初中函数知识点总结非常全

合集下载

初三函数全部知识点总结

初三函数全部知识点总结

初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。

一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。

2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。

3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。

4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。

二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。

2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。

三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。

2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。

3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。

4. 对数函数对数函数是指数函数的逆运算。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。

四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。

2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。

3. 最值和零点函数在定义域内可能有最大值、最小值和零点。

4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。

五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。

2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。

3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。

初中函数知识点总结(全面)

初中函数知识点总结(全面)

初中函数知识点总结(全面)1. 函数的概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。

函数通常用来描述两个变量之间的依赖关系。

2. 函数的表示方式函数可以通过方程、表格和图像等方式来表示。

方程表示函数时,可以使用变量和常数来描述自变量和因变量之间的关系。

表格则将自变量和因变量的值以表格形式列出。

图像则以直线、曲线或者其他形状来表示函数的变化规律。

3. 函数的定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。

定义域和值域的确定需要根据函数的实际情况来分析和判断。

4. 常见的函数类型初中阶段研究的函数类型包括线性函数、二次函数、反比例函数和指数函数等。

线性函数是一种最简单的函数类型,它的方程形式为y = kx + b,其中k和b分别代表斜率和截距。

二次函数的方程形式为y = ax^2 + bx + c,其中a、b和c分别代表二次项、一次项和常数项的系数。

5. 函数的图像特征函数的图像可以通过斜率和截距、顶点坐标、对称轴和开口方向等特征来描述。

对于线性函数,斜率代表图像的倾斜程度,截距代表图像与y轴的交点;对于二次函数,顶点坐标代表图像的最高点或者最低点的位置,对称轴代表图像的对称线。

6. 函数的应用函数在数学和实际生活中都有广泛的应用。

在数学中,函数可以用来解决各种关系和变化的问题,例如求解方程、确定最大值和最小值等。

在实际生活中,函数可以用来描述各种现象和规律,例如汽车的加速度、温度的变化等。

总结:初中函数知识点包括函数的概念、表示方式、定义域和值域、常见的函数类型、图像特征和应用。

掌握这些知识点可以帮助学生更好地理解和应用函数,提高数学能力。

以上是初中函数知识点的全面总结,希望对你的学习有所帮助!。

初中函数概念大全

初中函数概念大全

初中函数概念大全
1. 函数的定义:函数是一种映射,它将一个集合的元素(称为自变量)映射成为另一个集合的元素(称为因变量)。

2. 定义域:函数中自变量可能取值的集合。

3. 值域:函数中因变量可能取值的集合。

4. 图像:函数中所有自变量对应的因变量的集合。

5. 函数表达式:将自变量代入函数后,得到的因变量表达式。

6. 常函数:函数的值在整个定义域上都相同的函数,通常表示为f(x)=c。

7. 奇偶性:若f(x)=f(-x),则函数是偶函数;若f(x)=-f(-x),则函数是奇函数。

8. 反函数:若将原函数的自变量和因变量互换,得到的新函数即为反函数。

9. 复合函数:将一个函数的结果作为另一个函数的自变量,形成的新函数。

10. 函数的极限:当自变量接近某一值时,函数的因变量的极限值。

11. 导数:函数在某一点处的变化率。

12. 函数的单调性:函数在定义域上单调递增或单调递减的性质。

13. 函数的最值:函数在定义域上最大值或最小值。

14. 函数的零点:函数在定义域上对应因变量为0的自变量值。

15. 拐点:函数曲线上由凹变凸或由凸变凹的点。

16. 对称中心:函数曲线上关于某一轴对称的点。

17. 渐近线:函数曲线趋近于某一直线时的直线。

