气相色谱检测器的分类和工作原理及应用范围

合集下载

解析各种检测器的原理、用途和作用

解析各种检测器的原理、用途和作用

气相色谱仪-检测系统1.热导检测器热导检测器( Thermal coductivity detector,简称TCD ),是应用比拟多的检测器,不管对有机物还是无机气体都有响应。

热导检测器由热导池池体和热敏元件组成。

热敏元件是两根电阻值完全一样的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。

如果热导池只有载气通过,载气从两个热敏元件带走的热量一样,两个热敏元件的温度变化是一样的,其电阻值变化也一样,电桥处于平衡状态。

如果样品混在载气过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。

这种检测器是一种通用型检测器。

被测物质与载气的热导系数相差愈大,灵敏度也就愈高。

此外,载气流量和热丝温度对灵敏度也有较大的影响。

热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。

热导检测器构造简单、稳定性好,对有机物和无机气体都能进展分析,其缺点是灵敏度低。

2.气相色谱仪氢火焰离子化检测器氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。

它的主要部件是一个用不锈钢制成的离子室。

离子室由收集极、极化极(发射极)、气体入口及火焰喷嘴组成。

在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。

无样品时两极间离子很少,当有机物进入火焰时,发生离子化反响,生成许多离子。

在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。

离子流经放大、记录即得色谱峰。

有机物在氢火焰中离子化反响的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反响生成自由基,自由基又与氧作用产生离子。

在外加电压作用下,这些离子形成离子流,经放大后被记录下来。

所产生的离子数与单位时间进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。

气相色谱仪及色谱检测器-2

气相色谱仪及色谱检测器-2

2). 进样器
类型:微量注射器,旋转式六通阀 用注射器进样重复性为2-5% 用六通阀进样量的重复性<0.5% 液体样品: 5、10 μL 微量进样器 气体样品: 50、100、200μL 微量进样器 也可用一般1mL、2mL注射器 定量最好用六通阀进样 0.5、1、2……mL定量 环
3、分离系统
进入检测器的试样是气体,mv· mL/mL 灵敏度表示每毫升载气中有一毫升试样在检测 器上产生的毫伏数。Q的单位为毫升组分/毫升流动 相,则有检测器体积灵敏度SV: Sv= u2FdA/u1mL
B. 质量型检测器灵敏度, mv·s/g
表示每秒钟有一克物质通过检测器时所产 生的信号的大小。Q的单位为克组分/秒,则 有质量型检测器灵敏度St,其单位为毫伏/克 组分/秒。 St=60u2A/u1m
1 、气路系统
气相色谱仪的气路系统是一个载气连续运行,包 括气源、气体净化、气体流速控制和测量。 气路系统的气密性、载气流量的稳定性都对实 验的结果有影响。 气相色谱的气路系统有:单柱单气路系统 双柱双气路系统
1). 载气的选择
气相色谱常用的载气有:氢气、氮气、氦气等, 其选用取决于所用的检测器。 •热导检测器(TCD) •氢火焰离子化检测器(FID) •火焰光度检测器(FPD) •电2 (高纯 >99.99%)
由灵敏度公式:
1、进样量与峰面积成正比。(色谱 峰定量的理论基础) 2、进样量一定时,峰面积与流速成 反比。(定量时,要保持载气流速 恒定)
2).噪声和漂移:(稳定性)
噪声:当纯载气通过检测器时,记录仪记 录下来的基线波动为噪声。 以RN表示,单位为mv或mA 短期噪声:记录笔的振幅波动。 长期噪声:周期性的基线波动。 漂移:单方向的长期噪声所产生基线相对 于起始基线移动的距离。

