“三校生”职业高中高一数学期末考试试卷
职业高中高一下学期期末数学试题卷5(含答案)
职业高中下学期期末考试 高一《 数学_》试题5一. 选择题:(每小题3分,共30分)1.函数()x a y 1-=在R 上是增函数,则a 的取值范围是( )A.a >1B.1<a <2C.a >2D.2<a <3 2.若n m ==5ln ,2ln ,则n m e +2的值为 ( )A .2B .5C .20D .103.函数2()log (1)f x x π=+的定义域是( ) A .(1,1)-B .(0,)+∞C .(1,)+∞D .R4.下列说法中,正确的是( )A. 第一象限角一定是锐角B.锐角一定是第一象限角 B. 小于90度的角一定是锐角 D.第一象限角一定是正角5.已知α为第二象限角,则=-•αα2cos 1sin 1. A. 1 B.-1 C.1或-1 D.以上都不是6.下列函数中,在区间⎪⎭⎫⎝⎛2,0π上是减函数的是( )A .x y sin =B .x y cos =C .x y tan =D .2x y =7.等差数列{n a }的通项公式是n a = -3n + 2 ,则公差d = ( )A. -4B. -3C. 3D. 48.在等差数列{n a }中,若=+173a a 10 ,则19S = ( )A. 65B. 75C. 85D. 959.已知等比数列{}n a 中,,32,832==a a 则=1a ( )A. 2B. 4C. 6D. 810.三个正数c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的 A .充要条件 B .必要条件 C .充分条件 D .无法确定 二.填空题(每小题3分,共24分) 11.已知()[]0lg log log 37=x ;则=x .12.函数()lg(lg 2)f x x =-的定义域是 .13. =+2log 15514.与52π-终边相同的角中最小正角是 15.在三角形ABC 中,如果B A cos sin ⋅<0,则△ABC 是 三角形 16.已知2cos sin =+αα,则=⋅ααcos sin . 17.等比数列{}n a 中,若,2563=a a 则=72a a _______ 18.等比数列{}n a 中,若12632==a a ,,则S 6 =_______ 三.计算题:(每小题8分,共24分)19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.专业 班级 姓名 学籍号 考场 座号20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q .四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.23.1=-.五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求n a a a +•••++21.高一 《 数学__》试题5参考答案一.选择题:1---5 CCDBA 6----10 BBDAA 二.填空题11. 1000 12.[100,+∞ ) 13. 10 14.58π 15.钝角 16.2117.25 18.189 三.计算题:(每小题8分,共24分) 19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.解 原式=()()1sin tan cos cos tan sin -=---αααααα.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q . 解 由等比数列的通项公式得()()⎩⎨⎧=-=-=-=-21112113121121q q a q a q a q a a q a 解得 ⎪⎩⎪⎨⎧==2311q a 所以2,311==q a 四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.(答案略)23.1=-.证明 左边=()()120cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 2-=---=--=--οοοοοοοοοοοο=右边所以1︒=-五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求na a a +•••++21.(答案略)。
高一高职班数学期末考试试卷
高一高职班数学期末考试试卷 一 、选择题:(只有一个正确,每题5分,共75分)1、下列关系正确的是( )A 、∅ = {0}B 、0 ∈∅C 、0 =∅D 、0 ∈{0}2、已知集合}{5,2,1=A }{4,3,2=B ,则=⋂B A ( )A .}{2B .}{5,4,3,2,1C . }{5,4,3,2,2,1 D .φ 3、若4:2=x p ,2:=x q ,则p 是q 的( )条件。
A.充分而不必要B.必要而不充分C.充要; D 既不充分也不必要4、二次函数542+--=x x y 的最大值为( )A .9B .5C .4D .15、不等式022<--x x 的解集是 ( )A .{}1->x xB .{}2<x xC . {}21<<-x xD . {}12-<>x x x 或 6、3log 32=( ) A. 1 B . 2 C . 5 D . 97、 下列不表示同一函数的是( )A. 、f(x) =︱x ︱与g(x)=2 B .、g(x)=1与 f(x)=x °(x ≠0)C .、f(x) =x 与 g(x)=x 2xD 、f(x)=√x 3 与f(x)=x √x 8、已知函数f(x) =a x 经过点(1,2),则log a 16= ( )A. 2 B . 4 C .6 D . 89、已知集合},,{c b a ,下列哪个集合不是它的真子集( )A .φ B. }{a C . },{b a D .},,{c b a10、如果b a >,那么下列各不等式恒成立的是 ( )A .bc ac >B . c b c a +>+C . 22b a >D . ()0lg >-b a11、下列不等式中,解集为R 的是( )A .02<x B. 0<x C . 0122>++x x D .0>x12、如果,)32()32(n m -<则正确的是( ) A .n m -< B. n m < C . n m > D .n m ->13、若偶函数()x f y =,在(]1,-∞-上是增函数,则下列关系式中成立的是 ( )A .()()1232-<⎪⎭⎫ ⎝⎛-<f f fB .()()2231f f f <⎪⎭⎫ ⎝⎛-<- C .()()⎪⎭⎫ ⎝⎛-<-<2312f f f D . ()()2123f f f <-<⎪⎭⎫ ⎝⎛- 14、设奇函数()f x 的定义域为[5,5]-.若当[0,5]x ∈时,()f x 的图象如下图,则不等式()0f x >的解集是 ( )A .[)(]5,22,5--UB .(0,2)(2,0)-UC .[5,2)(0,2)--UD .(0,2)15、函数y=log(x 2−kx +2)定义域为R 。
职高高一数学第二学期期末试题