18. 极值点:函数在极值处的自变量和因变量的值。

19. 相关函数:自变量之间存在一定关系的函数。

20. 函数的描述性统计量:用于描述一组数据分布特征的统计量,如平均值、中位数、众数、标准差等。

(完整版)初中数学函数知识点归纳

(完整版)初中数学函数知识点归纳

初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。

初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。

下面我将对这些知识点进行归纳总结。

一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。

2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。

3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。

二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。

2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。

3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。

三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。

2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。

3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。

四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。

2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。

3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。

五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。

2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。

3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。

六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中,函数是一个重要的概念。

在学习函数时,主要包括函数的定义、函数的基本性质、函数的图像以及函数的应用等方面的内容。

一、函数的定义在初中数学中,函数通常被理解为一种数学关系。

具体地说,如果存在一个规则,它能够将一个数集的每个元素与另一个数集的唯一元素相对应,那么我们就称这个规则为函数。

数集的每个元素称为自变量,相对应的元素称为函数值或因变量。

例如,y=2x就是一个函数的表示方式,其中y是因变量,x是自变量。

这个函数的规则是将自变量x乘以2得到对应的y值。

二、函数的基本性质1.定义域和值域:函数的定义域指的是自变量的取值范围,而值域指的是因变量的取值范围。

定义域和值域的确定可以通过函数的解析式,也可以通过函数的图像来确定。

2.单调性:函数的单调性是指函数在一些区间内是递增还是递减。

对于递增的函数,当自变量增加时,因变量也增加;对于递减的函数,当自变量增加时,因变量减少。

3.奇偶性:奇函数和偶函数是函数的一种分类。

当函数满足f(-x)=-f(x)时,我们称这个函数为奇函数;当函数满足f(-x)=f(x)时,我们称这个函数为偶函数。

4.对称轴:对于偶函数,它的图像关于y轴对称;对于奇函数,它的图像关于原点对称。

因此,对称轴就是y轴或者原点。

5.零点:函数的零点指的是函数取0的自变量值,也叫做函数的根。

求零点的方法有很多,例如用图像法、方程求解法等。

三、函数的图像1. 直线函数:直线函数的图像是一条直线。

其解析式通常为y = kx + b,其中k是斜率,表示直线的倾斜程度,b是截距,表示直线与y轴的交点。

2.常函数:常函数的图像是一条水平的直线。

它的解析式为y=c,其中c是常数。

3. 平方函数:平方函数的图像是一条抛物线。

其解析式通常为y = ax^2 + bx + c,其中a、b、c都是常数。

4.开方函数:开方函数是平方函数的反函数。

其图像是一条拋物線的一部分,始终在x轴的非负值上。

数学初中函数知识总结

数学初中函数知识总结

数学初中函数知识总结函数是数学中的基础概念之一,也是中学数学中的重要内容。

在初中阶段,学生们开始接触函数的概念和相关知识,逐渐深入探讨函数的性质和应用。

本文将对初中函数的知识进行总结和梳理,包括函数的定义、性质、图像和应用等方面。

一、函数的定义函数是以某个变量(自变量)为输入,通过某种规则或算法得到另一个变量(因变量)为输出的关系。

简单来说,函数就是一种对应关系。

用符号表示函数的一般形式为:y = f(x),其中x是自变量,y是因变量,f(x)代表函数关系。

二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取得的值的集合,值域是因变量可能取得的值的集合。

在定义函数时,需要确定函数的定义域和值域。

2. 奇偶性:对于函数f(x),如果对于任意x,有f(-x) = f(x),则该函数是偶函数;如果对于任意x,有f(-x) = -f(x),则该函数是奇函数;否则,函数既不是偶函数也不是奇函数。