气相色谱检测器和应用

气相色谱检测器和应用
的检测结果。
THANKS
感谢观看
微型化与便携式
研发小型化、便携式的气相色谱检测 器,满足现场快速检测的需求。
降低成本与普及应用
通过技术创新和规模化生产,降低仪 器成本,促进气相色谱检测器的普及 和应用。
应对复杂样品挑战
提高对复杂样品中多组分、低浓度成 分的检测能力,满足日益复杂的分析 需求。
05
实际应用案例分析
案例一:气相色谱检测器在环境监测中的应用
及时更新工作站软件,并定期备份数据,以 防数据丢失。
04
气相色谱检测器的发展趋势与展望
技术创新与进步
高效分离技术
通过改进色谱柱填料和优 化色谱条件,提高分离效 率和分辨率,缩短分析时 间。
检测器性能提升
开发高灵敏度、低噪音、 宽线性范围的检测器,提 高检测下限和准确度。
联用技术
将气相色谱与其他分析技 术(如质谱、红外光谱等) 联用,实现多组分同时定 性和定量分析。
案例三
总结词
高精度、可靠性
详细描述
在药品质量控制中,气相色谱检测器 用于检测原料药、中间体和成品中的 杂质和残留溶剂。其高精度和可靠性 的特点保证了药品的质量和安全性。
案例四
总结词
稳定性、耐腐蚀性
详细描述
气相色谱检测器在石油化工产品分析中用于检测燃料油、润滑油等产品中的组分和添加 剂。其稳定性好、耐腐蚀的特性使得在分析过程中不易受到样品的影响,能够提供准确
总结词
高效分离、高灵敏度
详细描述
气相色谱检测器在环境监测中主要用于检测空气、水源和土壤中的有害物质,如挥发性有机化合物、农药残留等。 其高效分离和高灵敏度的特点使得即使在低浓度下也能准确检测出目标物质。
案例二

气相色谱法定义与分类及气相色谱仪的基本组成及其工作原理

气相色谱法定义与分类及气相色谱仪的基本组成及其工作原理

气相色谱法定义与分类及气相色谱仪的基本组成及其工作原理一、定义与分类气相色谱法(gas chromatography,GC)是以气体为流淌相的色谱法,1952年由马丁(Mattin)、辛格(Synge)以及詹姆斯(James)等首次建立。

按照固定相的物质形态不同,Gc可分为气固色谱法(gas-solid chromatography,GSC)和蔼液色谱法(gas-liquid chrolnatography,GLC)两类。

按色谱柱的粗细和填充状况,GC可分为填充柱色谱法和开管柱色谱法两种。

填充柱(packed column)是将固定相填充在内径通常为4mm的余属或玻璃管中;开管柱(open tubular column)是将固定相涂布于柱管内壁,中空,所以又称为空心柱。

因为开管柱的内经通常惟独0.1~0.5 mm,所以又称为毛细管柱(capillary column)。

按分别机制,GC可分为吸附色谱法和分配色谱法。

GLC属于分配色谱法,而GSC因为固定相常用吸附剂,因此多属于吸附色谱法。

(2)气相色谱仪的基本组成及其工作原理气相色谱仪(gas chromatograph)包括气路系统、进样系统、分别系统、温控系统和检测系统等五大系统。

气路系统是一个载气延续运行、管路密闭的系统,包括气源、气体净化器、供气控制阀门和仪表,其作用是把试样输送到色谱柱和检测器。

进样系统包括进样装置和汽化室,其作用是将液体或固体试样在进入色谱柱前眨眼汽化,并迅速定量地转入到色谱柱中。

分别系统主要是色谱柱,它由柱管和装填在其中的固定相等所组成,其作用是将样品中各组分分别。

温控系统是用来设定、控制和测量色谱柱、汽化室、检测室的温度装置。

检测系统包括检测器、放大器、记录器,其作用是把经色谱柱分别后的各组分的浓度变幻改变成易于测量的电信号,如电流、电压等,然后输送到记录器记录成色谱图。

气相色谱仪的工作原理是被分析样品(气体或液体与固体汽化后)的蒸气在流速保持一定的惰性气体(称为载气,即流淌相)的带动下进入填充有固定相的色谱柱,在色谱柱中样品被分别成一个个组分,并以一定的先后次序从色谱柱流出,进入检测器,组分的浓第1页共3页。

