《探索勾股定理》第一课时说课稿
探索勾股定理(一)说课稿
《探索勾股定理(一)》说课稿高明区东洲中学谢雪莲各位评委、老师,你们好! 我是高明区东洲中学谢雪莲。
今天我说课的内容是九年义务教育北师大版数学教材八年级上册第一章第一节《探索勾股定理(一)》,下面让我来阐述一下我是如何分析教材、如何设计教学过程的。
一、学生起点分析认识基础:在学习本节内容之前,学生已经掌握了三角形的三边关系及等腰三角形、等边三角形的相关性质,对于直角三角形内角之间的数量关系也十分熟悉。
活动经验基础:在七年级下册《三角形》一章中,学生通过测量、拼图、折纸等多种形式的活动,进行了充分的实践与探索,在活动中学会了与他人交流、合作的策略,初步获得了数学活动经验,提高了思维水平。
二、教学任务分析勾股定理揭示了直角三角形三边之间的一种美妙关系,将数与形紧密联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
三、教学目标分析●知识与技能目标用正方形面积的等量关系验证勾股定理并理解勾股定理反映的直角三角形三边之间的数量关系,初步运用勾股定理进行简单的计算和实际运用。
●解决问题经历探索勾股定理的过程,进一步发展学生的推理能力。
●情感与态度1、激励学生自主探究,从中获得成功的体验,培养学生的合作意识和团队精神。
从而让学生多角度地思考问题,发展思维。
2、通过互联网搜索相关内容进行预习与拓展勾股定理的知识,激发学生热爱祖国悠久文化的思想,激励学生发奋学习。
四、教学重点与难点:●重点:用面积法探索勾股定理,理解并掌握勾股定理。
●难点:计算以斜边为边长的大正方形R面积以及割补思想的方法理解与应用。
五、教法、学法1.教学方法:在整个准备过程中遵循学生的认知规律,分别从问题的引入、结论的得出、定理的证明与运用进行教学设计、教学实践和教学反思。
“探索勾股定理”说课稿
“探索勾股定理”说课稿一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是安排在学生学习了作三角形,探索直角三角形之后。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据新课程标准,本课的教学目标是:1、了解勾股定理的历史背景,激发学生爱国情操2、掌握勾股定理的内容会初步运用勾股定理进行简单的计算和实际运用。
3、经历用面积法,拼图,探究勾股定理的方法,发展推理能力。
二、(三)本课的教学重点:针对初二年级学生的知识结构和理解能力,及本节课程的编排位置应以“探索勾股定理”为重点本课的教学难点:由于本节课探讨勾股定理的结论为重点,以直角三角形边长的不定性,及图形的多样性故以直角三角形为边的正方形面积的计算为难点。
二、教法与学法分析:本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳点题—定理运用——课堂小结—布置作业六部分。
在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计(一)提出并拓展问题:首先创设一个情境:一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆长度折断前有多高?该问题具有一定的挑战性,目的是激发学生的探究欲望,引导学生将实际问题转化成数学问题,学生会感到困难,接下来通过课件展示直角三角形全等的条件来提示学生理解直角三角形中任意两边确定了第三边也随之确定的必然性来认识到三边的关系。
把学生探究勾股定理的兴趣再次提到了高点。
教师指出学习了今天这一课后就有办法解决了。
《勾股定理》优秀说课稿(精选12篇)
《勾股定理》优秀说课稿(精选12篇)《勾股定理》优秀说课稿篇1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
第一、情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二、追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
北师大版数学八年级上册1《探索勾股定理》说课稿1
北师大版数学八年级上册1《探索勾股定理》说课稿1一. 教材分析《探索勾股定理》是北师大版数学八年级上册第一单元的一节重要内容。
本节课的主要任务是让学生通过探究、验证勾股定理,培养学生的逻辑思维能力和创新能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣,接着引导学生通过实际操作,探索勾股定理的证明方法。
教材内容丰富,既有理论探究,又有实践操作,使学生在学习过程中充分体验到数学的趣味性和实用性。
二. 学情分析八年级的学生已经具备了一定的数学基础,对几何图形的认识和逻辑推理能力有一定的掌握。
但学生在学习过程中,往往对理论性的知识感到枯燥乏味,缺乏学习的积极性。