3. 单调性:函数的单调性描述了函数的增减规律。

如果函数的自变量增大时,对应的因变量也增大,则该函数是递增的;如果函数的自变量增大时,对应的因变量减小,则该函数是递减的。

三、函数的图像函数的图像是函数的可视化表示,可以通过画出函数的图像来更好地理解和分析函数的性质。

1. 直线函数:直线函数的图像是一条直线,可以通过确定直线上两个点或一个点和斜率来确定直线函数的图像。

2. 平方函数:平方函数的图像是一条抛物线,开口方向取决于平方项系数的正负。

平方函数的顶点是抛物线的最低点或最高点,也是抛物线的对称轴与x轴的交点。

3. 一次函数:一次函数的图像是一条斜率不变的直线,可以通过确定直线上两个点或一个点和斜率来确定一次函数的图像。

四、函数的应用函数是数学中的一个强大工具,不仅在数学中有广泛的应用,还可以在实际生活和其他学科中得到应用。

1. 函数的模型建立:通过观察和分析实际问题,可以建立函数模型来解决问题。

例如,利用一次函数模型可以描述物体的匀速直线运动,二次函数模型可以描述物体的自由落体运动。

初中数学函数知识点

初中数学函数知识点

初中数学函数知识点一、函数的概念。

1. 定义。

- 在一个变化过程中,有两个变量x、y,如果给定一个x值,相应的就确定唯一的一个y值,那么就称y是x的函数,其中x是自变量,y是因变量。

例如:y = 2x+1,对于每一个x的取值,都能通过这个式子计算出唯一的y值。

2. 函数的表示方法。

- 解析法:用数学式子表示两个变量之间的对应关系,如y = 3x - 2。

- 列表法:列出表格来表示两个变量之间的对应关系。

例如,在研究正方形的周长C与边长a的关系时,可以列出如下表格:边长a1 2 3 4.周长C = 4a4 8 12 16.- 图象法:用图象表示两个变量之间的对应关系。

比如一次函数y = x+1的图象是一条直线。

二、一次函数。

1. 定义。

- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。

当b = 0时,y=kx(k≠0)叫做正比例函数,正比例函数是特殊的一次函数。

2. 一次函数的图象与性质。

- 图象:一次函数y = kx + b的图象是一条直线。

当b = 0时,y = kx的图象是经过原点(0,0)的直线。

- 性质。

- 当k>0时,y随x的增大而增大。

例如y = 2x+1,随着x的值增大,y的值也增大。

- 当k < 0时,y随x的增大而减小。

如y=-3x + 2,x增大时,y减小。

- 求一次函数的解析式。

- 一般需要知道两个点的坐标,将其代入y = kx + b中,得到关于k、b的方程组,解方程组求出k和b的值。

例如,已知一次函数图象过点(1,3)和(2,5),将(1,3)代入y = kx + b得3=k + b,将(2,5)代入得5 = 2k + b,解方程组3=k + b 5 = 2k + b,用第二个方程减去第一个方程得5-3=(2k + b)-(k + b),即2 = k,把k = 2代入3=k + b得b = 1,所以函数解析式为y = 2x+1。