高一(职高)数学期末试卷(总分150分,时间120分)一、 选择题(每小题5分,共75分)1.在等比数列中,126,9,a s ==则公比q=( ) .2A -1.2B - 1.2C .2D2.下列说法不正确的是( )A .平行于同一直线的两直线平行B .垂直于同一平面的两直线平行 C.平行于同一平面的两平面平行 D.垂直于同一直线的两直线平行3.化简:(AB -CB )+(DM -DC )=( )A. MAB. BMC. AMD. AD4.已知(1,3),(,1),//,a b x a b x =-=-=且则( )A .3 B. 13 C. -3 D.13-5.下列直线中通过点M(1, -2)的为( )A.x-2y+1=0B. 2x-y-1=0C. 2x-y+1=0D. 3x+y-1=06.下面两条直线互相平行的是( )A.x-y-1=0与x+y-1=0B.x-y=1与y=xC. x-y-1=0与-x-y+1=0D. x-y+1=0与y=-x+17.直线2x+y-1=0的斜率和在y 轴上的截距分别为 ( )A.-2,-1B.-2,1C.2,-1D.2,18.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A.m= -3B.m=7C.m= -3或m=7D. m=3或m=79.两条平直线中的一条和一个平面平行,则另一条与这个平面位置关系是( )A.平行B.在平面内C.平行或在平面内D.相交10. //,,,a b a b αβαβ⊆⊆若则与的位置关系是( )A.平行B.异面C.平行或异面D.相交11.由2,3,4,5四个数字可以组成没有重复数字的四位数( )A.24个B.8个C.12个D.28个12.把一枚构造均匀的硬币抛掷两次,正好得到两次正面朝上的概率为( )A. 14B. 13C. 12D.113.有980件产品,编号分别为01,02,…..,980,现从中抽取5件进行质量检验,用系统抽样方法抽取样本,则抽得的编号可能是( )A.04,198,392,586,780B.10,160,310,460,610C.02,198,394,590,786D.05,105,205,305,40514.下列语句中,表示随机事件的是( )A.掷两颗骰子出现的点数之和是1B.异性电荷互相吸引C.太阳从东边升起D.连续掷一枚硬币三次,出现三次正面朝上15.样数据1,3,4,5,7 的方差是( )A.0B.2C.4D.10(每小题5分,共20分) 、在等比数列中, 5112,,2a a ==公比q=则____________________ 、(1,2),(3,5),a b a b ==•=则______ 、12:210:10l mx y l x y +-=--=直线与直线互相垂直,则m= 、224620x y x y ++--=圆的圆心坐标为 (每小题 分,共55分) 、在等差数列中,已知1661,16,a a d s ==求和 . 、已知(1.2),(2,3),a b == 求 (1)()(2)a b a b +•- (2)a b + 班级姓名学号22、已知向量(3,4),(2,1),))==+-且向量(m与(垂直,求实数m的值.a b a b a b23、求经过两点(3,5)和(-3,7),并且圆心在x轴上的圆的方程。
中职高一数学期末统考试卷
高一数学期末统考试卷班级学号姓名一判断下列命题的真假(20分)1 空集是任何一个集合的真子集()2 学习较好的同学组成一个集合()3 任何一个实数的平方都是非负数()4 若一个数列从第二项起,每一项与它前一项的差是同一常数,则这个数列是等差数列. ()5 若ac>bc , 则 a>b ()6 若 a>b ,则 ac²>bc²()7 不等式2 x²–4x +9>0的解集是空集()8常数数列一定是等比数列()9 函数y=9-x²是偶函数.()10 函数 y=x²在区间[0,∞] 上是增函数 ( ) 二选择题(30分)1 若s={1,2,3},m={2,3,4,5},则s ∩m=( )A{2,3} B{1,2,3} C{1,2,3,4,5} D{4,5}2集合A={–1,0,1}的所有子集的个数是()A 4B 6C 7D 83 .如果a>b,那么下列不等式错误的是()A a+3>b+3B 5a>5bC -2a>-2bD a+7>b +54 不等式|x+2|<1的解集为()A {x|x<1}B {x|x>-3}C {x|3<x<1}D {x|1<x<3}5 若f(x)=x 1 ,则f(2)=( )A –1B –3C 1D 36 不等式(x+3)(x-5 )<0的解集是( )A {x|>–3}B {x|x<5}C {x|–3<x<5}D 空集7两个数的等比中项之一是12,等差中项是20,那么这两个数为 ( )(A)18,22 (B)9,16 (C)4,36 (D)16,248已知、、+成等差数列,、、成等比数列,则、的值是 ( ).9如果奇函数f(x)在区间[3,7]上是增函数,且最小值为5,那么f(x)在区间-[-7,-3]上是( )A 增函数且最小值为-5B 增函数且最大值为-5C 减函数且最小值为-5D 减函数且最大值为-510 函数f(x)=√x ²4 的定义域是( )A x ≠±2B x ≤-2 或x ≥2C x ≥2D x ≤–2三 填空题 (20分)1在等差数列{}n a 中,已知2,185=-=a a ,求.________,1==d a2 不等式2x ²+1>0的解集是3不等式|x|>5的解集的4 点P(2,3)关于原点的对称点的坐标是5 设A={–2,0,2,4} B={1,3} 则A ∪ B= 6等差数列10,7,4,……,-47的各项和为__________.7等比数列2,4,8,……从第5项到第8项的和为_________.8若函数f(x)是奇函数,且f(–3)=8,则f(3)=9 函数y=(k –3) x ² +4x+k 与x 轴有唯一的的交点,则k=10 函数f(x)=–x ²+2x –1的顶点坐标为 ,对称轴为四 解答题 (20分)1、1集合{|12},{|03},A x x B x x =-<<=<<求(1)A B =I (2)AUB2.解下列不等式(或组):(1)(+3)>0; (2)(3). | 2-3x | > 4 (4){3|12|0322<+≥--x x x3 小张家想利用一面墙,再用篱笆围成一个矩形的鸡场,他家已备足可以围10米的篱笆,试问:矩形鸡场的长和宽各是多少米时,鸡场的面积最大?最大面积是多少平方米?4.一天,有个年轻人来到小米步童鞋店里买了一双鞋子。
高一职高数学期末考试(第一学期)
高一职高期末考试数学试题一、选择(每题3分)1、设全集U=},104|{N x x x ∈≤≤,A={4,6,8,10},则A C U ( ) A.{5} B 、{5,7} C 、{5,7,9} D 、{7,9}2、已知集合},,{},{c b a A b a = ,则符合条件集合A 的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个3、若集合P={}21|≤<-x x ,集合Q={}01|>-x x ,则Q P 等于( ) A 、}11|{<<-x x B 、}21|{≤<x x C 、}21|{≤<-x x D 、 }1|{->x x4、“0>a 且0>b ”是“a ·b>0”的( )条件A、充分不必要 B 、必要不充分 C 、充分必要 D 、以上答案都不对 5、若a 、b 是任意实数,且a >b,则( ) A 、22b a > B 、1<abC 、b a lg lg >D 、b a --<22 6、下列命题中,正确的是( )A、若a >b ,则a c>bc B 、若,22bc ac >则a >b C 、若b a >,则22bc ac > D 、若b a >,c>d,则bd ac >7、如果A==<+-}01|{2ax ax x Φ,则实数a 的集合是( ) A 、(0,4) B 、[0,4] C 、(0,4] D、[0,4)8、已知方程02)2(22=+++-m x m x 有两个不等的实根,则m 的取值范围是( ) A 、(-2,-1) B 、(-2,0) C 、),1()2,(+∞---∞ D 、),1(+∞- 9、下列四组函数中,有相同图像的一组是( ) A 、||x y =与33x y = B 、x y =与2x y =C 、||||x y =与22x y = D 、1)(=x f 与xx x g =)( 10、设144)2(2++=x x x f ,则)(x f 等于( )A 、2)1(+xB 、122++x xC 、12++x xD 、18162++x x11、函数2655)(xx f x x +-=-是( )函数A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 12、已知函数)(x f y =在),(o -∞上是减函数,则( )A 、)42()31()21(->->-f f f B 、)31()42()21(->->-f f fC 