因此,在教学过程中,教师需要注重激发学生的学习兴趣,引导学生主动参与课堂讨论,提高学生的学习积极性。
三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,了解勾股定理的证明方法,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和创新能力。
3.情感态度与价值观:让学生感受数学的趣味性和实用性,激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:让学生掌握勾股定理及其证明方法。
2.教学难点:引导学生探索勾股定理的证明方法,培养学生的创新能力。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、分组讨论法、情境教学法等教学方法,结合多媒体课件、几何画板等教学手段,引导学生主动参与课堂讨论,提高学生的学习积极性。
六. 说教学过程1.导入新课:通过讲述毕达哥拉斯的故事,激发学生的学习兴趣,引出本节课的主题。
2.探究勾股定理:让学生分组进行实际操作,观察直角三角形的三条边之间的关系,引导学生猜想勾股定理。
3.验证勾股定理:引导学生运用几何画板等工具,验证猜想的正确性。
4.讲解勾股定理:教师对勾股定理进行详细讲解,让学生掌握定理的内容。
5.应用勾股定理:让学生运用所学知识解决实际问题,巩固所学内容。
《探索勾股定理》说课稿(第一课时)
3 教学方法
新课 改及 新课标 明确 提倡构 建 充满生 命 () 1已知 a , 8, c; 6 b 求 活力的课堂教学运行 体系。因此 , 本节课我采 () 2 已知 a 0 c 1 求 b; 4 , 4 , 用 “ 引导探究法” 让学生通过 动手、 脑、 , 动 动 因为教材中的 例 1 计算学牛 易出错 , 为了 口 自主 探索 , 经历知识 的形成 与应用 的过程 , 能够让 学生 熟练的运 用 勾股定理 解决 已知直 感受到 “ 无处不在的数学 ”与数学 的美 , 提高 角三 角形 的 两边 , 求第三边 的 问题 , 我改编教 学 习 兴 趣 , 一 步 体 会 数 学 的地 位 和 作 用 。 进 材了 P . 练习 1作为例 1。这道题的 解决 方法 是先 采用独立完 成形式 , 有困难的学生 可以求 4 学 过程 教 助老 师或 同学 , 生互 助完成 , 学 派学 生代表板 信息展示 与 归纳 一 集体 合作与 合作 探究 书讲解 。 师生巩 固与练 习 小结 要点与拓 展 。 练 习在 Rt ABC 中 △ 4 1信息展示 与归纳 () 1 已知 A=3 。, =2 求 b c 0 a , 、 ; 学生 展示 的信息 主要 介绍 勾股定 理的 历 ( A=4 。, =4, a、b。 2) 5 C 求 史, 列举 了东 西文化 中对勾股 定理 的发现 , 介 在 此基础上 , 我设 计了练 习 1 是将例 l 中 C 0 的条件去掉 , 9 。 就是 已知 R △ A C的 t B 两边 去 求第 三边 , 此题 就变 为一 道 开放 性试 题, 学生很容 易模仿例 1 只考虑 C 0 9 。这一 种情 况 , 教师要 引导学 生发现 条件的 变化 , 探 究其 它情 况的存在 , 即这里 的 A为9 。的可 0 能, 得出此题 应分为 两种情 况解 决 。
探索勾股定理说课稿
探索勾股定理(一)(说课稿)著名的教育学家布鲁纳曾经说过:知识的获取是一个主动地过程,学习者不是信息的被动接受者,而是知识获取的主动参与者。
数学课程标准又提出:有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
本节课的设计正是以此为理念,在探索勾股定理的过程中,充分体现了学生的主体地位。
下面我将从这六个方面进行说课。
一、教材分析:(一)教材:北师大版《义务教育课程标准实验教科书·数学》八年级上册第一章第一节第一课时。
(二)教材的地位和作用:“勾股定理”是在学生研究了三角形的有关概念, 全等三角形和等腰三角形的基础上学习的一个重要定理。
它揭示了直角三角形三边之间的一种美妙关系,为第二章引入无理数准备了良好的知识背景。
它紧密联系了数学中两个最基本的量——数与形,能把形的特征(三角形中有一个直角)转化为数量关系(三边之间满足222cba=+),堪称数形结合的典范,在理论上有着重要的地位,在现实生活中也被广泛应用,被誉为几何史上最灿烂的明珠。
(三)学情分析:1、八年级学生已具备一定的分析和归纳能力,初步掌握了探索图形性质的基本方法,但对如何将数与形结合起来还感到很陌生。