三、反比例函数。

初中函数知识点总结非常全

初中函数知识点总结非常全

初中函数知识点总结非常全初中函数知识点总结一、函数的概念:函数是一种特殊的关系,它将自变量的取值与因变量的取值进行对应关系,用数学符号表示为y=f(x)。

二、函数的定义域和值域:1.定义域是指函数中自变量的取值范围,表示为{x,x满足其中一种条件}。

2.值域是指函数中因变量的取值范围,表示为{y,y满足其中一种条件}。

三、函数的图像表示:函数的图像是由函数的所有点(x,f(x))在坐标系中所组成的图形。

四、函数的分类:1. 一次函数:f(x) = kx + b,k和b是常数,k称为斜率,b称为截距。

-斜率k表示函数图像在x轴方向的倾斜程度,正数表示上升,负数表示下降。

-截距b表示函数图像与y轴的交点在y轴上的坐标。

2. 二次函数:f(x) = ax² + bx + c,a、b、c是常数,且a≠0。

-a决定了二次函数的开口方向,正数表示开口向上,负数表示开口向下。

-函数的顶点坐标为(-b/2a,f(-b/2a))。

3.反比例函数:f(x)=k/x,k是常数,且k≠0。

-函数图像的特点是经过原点(0,0)并且没有定义域为0的取值。

4.幂函数:f(x)=xⁿ,n是常数,且n≠0。

-当n>0时,函数的图像自左下方向右上方增长。

-当n<0时,函数的图像自左上方向右下方增长。

五、函数的特性:1.奇偶性:-函数f(x)为奇函数,当且仅当f(-x)=-f(x)。

-函数f(x)为偶函数,当且仅当f(-x)=f(x)。

-一次函数和绝对值函数是奇函数,二次函数和指数函数是偶函数。

2.单调性:-函数f(x)在区间I上单调增加,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)<f(x₂)。

-函数f(x)在区间I上单调减少,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)>f(x₂)。

3.极值和最值:-极大值:若f(x)在特定点x₀处取得最大值f(x₀),则称f(x₀)为函数f(x)在区间I上的极大值。

(完整版)初中函数知识点总结

(完整版)初中函数知识点总结
9、一元一次方程与一次函数的关系
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
10、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
取值范围:① k ≠ 0; ②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数 ; ③函数 y 的取值范围也是任意非零实数。
反比例函数的图像属于以原点为对称中心的中心对称的双曲线
反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数的性质:
注:对于y=kx+b 而言,图象共有以下四种情况:
1、k>0,b>0 2、k>0,b<0 3、k<0,b<0 4、k<0,b>0
4、直线y=kx+b(k≠0)与坐标轴的交点.
(1)直线y=kx与x轴、y轴的交点都是(0,0);
(2)直线y=kx+b与x轴交点坐标为 与 y轴交点坐标为(0,b).
5、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.

初中函数入门基础知识

初中函数入门基础知识

初中函数入门基础知识数学函数是一个比较难的知识点,下面是整理初中函数入门基础知识点汇总1函数的有关概念(1)函数:在某一变化过程中,如果有两个变量x,y,并且对于x在某一范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说y是x的函数,x叫做自变量。

(2)函数自变量的取值范围函数自变量的取值范围应使函数解析式有意义;应用问题中,自变量的取值范围还应具有实际意义;求函数自变量的取值范围的过程,实质上是解不等式或不等式组的过程;(3)常见自变量的取值范围:分式型:分母不为0;二次根式型:被开方数大于等于0;分式、二次根式混合型:分母不为0,且被开方数大于等于0.(4)函数值:当函数自变量x取某一数值时,与之对应的唯一确定的y值,叫做这个函数当函数自变量取该值时的函数数值。

2一次函数知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:函数表达式、函数图象和函数关系式。

4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。

5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。

二、函数的运算法则:1.函数的和、差、积、商运算规则。

2.函数的复合运算规则。

3.函数的反函数及其性质。

4.函数的平移、翻折和伸缩等运算。

三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。

(2)函数的图象:直线。

(3)性质:对称性、单调性、与坐标轴的交点。

2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。

(2)函数的图象:抛物线。

(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。

3.反比例函数:(1)函数的定义:y=k/x,k不等于0。

(2)函数的图象:双曲线的一支。

(3)性质:对称性、单调性、与坐标轴的交点。

4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。

(3)性质:单调性、与坐标轴的交点。

5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。

(3)性质:单调性、与坐标轴的交点。

四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。

2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。

3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。

4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。

五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。

初中所有函数知识点归纳

初中所有函数知识点归纳

初中所有函数知识点归纳函数是数学中的一种基本概念,也是初中数学中非常重要的内容。

在初中阶段,学生主要学习了一次函数、二次函数和分段函数等几种常见类型的函数,下面对这些内容进行归纳。

一、一次函数:1. 函数的定义:一次函数是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。

2.函数图像:一次函数的图像是一条直线,通过其中两个点就能确定这条直线。

3.函数性质:一次函数是一个线性函数,特点是斜率恒定,即直线的倾斜度保持一致。

4.斜率:斜率是一次函数的重要特征,用来描述函数图像的倾斜程度。

二、二次函数:1. 函数的定义:二次函数是指函数表达式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。

