线AB,CD和EF相交于点O.(1)写出⊥AOC,⊥BOF的对顶角.(2)如果⊥AOC=70°,⊥BOF=20,求⊥BOC和⊥DOE的度数.6.如图,OD是⊥BOC的平分线,OE是⊥AOC的平分线,⊥AOB︰⊥BOC=3︰2,若⊥BOE=13°,求⊥DOE的度数.7.如图,已知直线AB和CD相交于点O,∠COE为直角,OF平分∠AOE,∠COF=28°.求∠BOE的度数.8.如图,点O在直线AB上,∠COE是直角,OF平分∠AOE,∠COF=30°,求∠EOB的大小.9.如图所示,已知⊥AOB=90°,⊥BOC=30°,OM平分⊥AOC,ON平分⊥BOC,求⊥MON的度数?10.如图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.11.如图∠AOB=∠COD=90°,∠DOA=150°,OM是∠AOC的平分线.求∠BOC和∠AOM 的度数.12.如图,OB是⊥AOC的角平分线,OD是⊥COE的角平分线,如果⊥AOB=40°,⊥COE=60°则⊥BOD的度数为多少度?13.如图,已知⊥AOC=90°,⊥BOD=90°,⊥BOC=38°19′,求⊥AOD的度数.14.如图,直线AB、CD相交于点O,⊥EOC=90°,OF是⊥AOE的角平分线,⊥COF=34°,求⊥BOD的度数.15.如图,O为直线AB上的一点,且⊥COD为直角,OE平分⊥BOD,OF平分⊥AOE,若⊥BOC=54°,求⊥COE和⊥DOF的度数.16.已知:如图,点O在直线AC上,OD平分⊥AOB,∠BOE=12∠EOC,∠DOE=70∘求:⊥EOC的度数.17.如图,直线AB,CD相交于点O,OM⊥AB于点O.(1)若⊥BOC=2⊥AOC,求⊥BOD的度数.(2)若⊥1=⊥2,则ON与CD垂直吗?如果垂直,请说明理由.18.如图,OE为⊥AOD的平分线,⊥COD=13,⊥COD=20°求:①⊥EOC的大小②⊥AOC的大小19.如图,直线AB,CD相交于点O,OE,OF是两条射线,⊥BOE=50°,OD平分⊥AOE.(1)求⊥AOD的度数.(2)若⊥BOF与⊥BOE互余,求⊥COF的度数.20.如图,直线AB与CD相交于点O,射线OE平分⊥BOF.(1)⊥AOD的对顶角是,⊥BOC的邻补角是(2)若⊥AOD=20°,⊥DOF :⊥FOB=1:7,求⊥EOC的度数.答案解析部分1.【答案】解:∵EO⊥AB∴⊥AOE=90° ∵⊥EOC=35°∴⊥AOC=⊥AOE-⊥EOC=55° ∴⊥BOD=⊥AOC=55°2.【答案】解:∵⊥AOC=30°,OC 平分⊥AOD∴⊥COD=⊥AOC=30° ∵⊥BOC=80°∴⊥BOD=⊥BOC-⊥COD=50°.3.【答案】解:∵⊥AOD=66°∴⊥BOC=⊥AOD=66° ∵OE 平分⊥BOC ∴⊥BOE=12⊥BOC=33°∵OF⊥OE ∴⊥EOF=90° ∴⊥BOF=90°-33°=57°.4.【答案】(1)解:∵OB 平分⊥AOE ,OD 平分⊥COE∴⊥BOE=⊥AOB=70°,⊥COE=2⊥DOE=40° ∴⊥BOC=⊥BOE-⊥COE=70°-40°= 30°. (2)解:∵OB 平分⊥AOE ,OD 平分⊥COE∴∠BOE =12∠AOE ,∠DOE =12∠COE .∵⊥BOD=⊥BOE-⊥DOE∴∠BOD =∠BOE −∠DOE =12(∠AOE −∠COE )=12∠AOC∵AO⊥CO ∴⊥AOC=90° ∴⊥BOD=45°.(3)解:∵OB 平分⊥AOE ∴⊥AOE=2⊥BOE .∵⊥AOE+⊥BOD=220° ∴2⊥BOE+⊥BOD=220°. ∵⊥BOE-⊥BOD=⊥DOE=20° ∴2⊥BOE-2⊥BOD=40° 即2⊥BOE=40°+2⊥BOD∴2⊥BOE+⊥BOD=40°+3⊥BOD=220° ∴3⊥BOD=180° ∴⊥BOD=60°.5.【答案】(1)⊥ AOC 的对顶角为⊥BOD ,⊥BOF 的对顶角为⊥AOE .(2)∵⊥AOC=70°,⊥AOC+⊥BOC= 180° ∴⊥BOC= 110°. ∵⊥BOF= 20°∴⊥COF=⊥BOC-⊥BOF= 90° ∴⊥DOE=⊥COF= 90°.6.【答案】解:设⊥AOB=3x ,⊥BOC=2x.则⊥AOC=⊥AOB+⊥BOC=5x. ∵OE 是⊥AOC 的平分线 ∴⊥AOE═12⊥AOC =52x∴⊥BOE=⊥AOB-⊥AOE=3x−52x =12x∵⊥BOE=13° ∴12x =13°解得:x=26°∵OD 是⊥BOC 的平分线∴⊥BOD =12⊥BOC =x =26°∴⊥DOE=⊥DOB+⊥BOE=26°+13°=39°.7.