2、我校的学生基础比较好,观察、操作、猜想能力较强,但合情推理能力,运用数学的意识还比较薄弱,自主探索和合作学习的能力也需要在课堂教学中进一步加强和引导!二、目标分析:(一)教学目标1、知识技能经历探索勾股定理的过程,理解并掌握勾股定理,能运用勾股定理解决一些简单实际问题.2、数学思考(1) 在参与观察、操作、猜想、验证的数学活动中, 发展由特殊到一般的合情推理能力;(2) 学会独立思考,体会数形结合的思想方法.3、问题解决(1) 初步学会在实际情境中从数学的角度发现问题,并综合运用数学知识和方法解决简单的实际问题,增强数学应用意识;(2) 学会与他人合作交流.4、情感态度(1)通过自主探索勾股定理,激发学生“再创造”的热情,感受成功的快乐;(2)在运用勾股定理解决问题的过程中,认识数学具有严谨和应用广泛的特点,体会数学的价值。
探索勾股定理一 说课稿
《探索勾股定理》第一课时说课稿门源县青石嘴中学马相贵各位评委老师大家好:今天我说课的课题是《探索勾股定理》,下面就教材分析、教学方法选择、学法指导、教学程序设计等四个方面,谈谈我对本课题的认识和理解。
一、教材分析(一)、1.教材的地位和作用这节课是九年制义务教育课程标准实验教科书,北师大版八年级第一章第一节《探索勾股定理》第一课时。
在本节课以前,学生学习了(三角形、正方形、梯形)一些图形的面积公式,还学习了三角形全等的判定和性质、直角三角形的有关性质以及整式运算中的完全平方公式(a+b)2=a2+2ab+b2。
学生在这些原有的认知水平基础上,探索直角三角形的又一条重要性质——勾股定理。
我国是最早了解勾股定理的国家之一,这一定理揭示了直角三角形三边之间的数量关系,为以后学习《解直角三角形》和《二次根式》奠定基础,在有关的物理计算中也离不开《勾股定理》,它在生活中的用途很大。
2.学生起点分析八年级学生已经具备一定的观察、归纳、探索和推理的能力.且他们勤于思考、乐于探究。
(根据以上教材地位和学生情况,再结合《课程标准》的要求,我制定如下教学目标)(二)、教学目标1、知识与技能目标用数格子的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用2、过程与方法目标在探索勾股定理的过程中,让学生经历“观察——猜想——归纳——验证”的数学过程,并体会数形结合和从特殊到一般的数学思想方法。
3、情感态度与价值观目标(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美。
(2)利用远程教育资源突出介绍中国古代勾股方面的成就,体现数学的文化价值。
(三)、教学重点及难点(根据《课程标准》的要求,以及为学生在今后解决有关几何问题。
因此,本节课的教学重点和难点是)【教学重点】勾股定理及勾股定理的证明与简单的运用【教学难点】用拼图求面积的方法证明勾股定理【难点成因】在小学,他们已学习了一些几何图形面积的计算方法(包括割补法)但运用面积法和割补思想解决问题的意识和能力还远远不够,从而形成困难【教具】教师准备:课件直角三角形学生准备:四个全等的直角三角形二、教学方法及教学手段的选择针对八年级学生的认知结构和心理特征,本节课我选择的方法是:引导探索、讨论发现法,(其意图是由浅到深,由特殊到一般的提出问题,与学生合作交流,这种教学理念紧随新课改理念)。
探索《勾股定理》说课稿范文(精选5篇)
探索《勾股定理》说课稿范文(精选5篇)探索《勾股定理》说课稿范文(精选5篇)1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
《勾股定理》第一课时说课稿
《勾股定理》第一课时说课稿一、教材分析数学是一门来源于生活,又应用于生活的学科.实际生活中,有不少问题的解决都涉及到直角三角形的相关知识.《勾股定理》是几何中几个重要定理之一,它揭示了直角三角形中三边的数量关系,有助于学生在原有基础上对直角三角形认识的加深,有利于数形结合,即把图形语言、文字语言与数学符号语言有机地结合起来,同时也是学生进行后续学习的基础.人教版新课标教材将《勾股定理》的学习安排在了八年级下册第十七章中.首先从观察入手,给学生创造学习情境,接着探索直角三角形三边的数量关系,并由特殊到一般,使学生体会数形结合的思想和数学探索的乐趣.在呈现方式上本节内容更突出了实践性与研究性,突出了发现数学、学习数学、使用数学的意识与过程,注重联系学生的生活实际.二、教学目标由于本课是第一课时,主要使学生体验从生活中探求规律的过程,并能使用勾股定理解决简单的计算问题,所以三维目标的知识与技能目标主要体现在:〈一〉知识与技能①体验勾股定理的探索过程;②利用勾股定理解决直角三角形中已知两边求第三边的问题;③通过变形题的训练,提高学生的解题能力,并使学生体会到学数学、用数学的乐趣. 〈二〉过程与方法作为一名数学教师,不仅要传授给学生数学知识,培养学生的解题能力,更重要地是要传授学生数学的思考方法,提高学生功能的数学意识,所以在过程和方法目标上,体现在让学生从普普通通的平面图形中去探索定理,并能够在一般情况下证明定理,理解勾股定理的核心本质,从而培养学生用数学的意识.〈三〉情感态度与价值观①通过对勾股定理的探索和应用,体会数与形相结合的意义和作用,体验到所谓高深的数学其实就来源于生活中的点点滴滴,而且学好知识,马上就能应用于实践,满足学生的心理需求.②感受中华民族古老的数学文化,激发学生的学习热情.