2.函数图像:二次函数的图像是一个抛物线,开口方向由a的正负确定。

3.函数性质:二次函数的最高次项是二次的,代表抛物线的弯曲程度。

4.零点和顶点:二次函数的零点即方程的根,顶点是抛物线的顶点,二次函数的顶点坐标为(-b/2a,f(-b/2a))。

三、分段函数:1.函数的定义:分段函数是指在不同的区间采用不同的函数表达式来定义的函数。

2.函数图像:分段函数的图像是由不同的线段或抛物线拼接而成。

3.区间和定义域:分段函数的定义域是所有给定函数的定义域的并集,区间是定义域的数据范围。

四、函数的运算:1.函数的加减法:两个函数的加减法运算规则是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f+g)(x)=f(x)±g(x)。

2.函数的乘法:两个函数的乘法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f*g)(x)=f(x)*g(x)。

3.函数的除法:两个函数的除法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f/g)(x)=f(x)/g(x)。

五、函数的应用:1.函数的问题解决:函数在数学中有很多实际应用,如利用函数关系解决实际问题,通过函数图像分析问题等。

初中基本函数知识点总结

初中基本函数知识点总结

初中基本函数知识点总结一、函数的基本概念1. 函数的定义:函数是一个对应关系,它把一个数集中的每一个数映射成另一个数集中的唯一一个数。

2. 自变量和因变量:在函数中,自变量是输入的值,因变量是输出的值。

3. 函数的表示:一般来说,函数可以用表格、图像、公式或者文字描述。

4. 定义域和值域:在函数中,定义域是自变量的取值范围,值域是因变量的取值范围。

二、函数的图像和性质1. 函数的图像:函数的图像是自变量和因变量之间的关系的几何表示。

2. 函数的性质:函数的性质包括奇偶性、单调性、周期性等。

三、基本初等函数1. 常数函数:常数函数的表达式是f(x) = C (C为常数),它的图像是一条水平的直线。

2. 一次函数:一次函数的表达式是f(x) = kx + b (k和b为常数,k≠0),它的图像是一条斜线。

3. 二次函数:二次函数的表达式是f(x) = ax² + bx + c (a、b、c为常数,且a≠0),它的图像是一条开口向上或向下的抛物线。

4. 幂函数:幂函数的表达式是f(x) = xᵐ (m为常数),它的图像是经过原点的曲线。

5. 指数函数:指数函数的表达式是f(x) = aˣ (a为正实数,且a≠1),它的图像是逐渐上升或逐渐下降的曲线。

6. 对数函数:对数函数的表达式是f(x) = logₐx (a为正实数,且a≠1),它的图像是一条拐点在(1,0)处的曲线。

四、函数的运算1. 函数的和、差、积、商:函数的和、差、积、商分别对应于两个函数的和、差、积、商。

2. 复合函数:复合函数是指一个函数的自变量被另一个函数的因变量代替。

3. 反函数:若函数y=f(x)的定义域为D,值域为R,则对于D中的任意一个数x,能使f(x) = y成立的y是唯一的,那么函数y=f(x)的反函数是一个函数,其定义域为R,值域为D。