气相色谱仪的结构组成及工作原理

气相色谱仪的结构组成及工作原理

气相色谱仪的结构组成及工作原理该系统由储液器、泵、取样器、色谱柱、检测器和记录器组成。

储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统。

气相色谱仪的组成结构•载气系统:包括气源、气体净化、气体流速控制和测量•进样系统:包括进样器、汽化室(将液体样品瞬间汽化为蒸气)•色谱柱和柱温:包括恒温控制装置(将多组分样品分离为单个)•检测系统:包括检测器,控温装置•记录系统:包括放大器、记录仪、或数据处理装置、工作站气相色谱仪的工作原理是样品中各组分在气相和固定液相之间的分配系数不同。

当蒸发的样品被载气带入色谱柱时,组分在两相之间反复分配。

由于固定相中各组分的吸附或溶解能力不同,色谱柱中各组分的运行速度也不同。

经过一定的柱长后,它们相互分离并离开色谱柱,以便进入检测器。

产生的离子流信号被放大并记录在记录器上。

气相色谱(GC)是一种分离技术。

实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。

混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。

待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。

但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。

气相色谱检测器的分类和工作原理及应用范围

气相色谱检测器的分类和工作原理及应用范围

气相色谱检测器的分类和工作原理及应用范围气相色谱检测器是用于分离、检测和定量气体混合物中化学成分的一种仪器。

它的原理是通过样品静电或热解产生气相,分离混合物中的组分,并通过检测器对其进行定量分析。

本文将从气相色谱检测器的分类、工作原理以及应用范围等方面进行介绍。

气相色谱检测器的分类气相色谱检测器主要可分为以下几种类型:1.火焰离子化检测器(FID):火焰离子化检测器是最常见的一种气相色谱检测器,它通过将化合物在火焰中燃烧产生离子,检测器可以测量离子电流从而定量分析样品。

2.热导检测器(TCD):热导检测器通过检测样品中传导的热量变化来定量分析化合物。

它的检测灵敏度不高,一般用于分析空气和其他不易在FID 检测器中检测到的化合物。

3.化学电离检测器(CID):化学电离检测器是通过化合物与离子产生反应而生成新的离子对的检测器。

它的灵敏度要比热导检测器高,但要求样品必须具有较高的电离能。

4.汞气放电检测器(ECD):汞气放电检测器是通过汞蒸气中的电离过程来检测混合物中的有机化合物。

这种检测器通常用于分析具有挥发性有机物的样品,如农药和杀虫剂。

以上是气相色谱检测器的常用分类。

气相色谱检测器的工作原理气相色谱检测器主要由两部分组成:分离柱和检测器。

首先,气体混合物进入气相色谱柱,通过分离柱分离其中的混合物成份。

对于分离柱的选择,需要根据混合物成分决定,一般常用的有毛细管柱、碳酸氢钠柱和甲醇钠柱等。

分离柱分离后的混合物成分进入检测器,不同的检测器会根据其工作原理对不同的混合物进行检测。

在火焰离子化检测器中,混合物成分在发生化学反应后产生离子,离子通过电流检测器得到计数,最终通过数据分析得出样品成分的含量。

在热导检测器中,气体混合物通过热导体,其中各组分间的热导率不同,热导率不同会使热电偶的电信号变化,利用这个变化可目标物质的浓度。

在化学电离检测器中,样品在阳极上电离并产生阳离子,然后与极性荧光的亲和性化合物发生作用,即生成新的离子对,新的离子对电荷不等,然后通过检测器的放大器来检测。

气相色谱(GC)检测器的分类及其应用

气相色谱(GC)检测器的分类及其应用

样品是怎样分离检测分辨的呢?样品中某组分,经过色谱柱后与其它组分分离开了,而通过某类型的检测器,就可以将其浓度或质量等信息转变为相应的电信号,这些电信号经放大器放大等转换后,也就是色谱图了,分析此色谱图就能对某组分进行分析了。