③在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神. 教学重点:探索和证明勾股定理是本节课的重点内容教学难点:从图形中发现规律,利用图形证明勾股定理是本节课的难点.三、教法、学法〈一〉教法数学是一门培养人的思维,发展人的思维的学科,什么样的教法必带来相应的学法.一节课不能采用单一不变的教法,针对八年级学生的知识结构和心理特征,以及我校学生的特点,我将采用以下方法进行教学:1、启发教学:启发性的提问是课堂教学的主旋律,通过启发性的教学,让学生成为课堂的主体.2、讨论模式:引导学生通过合作去解决逐步深入的问题,体会探索过程的乐趣.〈二〉学法“受之以鱼不如受之以渔”,教师要特别注重对学生学习方法的指导,这甚至比知识本身还重要.由于学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“观察——猜想——验证——归纳——总结”的主线进行学习.四、教学流程〈一〉创设情景、引入新课2002年在北京召开的国际数学家大会,被誉为数学界的“奥运会”,大会的会徽图片展示给同学们看.①你见过这个图案么?②你听说过“勾三股四弦五”么?设计意图:通过实例展示和相关的介绍,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景.毕达哥拉斯是古希腊著名的数学家,相传2500多年以前,他到一个朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.问题①请你观察一下,你有什么发现吗?②等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有这种特性呢? ③你有新的结论吗?设计意图:(1)在学习中,只有充分调动学生的非智力因素,特别是内在动机,才能使他们以强烈的求知欲和饱满的热情来学习新知识.(2)渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间和空间,培养学生探索问题和类比迁移的能力在独立探究的基础上,开展交流教师应关注:①留给学生充足的思考空间,并提供表述的机会;②学生能否准确挖掘出图形中的隐含条件,计算各个正方形的面积;③学生能否用不同方法得到大正方形的面积;④学生能否实现将三个正方形的面积关系转换为直角三角形三边的数量关系;设计意图:(1)让学生进行合作活动,培养学生合作交流的精神.(2)鼓励学生勇于面对数学活动中的困难,尝试从不同角度寻找解决问题的方法,并通过对方法的反思,获取解决问题的经验.〈二〉新课讲解是不是所有的直角三角形都有这样的特点呢?这就需要对一般的直角三角形进行严格的证明.目前世界上已经有几百种证明方法,下面我们来看看我国数学家赵爽的证明方法.教师深入细致讲解,让学生弄明白赵爽切割、拼接的证明方法〈三〉知识归纳勾股定理:在直角三角形中,如果两直角边长分别为b a 、,斜边长为c ,则222c b a =+ 强调:勾股定理的应用的前提是在直角三角形中,一般的三角形不能用勾股定理.设计意图:归纳探索的内容,为下一步应用、拓展指明方向.〈四〉知识应用[例1]在直角三角形中,两直角边分别用b a 、表示,斜边用c 表示,请完成下列计算: ①43==b a ,,求c 的值;②125==b a ,,求c 的值;③419==c a ,,求b 的值.设计意图:利用勾股定理解决直角三角形中已知两边求第三边的问题,并且提出够股数的概念,让学生对常见的够股数有一定的认识.遵循巩固与发展相结合的原则,培养学生的创新意识〈五〉总结学生回顾新知、激励学生总结发言;设计意图:注重学生间的相互评价方式的运用.〈六〉作业课本28页复习巩固第1、2题。
《勾股定理》说课稿(优秀5篇)
《勾股定理》说课稿(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《勾股定理》说课稿(优秀5篇)作为一名无私奉献的老师,总不可避免地需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
《探索勾股定理》第一课时说课稿
《探索勾股定理》第一课时说课稿《探索勾股定理》第一课时说课稿作为一名辛苦耕耘的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以有效提升自己的教学能力。
说课稿应该怎么写才好呢?下面是小编精心整理的《探索勾股定理》第一课时说课稿,欢迎大家分享。
一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。
1.1探索勾股定理(第1课时)(教案)
(3)灵活运用勾股定理进行计算,特别是在涉及到无理数和近似值的情况下。
难点解析:学生在计算过程中可能对无理数的处理和近似值的取舍感到困惑,教师应教授相应的计算技巧,并强调计算准确性。