五、函数的应用1. 函数的应用:在实际生活中,函数的运用十分广泛,包括表示物体的运动规律、生活中的购物花费、投资收益等。

初中数学函数知识点汇总

初中数学函数知识点汇总

初中数学函数知识点汇总1.函数的概念:函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素。

2.函数的表示方法:可以用方程、图表和映射关系三种方式来表示函数。

3.函数的定义域和值域:定义域是指函数输入的有效值的集合,值域是函数输出的有效值的集合。

4.函数的种类:一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。

5. 一次函数:函数的形式为y = kx + b,其中k和b为常数,k称为斜率,b称为截距。

6.一次函数的性质:一次函数的图像是一条直线,斜率为正表示函数递增,斜率为负表示函数递减。

7.一次函数的图像:可通过求其任意两个点的坐标,或者利用斜率和截距的概念来绘制。

8. 二次函数:函数的形式为y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

9.二次函数的性质:二次函数的图像是一条抛物线,开口方向由a的正负决定。

若a>0,抛物线开口向上,函数的最小值在顶点处取得;若a<0,抛物线开口向下,函数的最大值在顶点处取得。

10.二次函数的顶点坐标:顶点坐标为(-b/2a,f(-b/2a)),其中f(x)表示函数值。

11.二次函数的轴对称线:轴对称线的方程为x=-b/2a。

12.幂函数:函数的形式为y=xⁿ,其中n为常数。

13.幂函数的性质:当n>1时,随着x的增大,函数值也随之增大,函数图像在第一象限中上升;当0<n<1时,随着x的增大,函数值逐渐减小,函数图像在第一象限中下降。

14.指数函数:函数的形式为y=aˣ,其中a>0且a≠115.指数函数的性质:当a>1时,随着x的增大,函数值也随之增大,函数图像在第一象限中上升;当0<a<1时,随着x的增大,函数值逐渐减小,函数图像在第一象限中下降。

16. 对数函数:函数的形式为y = logₐx,其中a > 0且a ≠ 117. 对数函数的性质:对数函数与指数函数是互逆的,即logₐaˣ = x。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结在初中数学中,函数是一个非常重要的知识点,它涉及到数学的各个方面,并且在实际生活中也有广泛的应用。

在本文中,我将总结一些初中数学中关于函数的知识点,希望对大家的学习有所帮助。

一、常见的函数类型1. 一次函数:一次函数是指具有形如y=ax+b的函数,其中a和b是常数,a不能为0。

一次函数的图像是一条直线,斜率为a,截距为b。

2. 二次函数:二次函数是指具有形如y=ax²+bx+c的函数,其中a、b和c是常数,a不能为0。

二次函数的图像是一条抛物线,开口方向取决于a的正负。

3. 平方函数:平方函数是指具有形如y=x²的函数。

平方函数的图像是一条抛物线,开口朝上。

4. 立方函数:立方函数是指具有形如y=x³的函数。

立方函数的图像呈现S型曲线。

5. 绝对值函数:绝对值函数是指具有形如y=|x|的函数。

绝对值函数的图像是一条V型曲线,关于y轴对称。

二、函数的性质1. 定义域和值域:函数的定义域是指所有可以作为函数自变量的数值的集合,而值域是指所有可能的函数值的集合。

2. 奇偶性:函数的奇偶性是指函数的对称性。

若对于任意x,有f(x)=f(-x),则函数是偶函数;若对于任意x,有f(x)=-f(-x),则函数是奇函数。

3. 单调性:函数的单调性是指函数的增减性质。

若对于定义域内的任意两个数x₁和x₂,当x₁<x₂时有f(x₁)<f(x₂),则函数是递增的;若对于定义域内的任意两个数x₁和x₂,当x₁<x₂时有f(x₁)>f(x₂),则函数是递减的。