检测器在此过程中承担着最终结果判断的责任,可谓临门一脚,十分重要,大家对检测器的原理应用认识深浅,亦对谱图的分析有着影响,以下本文就简述几类常用检测器的原理及应用。

一、氢焰检测器火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物,不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S 等。

比热导检测器的灵敏度高出近3个数量级,检测下限达10-12g·g-1。

以前用FID打过精油的色谱,效果不错。

二、热导检测器是最早被使用且广泛使用的一种检测器。

它具有结构简单、性能稳定、灵敏度适宜(约克/秒)、应用范围广(可检测有机物及无机物)、不破坏样品等优点,多用于常量到10μg/mL以上组分的测定。

TCD特别适用于气体混合物的分析(尤其是无机气体的分析),TCD用峰高定量,适于工厂控制分析.如石油裂解气色谱分析。

三、电子捕获检测器)电子捕获检测器也是一种离子化检测器,它是一个有选择性的高灵敏度的检测器,它只对具有电负性的物质,如含卤素、硫、磷、氮的物质有信号,物质的电负性越强,也就是电子吸收系数越大,检测器的灵敏度越高,而对电中性(无电负性)的物质,如烷烃等则无信号。

它主要用于分析测定卤化物、含磷(硫)化合物以及过氧化物、硝基化合物、金属有机物、金属螯合物、甾族化合物、多环芳烃和共轭羟基化合物等电负性物质。

另外也能分析1PPM氧气;它是目前分析痕量电负性有机物最有效的检测器。

电子捕获检测器已广泛应用于农药残留量、大气及水质污染分析,以及生物化学、医学、药物学和环境监测等领域中。

它的缺点是线性范围窄,只有左右,且响应易受操作条件的影响,重现性较差。

气相色谱仪-检测器和数据处理系统

气相色谱仪-检测器和数据处理系统

气相色谱仪-检测器和数据处理系统一、检测器检测器是构成气相色谱仪的关键部件。

其作用是把被色谱柱分别的样品组分,按照其物理的或化学的特性,改变成电信号(电压或电流),经放大后,由记录仪记录成色谱图。

检测器能敏捷、迅速、精确、延续地反映样品组分的变幻,从而达到定性和定量分析的目的。

气相色谱仪所用检测器的种类无数,应用最广的是热导池检测器(TCD)和氢火焰离子化检测器(FID);此外还有氮磷检测器(NPD),电子捕捉检测器(ECD)、火焰光度检测器(FPD)等,见表8-11。

检测器按照响应特性分为两类:一类是浓度型检测器,即被测定组分和载气相混合,检测器的敏捷度和被测组分的浓度成正比,如TCD和ECD就属此类;另一类是质量型检测器,当被测组分被载气带入检测器时,检测器的敏捷度和单位时光进入检测器中组分的质量成正比,如FID和FPD 就属此类。

举行气相色谱分析时,希翼所用检测器敏捷度高、响应时光快、操作稳定、重复性好。

在气相色谱仪中,检测器应有自立的恒温箱,其温度控制及测量办法和色谱柱恒温箱相像。

表8-11气相色谱法中常用的检测器二、数据处理系统数据处理系统是构成气相色谱仪的不行缺少的部件,由它绘出的色谱图是举行定性分析和定量分析的主要依据,也是衡量色谱柱柱效、分别度和检测器性能优劣的牢靠依据。

随着计算机技术的进展,数据处理系统的配置也日趋完美,早期生产的气相色谱仪仅配置有记录仪,20世纪60年月开头配置数字积分仪,70年月配置微处理机。

在20世纪90年月后配置了性能齐全、操作简便的色谱工作站,从而大大扩展了色谱分别、分析技术的应用范围。

色谱数据工作站是将一台32位的微型计算机通过R232通用接口与气相色谱仪相衔接。

微型计算机的CPU为i3或i5,内存不小干2GB,配有160GB以上的硬盘,安装有功能齐全的中文Windows操作平台,提供完美的软件系统,如用光盘输入专用的数据处理程序,就可通过标准键盘和鼠标器,运行丰盛多彩的色谱数据处理功能。