、)21()42()31(->->-f f f D 、)21()31()42(->->-f f f 13、函数225x x y --=在[-2,1]上的最大值与最小值分别是( ) A 、6,3 B 、6,5 C 、5,3 D 、6,214、函数32)1()(2++-=mx x m x f 且2)1(=-f ,则)(x f 是( ) A 、在),0[+∞上的单调递增函数 B 、在]0,(-∞上的单调递减函数C 、在),(+∞-∞内的奇函数D 、在),(+∞-∞内的偶函数15、把函数)(x f y =的图像向左、向下分别平移2个单位,得到函数xy 2=的图像,则( ) A 、22)(2+=+x x f B 、22)(2-=+x x f C 、22)(2+=-x x f D 、22)(2-=-x x f二、填空题(每题3分)1、设U=R ,P=}1|{≥x x ,Q=}30|{≤≤x x ,则)(Q P C u ⋂=__________________2、若0>a ,则aba b _________1-(填<或>) 3、不等式3|3|1≤-<x 的解集为________________4、设函数=)(x f 0,10,22{≤->+x x x x , 则___________)]2([=-f f5、设函数)(x f 是偶函数,函数)(x g 是奇函数,且x x x g x f +=+2)()(,则)(x f =__________6、设二次函数的图像顶点为(1,3),且过点(2,5),则其解析式为_________________7、_______________2009)49(8102343=++-8、化简,当0≥a 时,a a a 3141的值是_______________9、4524log =x ,则x =______________ 10、函数13+=-x a y 的图像恒过一个定点坐标是______________三、解答题 1、解不等式(1)、0)3)(2)(1(2>++-x x x (2)、x x283)31(2-->2、求函数41432++++=x x x y 的定义域3、设函数1)(35+++=cx bx ax x f 且1)(-=πf ,求)(π-f 的值4、323524log 25log 3log )01.0(lg +--5、证明、函数xx f 1)(=在)0,(-∞上为减函数 6、已知函数0,123,0,32{)(≤+≤<-=x x x x x f(1)求)(x f 的定义域。
“三校生”职业高中高一数学期末考试试卷
“三校生”职业高中高一年级期末考试数学试题一、是非选择题:本大题共10小题,每小题3分,共30分。
对每小题的命题作出判断,对的选A,错的选B 。
1.{}c b a a ,,⊆ ……………………………………………( ) 2.如果c a c b b a >>>则,,…………………………………( ) 3.a a =2………………………………………………( )4.若b a >,则b a 11< ……………………………………( )5.9log 3log )93(log 333+=+………………………………( )6.函数53+=x y 是在实数集上的增函数………………( )7.函数532+-=x x y )(3>x 有最小值,无最大值……( )8.24log 3log 32= ………………………………………( )9.函数)1lg(2+=x y 的图像关于坐标原点对称…………( )10.xy 31-=函数的定义域为()∞+,1…………………( ) 二、单项选择题:本大题共8小题,每小题5分,共40分。
11.已知12)(+=x x f ,那么=)1(f …………………( ) A .1 B .2 C .3 D.412.的是且000>>>xy y x ……………………………( ) A .充分条件 B .必要条件C .充要条件D .既不是充分条件也不是必要条件13.不等式0)2(1>++-x x )(的解集为………………( ) A.(1,2) B.(-2,1) C.()()+∞∞-,21, D.R14.若n m )21()21(>,则n m ,的大小关系为……………( )n D.m n C.m n B .m n A.m ≤≥<>15.已知函数n x x f =)(的图像过点(3,9)则=)1(f ( ) A.1 B.-1 C.2 D.316.集合{}02≤x x 的子集个数是…………………( ) A.0 B.1 C.2 D.3 17.下列大小比较不正确的是………………( ) A.5log 5.0log 22> B.4.002>π C.1.0lg 1lg > D.322.02.0<18.函数()+∞=,0)(在x f y 上是减函数,若),23()(-<x f x f 则x 的取值范围是……………………( )1A.32<<x B.0>x C.1<x D.10<<x三、填空题:本大题共6小题,每小题5分,共30分。
职高高一数学试卷期末
一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001...C. 2/3D. -π2. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()A. log2 4 = 2B. log3 9 = 2C. log5 25 = 1D. log10 100 = 24. 已知等差数列{an}的第三项a3 = 10,公差d = 2,则第一项a1为()A. 6B. 8C. 10D. 125. 若等比数列{bn}的第一项b1 = 3,公比q = 2,则第n项bn为()A. 3×2^(n-1)B. 3×2^nC. 6×2^(n-1)D. 6×2^n6. 已知函数y = ax^2 + bx + c(a ≠ 0),若a > 0,则该函数的图像()A. 在y轴左侧单调递减,在y轴右侧单调递增B. 在y轴左侧单调递增,在y轴右侧单调递减C. 在整个实数域上单调递增D. 在整个实数域上单调递减7. 下列各三角形中,是直角三角形的是()A. 边长分别为3,4,5的三角形B. 边长分别为5,12,13的三角形C. 边长分别为6,8,10的三角形D. 边长分别为7,24,25的三角形8. 已知圆的半径为r,则该圆的面积S为()A. πr^2B. 2πrC. πr^2 + 2πrD. πr^2 + 2r9. 下列各等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若直线y = kx + b与直线y = 2x - 3平行,则k的值为()A. 2B. 3C. -2D. -3二、填空题(每题5分,共50分)1. 若x^2 - 5x + 6 = 0,则x的值为______。
(完整word版)职高高一上期末数学考试试卷
职高高一年级上期期末考试数学试卷本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。
满分150 分,考试用时100 分钟。
第Ⅰ卷(选择题,共60 分)本卷 15 小题,每题 4 分,共 60 分。
在每题给出的四个选项中,只有一个正确选项。
(1)以下选项能构成会合的是()A 、有名的运动健儿B、英文26 个字母C、特别靠近0 的数D、英勇的人( 2)设会合M2,则以下写法正确的选项是()。