【答案】解:∵∠COE 为直角∠COF =28°∴∠EOF =90°−28°=62° ∵OF 平分∠AOE ∴∠AOF =∠EOF =62°∴∠EOB =180°−62°−62°=56°.8.【答案】解:∵∠COE 是直角∴∠COE =90°∵ ∠COE =∠COF +∠FOE∴∠FOE =∠COE −∠COF =90°−30°=60°∵OF 平分∠AOE∴∠FOE =∠AOF =12∠AOE ∴∠AOE =2∠FOE =120° ∵∠AOE +∠BOE =180° ∴∠BOE =180°−120°=60°9.【答案】解:∵⊥AOB =90°,⊥BOC =30°∴⊥AOC =90°+30°=120° ∵OM 平分⊥AOC∴⊥AOM =12⊥AOC =12(⊥AOB+⊥BOC )=12×120°=60°∵ON 平分⊥BOC∴⊥CON =12⊥BOC =12×30°=15°∴⊥MON =⊥AOC ﹣⊥AOM ﹣⊥CON =120°﹣60°﹣15°=45°.10.【答案】解:∵∠FOC =90°∴∠1+∠3=90° ∴∠3=90°−40°=50°∠AOD =180°−∠BOD =180°−∠3=180°−50°=130°∴∠2=∠AOD ÷2=130°÷2=65° 故⊥2=65°,⊥3=50°.11.【答案】解:因为 ∠DOC =∠AOB =90°,∠AOC =150°所以 ∠BOC =360°−∠DOC −∠AOB −∠AOD =30° 所以 ∠AOC =∠AOB +∠BOC =120° 因为OM 平分 ∠AOC所以 ∠AOM =12∠AOC =60° .12.【答案】解:∵OB 是⊥AOC 的角平分线,OD 是⊥COE 的角平分线,⊥AOB=40°,⊥COE=60°∴⊥BOC=⊥AOB=40°,⊥COD=12⊥COE=12×60°=30°∴⊥BOD=⊥BOC+⊥COD=40°+30°=70°.13.【答案】解:∵⊥BOD=90°,⊥BOC=38°19′∴⊥COD=⊥BOD-⊥BOC=51°41′∵⊥AOC=90°∴⊥AOD=⊥AOC+⊥COD=141°41′答:⊥AOD的度数为141°41′.14.【答案】解:∵∠EOC=90°∠COF=34°∴∠EOF=56°∵OF是⊥AOE的角平分线∴∠AOF=∠EOF=56°∴∠AOC=∠AOF−∠COF=22°∴∠BOD=∠AOC=22°15.【答案】解:∵⊥COD=90° ⊥BOC=54°∴⊥BOD=90°-54°=36°∵OE平分⊥BOD∴⊥DOE=⊥BOE=18°∴⊥COE=⊥BOC+⊥BOE=54°+18°=72°,⊥AOE=180°-⊥BOE=180°-18°=162°.∵OF平分⊥AOE∴∠EOF=12∠AOE=81°∴⊥DOF=⊥EOF-⊥DOE=81°-18°=63°16.【答案】解:设∠EOC=α∵∠BOE=12∠EOC∴∠BOE=1 2α∵∠DOE=70∘∴∠BOD=∠DOE−∠BOE=70∘−1 2α∵OD平分∠AOB∴∠AOD=∠BOD=70∘−1 2α因为点O 在直线AC 上 所以 ∠AOC =180∘∴∠EOC +∠DOE +∠AOD =180∘ ∴α+70°+70°−12α=180° ∴α=80∘ ∴∠EOC =80∘17.【答案】(1)解:∵⊥BOC=2⊥AOC ,⊥BOC+⊥AOC=180°∴2⊥AOC+⊥AOC=180° ∴3⊥AOC=180° ∴⊥AOC=60°∴⊥BOD=⊥AOC=60°. (2)解:垂直.理由如下: ∵OM⊥AB ∴⊥AOC+⊥1=90°. ∵⊥1=⊥2 ∴⊥AOC+⊥2=90° ∴ON⊥CD .18.【答案】解:①∵∠COD =13∠EOC ∠COD =20° ∴∠EOC =3∠COD =60°②∵∠EOC =60° ∠COD =20°∴∠DOE =40°∵OE 平分∠AOD∴∠AOD =2∠DOE =80°19.【答案】(1)解:∵⊥BOE=50°∴⊥AOE=180°-⊥BOE=130° ∵OD 平分⊥AOE ∴⊥AOD=12⊥AOE=65°;(2)解:∵ ⊥BOF 与⊥BOE 互余 ∴⊥BOF+⊥BOE=90°∵⊥BOE=50°∴⊥BOF=40°∵⊥BOC=⊥AOD=65°∴⊥COF=⊥BOC-⊥BOF=25°.20.【答案】(1)⊥ BOC;⊥ AOC,⊥BOD(2)解:∵⊥DOF :⊥FOB=1 :7 ⊥AOD= 20°∴⊥DOF= 18⊥BOD=18×(180°- 20°)= 20°.∴⊥BOF=140°∵OE平分⊥BOF∴⊥BOE= 12⊥BOF=12×140°=70°∴⊥EOC=⊥BOE+⊥BOC=70°+20°=90°.11/ 11。
人教版数学七年级上册期末满分突破专练:角的计算综合(三)