4.通过实际操作,探索勾股定理的证明方法,增强学生的空间想象力和逻辑思维能力。
5.了解勾股定理在实际生活中的应用,提高学生的应用意识。
本节课将结合教材内容,以实际问题引入勾股定理,引导学生通过观察、思考和讨论,探索并掌握勾股定理。
二、核心素养目标
《探索勾股定理》核心素养目标:
1.培养学生的逻辑推理能力,通过观察、分析和推理,理解并掌握勾股定理及其证明过程。
举例:通过实际案例,如房屋建筑中直角三角形的边长计算,强调勾股定理在实际生活中的应用。
2.教学难点
(1)理解勾股定理的证明过程,尤其是通过几何图形推导出定理的表达式。
难点解析:学生可能难以理解如何从直角三角形的性质推导出勾股定理,需要教师通过直观的图形演示和详细的步骤讲解,帮助学生理解。
(2)在实际问题中,如何正确运用勾股定理建立数学模型,解决实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明过程这两个重点。对于难点部分,我会通过举例和步骤分解来帮助大家理解。
《探索勾股定理》第一课时说课稿10页word
《探索勾股定理》第一课时说课稿《探索勾股定理》第一课时说课稿一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合七年级学生和本节教材的特点,在教学中采用"问题情境--建立模型--解释应用---拓展巩固"的模式,选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.三、教学过程设计1.创设情境,提出问题2.实验操作,模型构建3.回归生活,应用新知4.知识拓展,巩固深化5.感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树2002年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个"数学化"的过程,从而引出下面的环节.二、实验操作模型构建1.等腰直角三角形(数格子)2.一般直角三角形(割补)问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.通过以上实验归纳总结勾股定理.设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊--一般的认知规律.三.回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.四、知识拓展巩固深化基础题,情境题,探索题.设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
《探索勾股定理》第一课时说课稿
《探索勾股定理》第一课时说课稿(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本机构精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本机构为大家提供各种类型稿件,如广播稿、通讯稿、新闻稿、说课稿、发言稿、演讲稿、采访稿、宣传稿等等,想了解不同稿件格式和写法,敬请关注!Download tips: This document is carefully compiled by our organization. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this organization provides you with various types of manuscripts, such as broadcast manuscripts, communication manuscripts, press releases, lecture manuscripts, speech manuscripts, speech manuscripts, interview manuscripts, publicity manuscripts, etc. If you want to learn about different manuscript formats and writing methods, please pay attention !正文内容相信勾股定理大家都很熟悉,但是让你说课你应该觉得很难。
探索勾股定理 说课
《探索勾股定理》(第一课时)说课稿尊敬的各位评委、老师:大家好。
我今天说课的课题是:《探索勾股定理》(第一课时),选自鲁教版义务教育课程标准实验教科书数学七年级上册第三章第一节。
下面我就从这七个方面展开我的课时说课。
一、说教材1、本节背景分析在本节之前,对直角三角形的探究主要是角的关系——直角三角形两锐角互余,边之间的关系——三十度角所对的直角边是斜边的一半。
而本节课开始研究勾股定理就属于边之间的关系。
在八九年级还会在边角关系——锐角三角函数,边和线段的关系——斜边上的中线等于斜边的一半和射影定理。