A .2 M B. 2 M C. 2 M D. 2 M(3)设 A={x|-2<x≤ 2}, B={x|1 < x<3}, A∪B=()A.{x|-2<x<3} B. {x|-2< x≤ 1} C. {x|1< x≤ 2} D. {x|2< x< 3}( 4)函数y9x2的定义域是()x2,B.,C.,,D.,,A.3 3 3 3 3 2 2 3 3 2 2 3(5)设全集为 R,会合A1,5 ,则 C U A()A ., 1 B. 5, C., 15, D.,15,( 6)函数y x2x 是()A奇函数B偶函数C非奇非偶函数D又奇又偶函数( 7)不等式 |x+1| <1 的解集是()A.{x|0<x<1} B. { x|x< -2 或 x> 2 }C. { x|-2< x< 0 }D. { x|-2< x< 2 }( 8)不等式x 2 3 x 2 0的解集是()A.x | x 1或 x 2 B . x |1 x2C. x | 1x2D.x | x1 2或 x2( 9)函数y x2的单一减区间为()A1, B 0,C,0B,( 10)不等式1x16的解集为()A.1, 2B.0,5C.10 ,5D.10 ,51,2 333333(11) 、一次函数 y=kx+b 的图像(如图示),则()yA .k>0,b>0B .k>0,b<0C .k<0,b<0 D.k<0,b>00x ( 12)以下会合中,表示同一个会合的是()(图一) A.M={(3,2)},N={(2,3)} B . M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1} D . M={1,2},N={(1,2)}( 13x y1)方程x y的解集是()1A x0, y1B0,1C(0,1)D(x, y) | x0域 y 1( 14)若 a1,则不等式x a x 10的解集是()A.x | a x 1B. x |1 x aC. x | x a或x 1D. x | x 1或x a ( 15)若二次函数y=2x 2+n 的图像经过点(1, -4 ),则 n 的值为()A.-6B.-4C.-2D.0请将选择题的答案填入下表:题号123456789101112131415答案第Ⅱ卷(非选择题,共90 分)二.填空题:(本大题共4 个小题,每题 5 分,共 20 分。
职业高中高一下学期期末数学试题卷1(含答案)
职业高中下学期期末考试高一《数学》试题一、选择题.(每小题3分,共30分)1.若a 3log <1,则a 的取值范围为( )A .a >3B . a <3C . 1<a <3D . 0<a <32.函数x x a a y --=且(0>a 且R a a ∈≠,1) 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数3.”y x lg lg =”是“y x =”的( )A.充分条件B. 必要条件C.充要条件D.既不是充分条件又不是必要条件4.化简式子cos()sin(2)tan(2)sin()απαππαπα-⋅-⋅--得 ( )A .sin αB .cos αC .sin α-D .cos α-5.函数sin y x =与cos y x = 都是单调递增的区间是( )A . ⎥⎦⎤⎢⎣⎡+22,2πππk kB . ⎪⎭⎫⎝⎛++ππππk k 2,22C . ⎪⎭⎫ ⎝⎛++232,2ππππk kD . ⎪⎭⎫⎝⎛++ππππ22,232k k 6.函数()()1ln 2-=x x f 的定义域是( )A .()1,1-B .()()+∞-∞-,11,C .()+∞-,1D .R7.若4.06.0a a <,则a 的取值范围是( )A .1>aB .10<<aC .0>aD .无法确定 8.在等比数列{}n a 中,若9,473-=-=a a ,则=5a ( ) A .6±B . 6-C . 213-D .69. 函数x y 28-=的定义域是( ) A . (]3,∞-B .[]3,0C .[]3,3-D .(]0,∞-10. 若54cos ,53sin -==αα且,则角α终边在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.已知等差数列{}n a 中,53=a ,则=+412a a .12. 已知等比数列{}n a 中,若120,304321=+=+a a a a ,则=+65a a .13. 已知()ππαα,,21cos -∈-=,则=α_________.14. ()()=---+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-02322381π .15. 若a =2log 3,则=-6log 28log 33 .16. c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的_____________. 17.已知α为第二象限角,则=-•αα2cos 1sin 1_____ . 18. 若αtan 与cos α同号,则α属于第_______象限角。
职高高一数学第二学期期末试题
高一(职高)数学期末试卷(总分150分,时间120分)一、 选择题(每小题5分,共75分)1.在等比数列中,126,9,a s ==则公比q=( ) .2A -1.2B - 1.2C .2D2.下列说法不正确的是( )A .平行于同一直线的两直线平行B .垂直于同一平面的两直线平行 C.平行于同一平面的两平面平行 D.垂直于同一直线的两直线平行3.化简:(AB -CB )+(DM -DC )=( )A. MAB. BMC. AMD. AD4.已知(1,3),(,1),//,a b x a b x =-=-=且则( )A .3 B. 13 C. -3 D.13-5.下列直线中通过点M(1, -2)的为( )A.x-2y+1=0B. 2x-y-1=0C. 2x-y+1=0D. 3x+y-1=06.下面两条直线互相平行的是( )A.x-y-1=0与x+y-1=0B.x-y=1与y=xC. x-y-1=0与-x-y+1=0D. x-y+1=0与y=-x+17.直线2x+y-1=0的斜率和在y 轴上的截距分别为 ( )A.-2,-1B.-2,1C.2,-1D.2,18.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A.m= -3B.m=7C.m= -3或m=7D. m=3或m=79.两条平直线中的一条和一个平面平行,则另一条与这个平面位置关系是( )A.平行B.在平面内C.平行或在平面内D.相交10. //,,,a b a b αβαβ⊆⊆若则与的位置关系是( )A.平行B.异面C.平行或异面D.相交11.由2,3,4,5四个数字可以组成没有重复数字的四位数( )A.24个B.8个C.12个D.28个12.把一枚构造均匀的硬币抛掷两次,正好得到两次正面朝上的概率为( )A. 14B. 13C. 12D.113.有980件产品,编号分别为01,02,…..,980,现从中抽取5件进行质量检验,用系统抽样方法抽取样本,则抽得的编号可能是( )A.04,198,392,586,780B.10,160,310,460,610C.02,198,394,590,786D.05,105,205,305,40514.下列语句中,表示随机事件的是( )A.掷两颗骰子出现的点数之和是1B.异性电荷互相吸引C.太阳从东边升起D.连续掷一枚硬币三次,出现三次正面朝上15.样数据1,3,4,5,7 的方差是( )A.0B.2C.4D.10(每小题5分,共20分) 、在等比数列中, 5112,,2a a ==公比q=则____________________ 、(1,2),(3,5),a b a b ==•=则______ 、12:210:10l mx y l x y +-=--=直线与直线互相垂直,则m= 、224620x y x y ++--=圆的圆心坐标为 (每小题 分,共55分) 、在等差数列中,已知1661,16,a a d s ==求和 . 、已知(1.2),(2,3),a b == 求 (1)()(2)a b a b +•- (2)a b + 班级姓名学号22、已知向量(3,4),(2,1),))==+-且向量(m与(垂直,求实数m的值.a b a b a b23、求经过两点(3,5)和(-3,7),并且圆心在x轴上的圆的方程。
(完整word版)中职高一数学期末试卷