2020年秋人教数学七年级上册期末满分突破专练:角的计算综合(三)1.如图,A,O,B三点在一条直线上,∠AOC=3∠COD,OE平分∠BOD,∠COE=80°,求∠COD的度数.2.如图,OC是∠AOB内一条射线,且∠AOC<∠BOC,OE是∠AOB的平分线,OD是∠AOC的平分线,则:(1)若∠AOB=108°,∠AOC=36°,则OC是∠DOE平分线.请说明理由;(2)小明由第(1)题得出猜想:当∠AOB=3∠AOC时,OC一定平分∠DOE.你觉得小明的猜想正确吗?若正确,请说明理由;若不正确,判断当∠AOB和∠AOC满足什么条件时OC一定平分∠DOE,并说明理由.3.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.4.已知O是直线AB上的一点,∠COD=90°,OE平分∠BOC.(1)如图①,若∠AOC=30°,∠DOE=;(2)如图①,若∠AOC=α,∠DOE=;(用含α的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,其他条件不变,那么(2)中所求出的结论是否还成立,请说明理由.5.已知,点O为直线AB上一点,∠COD=90°,OE是∠AOD的平分线.(1)如图1,若∠COE=63°,求∠BOD的度数;(2)如图2,OF是∠BOC的平分线,求∠EOF的度数;(3)如图3,在(2)的条件下,OP是∠BOD的一条三等分线,∠DOP=∠BOD,若∠AOC+∠DOF=∠EOF,求∠FOP的度数.6.已知∠AOB=90°,OC是一条可以绕点O转动的射线,ON平分∠AOC,OM平分∠BOC.(1)当射线OC转动到∠AOB的内部时,如图1,求∠MON的度数.(2)当射线OC转动到∠AOB的外时(90°<∠BOC<∠180°),如图2,∠MON的大小是否发生变化?变或者不变均说明理由.7.26、如图,∠AOB=90°.∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)若∠BOC=60°,其他条件不变,则∠MON=;(3)若∠AOB=α,其他条件不变,求∠MON的度数;(4)从上面的结果能看出什么规律?8.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD 内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=∠DON.求t的值.9.已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD=;②∠BOC﹣∠AOD=.(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC ﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.10.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.(1)求∠AOD的度数;(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.参考答案1.解:设∠COD=x°,∵∠AOC=3∠COD,∴∠AOC=3x°,∠AOD=4x°,∵OE平分∠BOD,∴∠BOE=∠DOE=(180°﹣∠AOD)=(90°﹣2x)°,由∠COE=∠COD+∠DOE得,x+90°﹣2x=80°,∴x=10°,即:∠COD=10°.2.解:(1)∵OE是∠AOB的平分线,∠AOB=108°,∴∠AOE=∠BOE=∠AOB=×108°=54°,∵∠AOC=36°,∴∠COE=54°﹣36°=18°,∵OD是∠AOC的平分线,∠AOC=36°,∴∠COD=∠AOD=∠AOC=×36°=18°,∴OC是∠DOE平分线;(2)正确,设∠AOC=α,则∠AOB=3α,∵OE平分∠AOB,∠AOB=3α,∴∠AOE=α,∵∠AOC=α,∴∠COE=α,∵OD是∠AOC的平分线,∴∠COD=α=∠COE,∴OC平分∠DOE.3.解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=,∴∠DOE=∠COD+∠COE=+25°=;(3),与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=∠AOC=,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=,∴∠DOE=∠COD+∠COE=+=;4.解:(1)∵∠AOC=30°,∴∠BOC=150°,∵OE平分∠BOC,∴∠COE=75°,又∵∠COD=90°,∴∠DOE=90°﹣75°=15°.