4. 极值和最值:函数在定义域内达到的最大值和最小值称为函数的极值和最值。

三、函数的图像和方程1. 函数的图像:函数的图像可以通过绘制函数的各个点来得到。

为了更准确地绘制函数的图像,可以根据函数的性质和特点,分析关键点、拐点、零点等。

2. 函数的方程:已知函数的图像,可以通过观察图像的特点,得出函数的方程。

函数必背知识点总结

函数必背知识点总结

函数必背知识点总结一、函数的定义与调用1. 函数的定义:函数是一段可重复使用的代码块,可以接受输入参数并返回值。

通常用来实现特定的功能。

2. 函数的调用:通过函数名和参数列表来调用函数,格式为`函数名(参数列表)`。

二、函数的参数与返回值1. 形参与实参:函数定义时的参数称为形参,调用函数时传入的参数称为实参。

2. 参数的传递方式:包括传值调用、传址调用和传引用调用。

3. 返回值:函数可以返回一个值,也可以不返回值。

三、函数的语法1. 函数声明:使用`def`关键字进行函数声明,后接函数名和参数列表。

2. 函数体:使用冒号`:`和缩进来定义函数体。

3. 返回语句:使用`return`关键字来返回函数的值。

4. 默认参数:在定义函数时可以设置参数的默认值,调用函数时可以不传入值。

5. 变长参数:使用`*args`和`**kwargs`来定义接受不定数量参数的函数。

6. 匿名函数:使用`lambda`关键字定义一个匿名函数。

7. 递归函数:函数自身调用自身的函数称为递归函数。

四、函数的作用域1. 局部变量:在函数内部声明的变量称为局部变量,只在函数内部有效。

2. 全局变量:在函数外部声明的变量称为全局变量,可以在整个程序中访问。

五、高级函数1. 高阶函数:可以接受函数作为参数或者返回一个函数的函数称为高阶函数。

2. map函数:对可迭代对象中的每个元素应用指定的函数。

3. filter函数:对可迭代对象中的元素进行过滤,只保留满足条件的元素。

4. reduce函数:对可迭代对象中的元素进行累积运算。

六、闭包与装饰器1. 闭包:函数内部定义的函数,并返回这个内部函数的结构称为闭包。

2. 装饰器:是一个返回函数的高阶函数,自动把装饰的函数作为参数传递到装饰器函数中。

七、异常处理1. try-except语句:使用`try`和`except`关键字捕获和处理异常。

2. 异常的类型:包括`NameError`、`TypeError`、`ValueError`等不同类型的异常。

初中函数知识点全面总结

初中函数知识点全面总结

初中函数知识点全面总结一、函数的基本概念1.1 函数的引入在日常生活和数学问题中,我们经常遇到一些问题,例如:已知椭圆的长轴、短轴的长度,我们可以求椭圆的面积;已知一个正方体的边长,我们可以求它的体积,这些问题都是函数的具体例子。

函数研究的对象是一对对象之间的依赖关系。

1.2 函数的定义函数是一个变量间的依赖关系。

如果对于每一个自变量x,都有唯一的因变量y和它对应,那么这个变量x和它所对应的y就构成函数。

通常记作y=f(x)。

1.3 自变量、因变量和函数符号在函数f(x)中,x称为自变量,y称为因变量,而f(x)则是函数的符号表示。

1.4 自变量和因变量的关系自变量和因变量之间存在着一一对应的关系。

当自变量x取不同的值时,因变量y也会随之变化。

这种变化规律可以用图象或公式来表示。

1.5 函数的图象对于函数y=f(x),其图象是平面直角坐标系内一条曲线。

曲线上的每一个点(x,y)都满足方程y=f(x)。

1.6 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

例如,对于函数f(x)=x^2,其定义域是实数集R,值域是非负实数集[0,+∞)。

二、函数的表示方法2.1 列表法通过若干对自变量和因变量对照,列出所有自变量和因变量的对应关系,就是列表法表示函数。

2.2 公式法用一个能够表示自变量与因变量之间的对应关系的等式来表示函数。

2.3 函数关系图象法可以通过函数的图象来表达函数。

三、函数的性质3.1 函数的奇偶性当自变量为-x时,若f(x)=-f(-x),则函数f(x)为奇函数;当自变量为-x时,若f(x)=f(-x),则函数f(x)为偶函数。