凤凰职业中专学校高一期末数学试卷班级 姓名 得分一、选择题.(每小题3分,共30分.)1、下列函数中那个是对数函数是: ――――――――――( ) A. 12y x = B. 3y x = C. 2l o g y x = D. y = log x 32、下列关系中,正确的是: ―――――――――――――( )A 、5131)21()21(>B 、2.01.022>C 、2.01.022-->D 、115311()()22- - > 3、下列各函数中,在区间(0,+∞)内为增函数的是 ( )A. 2y x -=B. y = log x 2C. 2x y -=D. 2l o g y x =4、下列是指数函数的是: ―――――――――――――( )A . y=(-5)x B. y=2x C. y=1x+1 D.y=-x 25、下列各角中,与330°角终边相同的角是――――――( )A. 510°B. 150°C. -150°D. -30°6、角43π是第( )象限角―――――――――――( ) A. 一 B. 二 C. 三 D. 四7、sin150°等于――――――――――――――――――( ) A.21B. -21C. 23D. -238、若sin α>0,cos α<0,则角α属于――――――――( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9、计算:s in0c o s90s in 180c o s270︒+︒-︒-︒=( )A. 1B. -1C. -2D. 010、已知=αsin 54,且α∈( 0 ,90°),则=αtan ―――――( ) A. 34 B. 43 C. ±34D. ±43二.填空题.(每小题4分,共20分)填空题:(4×5=20分)11、 写出根式为: ______ 、0.2x = 5化为对数式为:______12、计算log 2 2 = ___________、log 2 1=__________13、度化弧度:60°= . 90°= .14、求值:sin()6π= . =︒240tan .15、函数1sin 2-=x y 的最大值是 ,最小值是 .三、解答题(共50分)16、解方程:1) 4x 2-3x=0 2)22302x x --=17、求下列函数的定义域1)2lo g (2)y x =+ 2)2lg (4)y x =-18、计算:19、已知角A 的终边过点P (4,-3),求sinA, cosA, tanA 的值.20、已知sinA= ,并且∠A 在第二象限,求 cosA, tanA 的值21、在 五个函数中,任选其中2个,在坐标系中做出大致图像(无需列表,直接作图)。
职高高一数学下学期期末试题
高一下学期期末试题一、选择题:(每题3分,共45分) 1、下列各式正确的是( )。
A 、2lg 3lg 3log 2=B 、24log 8log 22= C 、6lg 69lg 4lg = D 、9)1251(log 35-=2、下列对数函数在区间(0,+∞)内为减函数的是( )。
A 、x y ln = B 、x y πlog = C 、x y 5.0log = D 、x y lg =3、)4log 43log 6(log log 2log 22225+-的值是( )。
A 、0B 、18log 5C 、2D 、14、当10<<a 时,函数x y a log =和x a y )1(-=的图像只可能是( )。
5、下列各组函数中,表示同一函数的是( )。
A 、x y x y ==与B 、x y y x ==与2log 2C 、x y x y lg 2lg 2==与D 、10==y x y 与 6、下列式子中正确的是( )。
A 、53sin 54sin ππ> B 、)5sin(6sin ππ-> C 、710sin 75sin ππ> D 、 60sin 390sin > 7、函数1cos +=x y 的定义域是( )。
A 、RB 、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ2,232,0 C 、φ D 、⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+πππππππk k k k 22,22322,28、已知函数 ,则[]=-)6(f f ( )。
A 、21B 、23 C 、23- D 、21-9、下列说法正确的个数是( )。
(1)正切函数在其定义域上是增函数。
(2)余弦函数在第一、二象限是减函数。
(3)正切函数的最小正周期是π2。
(4)正切函数的定义域是R ,值域是R 。
A 、0 B 、1 C 、2 D 、310、已知512tan =α,且23παπ<<,则=αsin ( )。
高一数学期末考(职高)试卷及答案
子洲县职教中心2019--2020第二学期 高一期末质量检测(数学)试卷满分120分,考试时间120分钟.一、选择题(每小题5分,共60分)1.下图是由哪个平面图形旋转得到的( )A B C D2.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对3.如图所示为一平面图形的直观图,则此平面图形可能是( )4.给出下列命题:①垂直于同一直线的两条直线互相平行; ②若直线a ,b ,c 满足a ∥b ,b ⊥c ,则a ⊥c ;③若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线. 其中假命题的个数是( )A .1B .2C .3D .45.下面四个条件中,能确定一个平面的条件是( )A. 空间任意三点B.空间两条直线C.空间两条平行直线D.一条直线和一个点6.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题中正确的是:A .若,αγβγ⊥⊥,则α∥βB .若,m n αα⊥⊥,则m ∥nC .若m ∥α,n ∥α,则m ∥nD .若m ∥α,m ∥β,则α∥β 7.在四面体ABC P -的四个面中,是直角三角形的面至多有( ) A.0 个 B.1个 C. 3个 D .4个 8.如图所示正方体1AC ,下面结论错误的是( )A. 11//D CB BD 平面B. BD AC ⊥1C. 111D CB AC 平面⊥D. 异面直线1CB AD 与角为︒609.棱长都是1的三棱锥的表面积为( )A . 3B . 23C . 33D . 4310.把正方形ABCD 沿对角线BD 折成直二面角后,下列命题正确的是( ) A. BC AB ⊥ B. BD AC ⊥ C. ABC CD 平面⊥ D. ACD ABC 平面平面⊥ 11.空间几何体的三视图如图所示,该几何体的表面积为( ) A .96 B .136 C .152 D .19212.某几何体的三视图如图所示,则该几何体的体积为( )3560.A3580.B 200.C 240.D班级: 姓名: 学号: ………………………密…………………………封…………………………线…………………………………主视图 左视图 俯视图 DA 1B 1BAC 1CD 1O BPA E F二、填空题(每小题4分,共16分)13.一个棱柱至少有 _____ 个面,面数最少的一个棱锥有 ________个顶点, 14.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________。
职高数学 高一第一学期期末考试试卷(含答案)