故答案为:15°;(2)∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=90°﹣α,又∵∠COD=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α;(3)结论仍然成立,理由:∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣α)=α.5.解:(1)∵∠COD=90°,∠COE=63°,∴∠DOE=∠COD﹣∠COE=27°,∵OE是∠AOD的平分线,∴∠AOD=2∠DOE=54°,∴∠BOD=180°﹣∠AOD=180°﹣54°=126°;答:∠BOD的度数为126°.(2)∵OE是∠AOD的平分线.∴∠AOE=,∵OF是∠BOC的平分线,∴∠BOF=∠COF==,∴∠EOF=180°﹣∠AOE﹣∠BOF=∵∠AOC+∠BOD=180°﹣90°=90°,∴∠EOF=×90°=45°,答:∠EOF的度数为45°.(3)由(2)得∠EOF=45°∵∠AOC+∠DOF=∠EOF=45°,∴∠DOF=45°﹣∠AOC,又∵∠DOF=∠COD﹣∠COF==45°﹣∠BOD,∴45°﹣∠AOC=45°﹣∠BOD,∴∠AOC=∠BOD,∵∠AOC+∠BOD=90°,∴∠AOC=30°,∠BOD=60°,∴∠DOF=45°﹣30°=15°,∵∠DOP=∠BOD,∴∠DOP=20°,∴∠FOP=∠DOF+∠DOP=15°+20°=35°6.解:(1)如图1所示:∵ON平分∠AOC,∴∠CON=,又∵OM平分∠BOC,∴∠COM=,又∵∠AOB=∠AOC+∠BOC=90°,∴∠MON=∠CON+∠COM===45°;(2)∠MON的大小不变,如图2所示,理由如下:∵OM平分∠BOC,∴∠MOC=,又∵ON平分∠AOC,∴∠AON=,又∵∠MON=∠AON+∠AOM,∴∠MON====45°.7.解:(1)根据题意,得∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°.答:∠MON的度数为45°.(2)∠MON=(150﹣60)=45°.故答案为45°.(3)∵∠AOB=α,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=α+30°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+15°,∠CON=BOC=15°,∴∠MON=∠MOC﹣∠CON=+15°﹣15°=.答:∠MON的度数为.(4)∠MON的度数始终是∠AOB的一半,与∠BOC的大小没有关系.8.解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB∠BOD=(∠AOB+∠BOD)=∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=∠AOC∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;答:∠MON的度数为70°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t的值为21秒.9.解:(1)①∠AOC+∠BOD=∠AOC+∠AOD+∠AOB=∠COD+∠AOB=60°+90°=150°;②∠BOC﹣∠AOD=(∠AOB﹣∠AOC)﹣(∠COD﹣∠AOC)=∠AOB﹣∠AOC﹣∠COD+∠AOC=∠AOB﹣∠COD=90°﹣60°=30°;故答案为:150°、30°;(2)设运动时间为t秒,0<t≤36,∠MOC=(5t)°,①0<t≤20时,OD与OA相遇前,∠AOD=(60+2t﹣5t)°=(60﹣3t)°,∴∠MOC﹣∠AOD=(8t﹣60)°;②20<t≤36时,OD与OA相遇后,∠AOD=[5t﹣(60+2t)]°=(3t﹣60)°,∴∠MOC﹣∠AOD=(2t+60)°;(3)设OC绕点O逆时针旋转n°,则OD也绕点O逆时针旋转n°,①0<n°≤150°时,如图4,射线OE、OF在射线OB同侧,在直线MN同侧,∵∠BOF=[90°﹣(n﹣60°)]=(150﹣n)°,∠BOE=(90﹣n)°=(180﹣n)°,∴∠EOF=∠BOE﹣∠BOF=15°;②150°<n°≤180°时,如图5,射线OE、OF在射线OB异侧,在直线MN同侧,∵°,∠BOE=(90﹣n)°=(180﹣n)°,∴∠EOF=∠BOE+∠BOF=15°;③180°<n°≤330°时,如图6,射线OE、OF在射线OB异侧,在直线MN异侧,∵°,°,∴∠EOF=∠DOF+∠COD+∠COE=165°;④330°<n°≤360°时,如图7,射线OE、OF在射线OB同侧,在直线MN异侧,∵∠DOF=[360﹣(n﹣150)]°=(510﹣n)°,°,∴∠EOF=∠DOF﹣∠COD﹣∠COE=15°;综上,∠EOF=15°或165°.10.