3.2 增减性与极值若在自变量的某一邻域内,函数值随着自变量的增大而增大,则称此函数在此邻域内是增函数;反之,则是减函数。

当函数在某一点上取得最大值或最小值时,称这个函数在这一点有极值。

3.3 奇偶性与周期性若f(x+T)=f(x)对于一切x都成立,则称T为函数f(x)的周期。

初中函数知识点总结非常全

初中函数知识点总结非常全

初中函数知识点总结非常全函数是数学中的一个重要概念,它描述了一个变量与另一组变量之间的关系。

在初中阶段,学生需要掌握一些基础的函数知识点,如函数的定义、函数图像、函数的性质等。

以下是一个关于初中函数知识点的详细总结:一、函数的定义:1.函数是两个变量的一种对应关系。

2.函数可以用一个公式或一张表格来表示。

3.函数的定义域是输入变量的取值范围,值域是输出变量的取值范围。

二、函数的表示方法:1.解析表示法:y=f(x),表示“x自变量,y因变量,f函数名”。

2.例子:y=x+1;y=2x-3三、函数的图像:1.函数的图像是函数的所有值(x的取值)与函数值(y的取值)所组成的点的集合。

2.函数图像可以通过表格、手工绘图或计算机绘制。

四、函数的性质:1.单调性:函数在一些区间内是递增的或递减的。

a.递增函数:如果对于区间内任意两个数a、b,当a<b时,f(a)<f(b)。

b.递减函数:如果对于区间内任意两个数a、b,当a<b时,f(a)>f(b)。

2.奇偶性:函数在图像的对称性。

a.奇函数:f(-x)=-f(x)。

b.偶函数:f(-x)=f(x)。

3.周期性:函数以一定的周期重复自身。

a.周期函数:f(x+T)=f(x),其中T为周期。

4.零点和极值:a.零点:使得f(x)=0的x值。

b.极大值:f(x)在局部最大的点。

c.极小值:f(x)在局部最小的点。

五、常见函数类型:1. 一次函数:y=kx+b,其中k和b为常数。

a.斜率k表示函数的变化速率。

b.截距b表示函数图像与y轴的交点。

2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数。

a.抛物线的开口方向由a的正负决定。

b.顶点坐标为(-b/2a,f(-b/2a))。

3.幂函数:y=x^n,其中n为自然数。

a.n为奇数时,函数图像经过原点。

b.n为偶数时,函数图像在第一、二象限中。

4.指数函数:y=a^x,其中a>0且a≠1a.a>1时,函数递增且无上界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一、平面直角坐标系 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

确定解析式的方法仍是待定系数法。

由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义若过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM •PN=xy x y =•。

k S k xy xky ==∴=,, 。

知识点六、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征(也叫抛物线的三要素): ①有开口方向;②有对称轴;③有顶点。

、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B , 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:二次函数2y ax c =+的图像可由2y ax =的图像上下平移得到(平移规律:上加 下减)。

3. ()2y a x h =-的性质:二次函数()2y a x h =-的图像可由2y ax =的图像左右平移得到(平移规律:左加 右减)。

4. ()2y a x h k =-+的性质:知识点八、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成两点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用两点式表示.二次函数解析式的这三种形式可以互化. a 的绝对值越大,抛物线的开口越小。

知识点九、二次函数解析式的确定根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两点式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 知识点十、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

知识点十一、二次函数的性质 1、二次函数的性质2、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=推导过程:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 记忆规律:一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。

因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点。

当∆>0时,图像与x 轴有两个交点;当∆=0时,图像与x 轴有一个交点; 当∆<0时,图像与x 轴没有交点。

中考二次函数压轴题常考公式(必记必会,理解记忆)、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)如图:点A 坐标为(x 1,y 1)点B 则AB 间的距离,即线段AB2、二次函数图象的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.函数平移图像大致位置规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间) 3、直线斜率:1212tan x x y y k --==α4、设两条直线分别为,1l :11y k x b =+ 2l :22y k x b =+ 若12//l l ,则有1212//l l k k ⇔=且12b b ≠。

相关文档
最新文档