第1页 共6页 ◎ 第2页 共6页学校:___________班级:___________姓名:___________考场号:________考号:________绝密★启用前高一第一学期数学期末试卷一、选择题(每小题3分,共45分)1. 设集合A ={b ,c ,d },则集合A 的子集共有( ) A .5个B .6个C .7个D .8个2.若集合A ={x |x 是等腰三角形},B ={x |x 是等边三角形},则A 是B 的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若a ,b ,c 为实数,且a >b ,则( )A .a -c >b -cB .a 2>b 2C .ac >bcD .ac 2>bc 2 4x 的取值范围是( )A .[-1,6]B .(-∞,-1]∪[6,+∞]C .[-2,3]D .(-∞,-2]∪[3,+∞)5.设函数 f (x )=x 2+ax -a ,且f (-1)=5,则常数a =( ) A .-2 B .-3 C .2 D .36.二次函数y =x 2+ax +b 的顶点坐标为(-3,1),则a ,b 的值为( ) A .a =-6,b =10 B .a =-6,b =-10 C .a =6,b =10 D .a =6,b =-10 7.下面指数式可以写成对数式的有( )①(-2)3=-8;② 213-⎛⎫⎪⎝⎭=9;③10=1;④6a =13A .1个B .2个C .3个D .4个8.已知函数f (x )在(0,π)上是增函数,那么f (2) 2f π⎛⎫⎪⎝⎭,f (e )之间的大小关系是( )A .f (e )>f (2)> 2f π⎛⎫⎪⎝⎭ B .2f π⎛⎫⎪⎝⎭>f (2)>f (e ) C .f (e )> 2f π⎛⎫⎪⎝⎭>f (2) D .f (2)>f (e )>2f π⎛⎫ ⎪⎝⎭9.已知奇函数f (x )在[1,4]上是增函数,且有最大值6,那么f (x )在[]4,1--上为( )A .增函数,且有最小值-6B .增函数,且有最大值6C .减函数,且有最小值-6D .减函数,且有最大值6 10.下列函数中,既是奇函数又是减函数的是( ) A .13y x =B .y =2x 2C .y =-x 3D .1y x= 11. 二次函数y =x 2-2x +4,x ∈[2,4]的最大值为( ) A .4 B .6 C .8 D .12 12.函数0(3)y x =-的定义域为( ) A .[2,+∞) B .(2,+∞) C .[2,3)∪(3,+∞) D .[3,+∞) 13.下列各组函数中,表示同一个函数的是( ) A .y =x与y = B .y =|x |与y = C .y =|x |与y = D.y =与y 14.下列关系式中,正确的是( )A .log 35<log 34B .lg π>lg3.14C .log 0.35>1D .log 32>log 94 15.设函数f (x )=(n +4)x 在R 上单调递增,则实数n 的取值范围是( ) A .n >-3 B .-4<n <-3 C .n ≥-3 D .-4≤n ≤-3 二、填空题(每空3分,共30分)第3页 共6页 ◎ 第4页 共6页※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※16.已知函数20,()=2,0,1,0,x f x x x x ⎧⎪-=⎨⎪+⎩>0,<则f {f [f (4)]}=________.17.lg4+2lg5-ln 1+3log 53=________.18. 若函数y =3x 2+2(a -1)x +6在(-∞,1)上是减函数,在(1,+∞)上是增函数,则a =_______.19.函数f (x )=x 2-2x -3的单调增区间是________.20.设全集U =R ,集合P ={x |x ≥1},Q ={x |0≤x <3},则∁U (P ∩Q )=_______. 21.设函数f (x )=2ax 2+(a -1)x +3是偶函数,则g (x )=ax +a -1是________函数(填“奇”或“偶”).22.已知函数f (x )=kx +b ,若f (2)=3且f (-1)=6,则k =______,b =_____.23.如果函数y =-a x(a >0,a ≠1)的图像过点12,4⎛⎫- ⎪⎝⎭,则a 的值是________.24.已知a =log 327,b =3log 23 ,c =log 216,则a ,b ,c 由大到小排列的顺序为________.25. 13log 1x >,则x 的取值范围是________.三、解答题(共45分)26.(10分)解下列方程与不等式(1)解方程:2(lg x )2-3lg x -2=0. (2)不等式21139xx +⎛⎫⎪⎝⎭>27. (8分)已知全集U ={2,3,a 2+2a -3},集合A ={2,|a |},∁U A ={0}.a 的值.28. (9分)已知集合A ={x |ax 2-3x +2=0,a ∈R }.若集合A 素,求实数a 的集合;29.(9分)白洋淀旅游景区出售门票,每张门票售价为60门票数量的函数.当购买5张以内(含5张)的门票时,请用三种方法表示这个函数.30. (9分)用定义证明函数y =ln-x )(x ∈R )是奇函数.第5页 共6页 ◎ 第6页 共6页学校:___________班级:___________姓名:___________考场号:________考号:________高一第一学期数学期末试卷答案一、选择题 1-5 D B A D A 6-10 C B A B C 11-15 DC C B A二、填空题(每空3分,共30分) 16. 5 17. 718. -2 19. (1,+∞) 20. {x |x <1或x ≥3} 21. 奇 22. k =-1,b =5 23. 1224. c >a > b 25. 103x <<三、解答题(共45分)26.(1)解:由2(lg x )2-3lg x -2=0 得(2lg x +1)(lg x -2)=0, 解得lg x =-12或lg x =2, ∴x或x =100.(2)∵ 21139xx +⎛⎫ ⎪⎝⎭>,∴不等式可变形为21233x x +->, 又∵函数y =3x 在R 上单调递增,∴x 2+1>-2x ,即x 2+2x +1>0,解得x ≠-1.27. 解:由题意得223=0,=3,a a a ⎧+-⎪⎨⎪⎩解得a =-3.28. 解:当a =0时,方程为-3x +2=0, 方程有唯一解x =23,符合题意. 当a ≠0时,根据题意有Δ=(-3)2-4a ·2=9-8a =0,解得a =98.综上所述,实数a 的集合是9=0=8a a a ⎧⎫⎨⎬⎩⎭或.29. 解:设购买门票数量为x 张,应付款为y 元,得 ①解析法:y =60x ,x ∈{1,2,3,4,5}. ②列表法:③ 图像法:30. 证明:函数的定义域为R ,对于任意的x ∈R ,都有-x∈R , ∵f (x )=ln-x ),∴f (-x )=ln +x ),f (x )+f (-x )=ln-x )+ln+x ) =ln -x +x )] =ln 1 =0,即f (x )=-f (-x ),∴y =ln -x )(x ∈R )是奇函数.。
职业高中高一下学期期末数学试题卷2(含答案)
职业高中下学期期末考试高一《数学》试题一、选择填空(每小题3分共30分)1、如果角αZ k k k ∈-∈),2,22(πππ,那么角α的终边在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、(21x +21y )(21x -21y )=( )A. x 2+y 2B. x-yC. x+yD. x 2+y 2 3、若sin 与cos 同号,则属于A 、第一象限B 、 第一、二象限C 、第三象限D 、第一、三象限4、各项均为正数的等比数列}{n a 中, 983=a a 则13log a +23log a +…+103log a 的值是 ( )A.-10B.10C.9D.-95、α,β都是锐角,且αsin >βsin ,则有 ( )A 、α+β=900B 、α+β>900C 、α>βD 、α<β 6、已知)(x f =-x a -,x x g a log )(=在同一坐标系中,图象正确的是()Aoyx 11B-11oyxC11oyx-11DOyx7、如果三个连续偶数的和为336,那么它们后面三个连续偶数的和为。