解:如图所示:(1)设∠AOD=5x°,∵∠BOC=∠AOD∴∠BOC=•5x°=3x°又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,∠AOD=∠AOB+∠BOC+∠DOC,∴∠AOC+∠BOD=∠AOD+∠BOC,又∵∠AOC=∠BOD=120°,∴5x+3x=240解得:x=30°∴∠AOD=150°;(2)∵∠AOD=150°,∠BOC=∠AOD,∴∠BOC=90°,①若线段OB、OC重合前相差20°,则有:20t+15t+20=90,解得:t=2,②若线段OB、OC重合后相差20°,则有:20t+15t﹣90=20解得:,又∵0<t<6,∴t=2或t=;(3)∠MON的度数不会发生改变,∠MON=30°,理由如下:∵旋转t秒后,∠AOD=150°﹣5t°,∠AOC=120°﹣5t°,∠BOD=120°﹣5t°∵OM、ON分别平分∠AOC、∠BOD∴∠AOM=∠AOC=,∠DON==∴∠MON=∠AOD﹣∠AOM﹣∠DON=150°﹣5t°﹣﹣=30°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册角测试题
一、填空题
1.如果一个角的补角是120°,那么这个角的余角是_______.
考查说明:本题考查余角和补角的概念和性质.
答案与解析:选D。
两角成补角,和为180°,因此该角为180°-120°=60°,而两角成余角,和为90°,因此这个角的余角为30°.
2.在8:30时,时钟的时针与分针的夹角为__________
度.
考查说明:本题考查本题考查钟表时针与分针的夹角.
答案与解析:75。
在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.8:30时,时钟的时针与分针的夹角是8.5×30°-6°×30=75度.
3.计算:33°52′+21°54′= ______________
考查说明:本题考查度、分、秒的换算.
答案与解析:55°46′.两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.33°52′+21°54′=54°106′=55°46′.
4.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB= ______________
考查说明:本题考查角的计算.
答案与解析:180°。
因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.
设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,
所以∠AOC+∠BOD=90°+a+90°-a=180°.
5.如图,在锐角内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.
考查说明:本题考查射线的概念及规律探索.
答案与解析:66. 这是一道规律探索题,根据给出的条件寻找规律
画射
线的
条数
3…n
锐
角个数
1
…
所以当n=10时, =66.
二、解答题
6.如图所示,A、B两条海上巡逻艇同时发现海面上有一不明物体M,A艇发现该不明物体在它的西北方向,B艇发现该不明物体在它的南偏西60°的方向上, 请你试着在图中确定这个不明物体M的位置.
考查说明:本题主要考查方向位角的概念。
答案与解析:如右上图所示。
分别以A、B所在位置建立十字方位图,画出西北方向和南偏西60°的方向的射线,两条射线的交点即为M所在位置。
7.一个角的余角比它的补角的少45°,求这个角的度数。
考查说明:本题考查余角和补角的性质及相关运算.
答案与解析:设这个角为x°,则它的余角为(90-x) °,补角为(180-x) °,由题意可得: (180-x)- (90-x)=45,得x=45.
8.如图,BD平分∠ABC,BE分∠ABC分2:5两部分,∠DBE=21°,求∠ABC的度数.
考查说明:本题考查角的运算。
答案与解析:设∠ABE=x°,得2x+21=5x-21,解得x=14,所以∠ABC=14°×7=98°.。