对这些性质,《数学课程标准(2011版)》提出了“探索并证明”的目标要求,七年级侧重于“直观探索”,重在培养学生的合情推理能力。
2、本章的地位与作用“探索勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在几何学中占有非常重要的位置。
它在数学的发展和现时世界中都起着重要作用。
学生通过对勾股定理的学习,可以对直角三角形有进一步的认识和理解。
勾股定理的应用是直角三角形性质的拓展,它与实数,二次根式,方程知识联系,将来学习四边形,圆,一元二次方程后,它的应用范围将会更加扩大大。
勾股定理也是后续学习“解直角三角形”的基础。
本章所研究的勾股定理,是直角三角形一条非常重要的性质,它也是几何中重要的定理之一,它是可以判断直角三角形的主要依据之一,它的应用很广泛,包括实际应用、已知两边求第三边、在数轴上表示无理数等。
通过探索勾股定理的活动,体验从特殊到一般的探索数学问题的方法,尝试用数形结合来解决数学问题的思想。
3、本节内容分析:本节教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际操作面积计算法,拼图验证推理计算的探索过程得到勾股定理,使学生获得较为直观的印象;再通过联系比较,理解勾股定理,正确的进行运用,主要解决的问题是会求直角三角形的第三边,能解决简单的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《探索勾股定理》第一课时说课稿
课题:“勾股定理”第一课时
内容:教材分析、教学过程设计、设计说明
一、教材分析
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计
(一)提出问题:
首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生
的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。
学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。
这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
(二)实验操作:
1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B, C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C 划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。
这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。
这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。
3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
(三)归纳验证:
1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生
可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。
2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。
这一过程有利于培养学生严谨、科学的学习态度。
然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。
接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。
最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。
(四)问题解决:
让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。
完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(五)课堂小结:
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(六)布置作业:
课本P6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。
另外,补充一道开放题。
四、设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。
这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,
大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。