( ) A 、342 B 、348 C 、354 D 、3608、已知等差数列}{n a 中,若2021=+a a ,4065=+a a ,则6S =( ) A 、55 B 、630 C 、180 D 、909、已知12-=x y ,若y ≥1,则x 的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(-∞,1) D.(-∞,1)10、如果方程03lg 2lg lg )3lg 2(lg lg 2=+++x x 的两根为lgx 1,lgx 2那么 x 1x 2的值为( )A.2lg lg3B.lg2+lg3C.61D.-6 二、填空题(每个3分共24分)11、6cos6tan2cos.4tan3tan.3sinππππππ+-的值是.12、1590sin 0的值是. 13、2log =x a 化为指数式是. 14、64log .9log 274=. 15、4131-->a a,则∈a .16、函数3)1()(--=m x m x f 是幂函数,则m=. 17、在等比数列中.若1a =1,n a =256,q=2,则项数n=. 18、在等差数列中,2443=+a a ,2465=+a a ,则87a a +的值是. 三、.计算题(每小题8分,共32分). 19、已知α是锐角,αsin +αcos =25.求 (1)αsin αcos(2)αsin -αcos专业 班级 姓名 学籍号 考场 座号20、(log 43+log 83)(log 32+log 92)的值.21、已知322=+-a a ,求a a -+88的值.22、等差数列}{n a 的公差d=2,第m 项m a =1,前m 项和m S =-8,求m 的值.四、证明题(6分) 23.证明:=1五.综合应题(10分)在2,9之间插入两个整数,使前三个成等差数列,后三个成等比数列,求插入的两个数.高一《数学》试题参考答案一、选择填空(每小题3分共30分) 1、D2、B 3、D 4、B5、C (0,1) 6、B7、C 8、D 9、B10、C 二、11、212、0.513、a 2=x14、2 15、(0.1 )16、217、9 18、8 三、.计算题(每小题8分,共32分). 19、(1)1/8 (2)±3/220、解:原式=)2log 212)(log 3log 313log 21(3322++=4521、解: 原式=2233)2(22)2)[(22()2()2(a a a a a a a a ----+-+=+=3]232)22[(2a a a a ---+ =3(9-3)=1822、由题意得:1=1a +(m-1)2 (1)m a 2181+=-….(2) 化简得:0822=--m m 解得m=4或-2(舍去)∴m=4四、证明题(6分)略 五.综合应用题(10分)有题意可设插入的两个数为2+d,a+2d由题意得:)2(9)22(2d d +=+ ∴01442=--d d∴d=2或47-解得插入的两个数为4,6或41,-23 ∴插入的两个数为4,6。
职高高一下期末数学试卷
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a > b,则下列不等式中成立的是()A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 函数y = 2x + 1的图像是()A. 直线B. 抛物线C. 圆D. 双曲线4. 在直角三角形ABC中,∠C = 90°,AC = 3,BC = 4,则AB的长度为()A. 5B. 6C. 7D. 85. 若a, b, c是等差数列,且a + b + c = 12,a + c = 8,则b的值为()A. 4B. 5C. 6D. 76. 下列各组数中,成等比数列的是()A. 1, 2, 4, 8B. 2, 4, 8, 16C. 1, 3, 9, 27D. 3, 6, 12, 247. 若log2(x - 1) = 3,则x的值为()A. 2B. 3C. 4D. 58. 在平面直角坐标系中,点A(2, 3),点B(-3, 2),则线段AB的中点坐标为()A. (0, 1)B. (1, 0)C. (1, 1)D. (-1, -1)9. 若等差数列的前三项分别为a, b, c,且a + b + c = 9,a + c = 6,则数列的公差为()A. 1B. 2C. 3D. 410. 下列函数中,在定义域内单调递减的是()A. y = 2x - 1B. y = -2x + 1C. y = x^2D. y = 2x^2二、填空题(每题5分,共25分)11. 已知等差数列的前三项分别为1, 3, 5,则该数列的通项公式为______。
12. 函数y = -x^2 + 4x - 3的顶点坐标为______。
13. 若log3(x - 2) = 2,则x = ______。
14. 在直角三角形ABC中,∠A = 30°,∠B = 60°,则边AC的长度是AB的______倍。
职业高中数学高一期末试卷
2015学年中等职业学校高一数学期末试卷第二学期(时间90分钟)一、选择题(每小题2分,满分30分)1.已知数列{}n a 的通项公式为52-=n a n ,那么=10a ( ).A 、20B 、15C 、10D 、52.等差数列27-,3-,25-,2-的第1+n 项为( ). A 、)7(21-n B 、)4(21-n C 、42-n D 、72-n 3.在等差数列{}n a 中,已知363=S ,则=2a ( ).A 、18B 、12C 、9D 、64.在等差数列{}n a 中,已知2483=+a a ,则=+65a a ( )A 、12B 、24C 、36D 、485.在等比数列{}n a 中,3256=a ,21=q ,则=3a ( ). A 、45 B 、85 C 、165 D 、645 6.=--BC AC AB ( ).A 、BC 2B 、CB 2C 、0D 、07.已知)3,2(-=,)5,2(=,)3,0(-=,则=-+32( )A 、)5,0(B 、)5,2(C 、)22,0(D 、)22,2( 8.若4-=⋅b a2=,22=,则><b a ,是( ).A 、︒0B 、︒90C 、︒180D 、︒2709.下列各对向量中互相垂直的是( ).A 、)2,4(= )5,3(-=B 、)4,3(-= )3,4(=C 、)2,5(= )5,2(--=D 、)3,2(-= )2,3(-=10.已知角α的终边经过点),21(a ,2tan -=α则a 的值是( ) A 、21 B 、22- C 、23- D 、2- 11.已知0cos >θ,0tan <θ,则θ是( )A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角12.)45sin(︒-的值是( )A 、22B 、22-C 、23D 、23- 13.已知]2,2[,21sin ππ-∈=x x ,则x 的值是( ) A 、6π B 、3π C 、6π-,6π D 、3π-,3π 14.不等式x 2+bx+41<0的解集为φ,则( ) A 、b<1 B 、b>-1或b<1 C 、-1<b<1 D 、b>1或b<-115、a<0且b>0是ab<0的( )A 、充分条件B 、必要条件C 、充要条件D 、既非充分又非必要条件二、填空题(每小题3分,满分24分)16.数列0,3,8,15,24,……的一个通项公式为 .17.在等比数列{}n a 中,891=a ,31=n a ,公比32=q ,则=n . 18.已知n S 是数列{}n a 的前n 项和,且n n S n 322-=,则=+++8765a a a a19.已知向量、的坐标分别为)1,2(-,)3,1(-,则32+的坐标为 . 20.不等式12>-x 的解集为_________________(用区间表示)21.已知53sin -=α ,且α是第三象限的解,则=αtan 22.︒1680cos 的值是23. 已知)6,3(-A ,)6,3(-B =2015学年 中等职业学校高一数学期末答卷 第二学期二 填空题(每个小题3分,共24分) 16 ___________ __; 17 _________________; 18 _________________ ;19 ________ ___ __; 20 ____________ _____; 21 _______ __________ ; 22 ________ ___ __; 23 ____________ _____; 三、 解答题(7题,共46分) 24、(6分)已知不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,求a 、b 的值 25.(6分)已知2tan -=α,求ααααcos sin cos 3sin -+的值. 26.(6分)已知5cos 12θ=-,求sin θ、tan θ的值。
中职高一数学期末考试试题
高一第一学期数学期末习题姓名得分一选择题:本大题共 12 小题,每题3 分,共36 分.在每题给出的四个选项中只有一项为哪一项切合题目要求,把正确选项写在表格中.题号 123456答案题号 789101112答案1. 给出 四个结论:①{ 1, 2, 3, 1}是由 4 个元素构成的会合② 会合{ 1}表示仅由一个“1”构成的会合③{ 2, 4, 6}与{ 6, 4, 2}是两个不一样的会合④ 会合{大于 3 的无理数}是一个有限集此中正确的选项是 ( );A. 只有③④B. 只有②③④C. 只有①②D.只有②2.I ={ a,b,c,d,e } ,M= {a,b,d },N= {b } ,则 (C I M ) N =();A. {b }B.{ a,d }C.{ a,b,d }D. { b,c,e }3. 以下命题中的真命题共有 ( );① x=2 是 x 2 x 2 0 的充足条件② x ≠2 是 x 2 x 2 0 的必需条件③ xy 是 x=y 的必需条件④ x=1 且 y=2 是 x 1( y 2)2 0 的充要条件A.1 个B.2个C.3个D.4 个4. 若 m >0, n < 0, 则以下不等式中建立的是 ( );A.nB.m-n > 0C. mn > 0D.1 1mn m5. 不等式( x-2 )( x+3) > 0 的解集是 ( );A. (-2,3)B. ( -3 ,2)C. ( , 3) (2, )D. ( , 2) (3, )6. 不等式x 5 15 的解集是( ).A. x x 20B. x 10 x 20C. x x 10D. x x 10或x 207. 函数 f ( x) 2 x); x 1的定义域是 (A. ( ,2B. 2,C. ( ,1) 2,D. ( ,1) 1,28. 函数 y x2 3 的值域是 ( );A.(0,+ )B.(-3, )C. 3,D. R9. 已知函数 f ( x) x 1, 则f ( x) 等于( );x 1A.1B. f (x)C.1D. f ( x) f (x) f ( x)10. 已知y 4 a x ( a 0且 a 1) 的图像经过点P,则点 P 的坐标是();A. (0, 1)B. (1,0)C. (0,5)D. ( 5,0)11. 函数y a x (a 0且 a 1) 在(- , ) 内是减函数,则 a 的取值范围是();A. a> 1B.0 < a< 1C. a> 1 或 0< a<1D. a R12.以下函数中是偶函数的是();A. y log 2 xB. y log 1 xC. y log 2 x2D. y log 22 x2二填空题:本大题共10 小题,每题 3 分,共30 分 . 把答案填在题中横线上1. { a,b}的真子集共 3 个,它们是;2. A (x, y) x y 3 , B (x, y) 3x y 1,那么 A B ;3. 比较大小( x-1) (x+3) ( x 1)2.4. 会合x x7 用区间表示为5.设f (x) 5x 2 4, 则f(2)= , f( x+1)=6. 已知 y=f ( x) 是偶函数,且 x> 0 时, y=f ( x) 是增函数,则f( -3) 与 f( 2.5) 中较大一个是.7. 3 3 化成指数形式是.8. 函数 y 33x 1的定义域是.y log 3 (3x 1) 的定义域是.9. 函数10. 指数函数f ( x) a x过点(2,9),则f(-1)= .三解答题:本大题共8 小题,共34 分 . 解答应写出推理、演算步骤 .1. 已知会合 A= x 0 x 4 , B x 1 x 7 , 求A B, A B (4)2. 设全集 I=3,4,3 a 2 , M 1 ,C I M3, a 2 a 2 ,求a值. (4)3. 解不等式3x2 7x 2 0 .(5)4. 证明函数y=-2 x+3 在(, ) 上是减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三校生”职业高中高一年级期末考试
数学试题
一、是非选择题:本大题共10小题,每小题3分,共30分。
对每小题的命题作出判断,对的选A,错的选B 。
1.{}c b a a ,,⊆ ……………………………………………( ) 2.如果c a c b b a >>>则,,…………………………………( ) 3.a a =2………………………………………………( )
4.若b a >,则b a 1
1< ……………………………………( )
5.9log 3log )93(log 333+=+………………………………( )
6.函数53+=x y 是在实数集上的增函数………………( )
7.函数532+-=x x y )(3>x 有最小值,无最大值……( )
8.24log 3log 32= ………………………………………( )
9.函数)1lg(2+=x y 的图像关于坐标原点对称…………( )
10.x
y 31-=函数的定义域为()∞+,
1…………………( ) 二、单项选择题:本大题共8小题,每小题5分,共40分。
11.已知12)(+=x x f ,那么=)1(f …………………( ) A .1 B .2 C .3 D.4
12.的是且000>>>xy y x ……………………………( ) A .充分条件 B .必要条件
C .充要条件
D .既不是充分条件也不是必要条件
13.不等式
0)2(1>++-x x )(的解集为………………( ) A.(1,2) B.(-2,1) C.()()+∞∞-,21, D.R
14.若n m )2
1
()21(>,则n m ,的大小关系为……………( )
n D.m n C.m n B .m n A.m ≤≥<>
15.已知函数n x x f =)(的图像过点(3,9)则=)1(f ( ) A.1 B.-1 C.2 D.3
16.集合{}
02≤x x 的子集个数是…………………( ) A.0 B.1 C.2 D.3 17.下列大小比较不正确的是………………( ) A.5log 5.0log 22> B.4.002>π C.1.0lg 1lg > D.322.02.0<
18.函数()+∞=,0)(在x f y 上是减函数,若),23()(-<x f x f 则x 的取值范围是……………………( )
1A.32<<x B.0>x C.1<x D.10<<x
三、填空题:本大题共6小题,每小题5分,共30分。
19.若2,+>a b a 则 2-b (用<>,填空)。
20.5x 用分数指数幂表示: 。
21.==2log ,3log 62则已知m 。
22.不等式 53>+-x 的解集是 。
23.若函数)1,0()(1≠>=+a a a x f x ,则)(x f 必过点 。
24.函数)2lg(2a x x y ++=的定义域为R ,则a 的范围是 。
四、解答题:本在题共6小题,25—28小题每小题8分,29—30小题9分,共50分。
25.已知全集{}{}2,0A 8,5,2,1,0,3-U ==,,{},5,1,3-B =
求B A ,B C A C B C A C u u u u ,,.
26.计算:
(1)032
2
-3-27
83)()(π++ (2)2log 5log 25lg 4lg 52-+
27.已知函数)3lg()3lg()(x x x f -++= (1)求函数)(x f 的定义域;
(2)判断函数)(x f 的奇偶性,说明理由。
28.若一元二次不等式02<++n mx x 的解集为(1,2); (1)求n m ,的值;
(2)求抛物线n mx x y ++=2的顶点坐标和对称轴。
29.已知函数124)(+-=x x x f .
(1)求()()11-+f f 的值; (2)解不等式()x f <1;
(3)判断)(x f 的单调性。
30.某公司要招聘甲乙两种工种的工人60人,甲乙两种工种的工人的月工资分别为1500元和2000元。
现要求乙种工种的工人数不少于甲种工种工人数的2倍,问:甲乙两种工种各招聘多少人时,可使得每月所付的工资最少?。