气相色谱FID检测器使用讲议资料

气相色谱FID检测器使用讲议资料

气相色谱FID检测器使用讲议资料气相色谱(Gas Chromatography,简称GC)是一种常用的分析方法,广泛应用于化学、生物、环境等领域。

在气相色谱分析过程中,检测器的选择会直接影响到分析结果的精度和准确度。

气相色谱的主要检测器有火焰离子化检测器(Flame Ionization Detector,简称FID)、热导检测器(Thermal Conductivity Detector,简称TCD)、电子捕获检测器(Electron Capture Detector,简称ECD)等。

本文主要介绍气相色谱FID检测器的使用方法。

一、FID检测器的工作原理FID检测器是一种广泛应用于GC分析的检测器,其工作原理基于离子化和电离的原理。

当待测物进入FID检测器后,在一个具有高温的燃烧室中与氢气和空气混合,形成一个燃烧火焰。

在火焰中,待测物发生完全的燃烧,生成离子和电子,然后通过外部加电压的电场,将离子和电子分离,离子被阳极吸收,而电子则形成电流。

电流的大小与待测物的浓度成正比。

二、FID检测器的优点和适用范围1.优点:(1)灵敏度高:FID检测器对大多数有机化合物具有很高的灵敏度,可以检测到ppm或ppb级别的物质。

(2)线性范围宽:FID检测器的线性范围一般为4个数量级,可以适应不同浓度范围的分析。

(3)选择性好:FID检测器对大多数有机化合物具有很好的选择性,对很多组分进行同时检测,并能区分它们之间的峰。

(4)使用方便:FID检测器具有结构简单、操作方便等优点。

2.适用范围:FID检测器主要适用于有机化合物的分析,特别是对有机溶剂、石油产品、环境监测等领域具有广泛的应用。

三、FID检测器的操作流程1.开机准备:先检查FID检测器的氢气和空气供应是否正常,然后打开气源开关,将火焰点燃并调节火焰的高度和形状。

2.检测器参数设置:根据待测物的性质和浓度确定FID检测器的参数,如增益、放大倍数、时间常数等。

气相色谱仪用途范文

气相色谱仪用途范文

气相色谱仪用途范文一、原理气相色谱仪的原理基于分子在气相中的分配行为。

当样品通过色谱柱时,被分离成不同的成分,然后通过检测器进行检测和定量分析。

其主要原理是利用气体载流型的色谱柱和气态样品间的化学吸附、物理吸附、剂相吸附等各种吸附现象,分离化合物。

二、组成部分1.色谱柱:色谱柱是整个仪器中最关键的部分,用于样品分离。

2.样品进样系统:用于将待分析的样品进样到色谱柱中。

3.色谱柱热箱:用于控制色谱柱的温度,以改变样品的挥发度。

4.载气系统:用于提供色谱柱气流的流动。

5.检测器:用于检测样品组分的浓度和质量。

6.数据处理系统:用于数据采集、处理和分析。

三、应用领域1.环境分析:气相色谱仪可以用于大气、水体、土壤等环境样品中有机污染物的定性和定量分析,如VOCs、PAHs等。

2.食品安全:气相色谱仪可以分析食品中的添加剂、农药残留、重金属等有害物质,保障食品安全。

3.药物分析:气相色谱仪可用于药物中成分的检测和纯度的分析。

4.石油化工:气相色谱仪可以用于石油产品中杂质的检测和分析,如石脑油中的硫化物、甲醛等。

5.生物学研究:气相色谱仪可以用于鉴定和定量生物样品中的代谢产物、脂肪酸、氨基酸等。

四、优势1.高效:气相色谱仪的分离效率高,分析速度快。

2.敏感:气相色谱仪可以进行微量样品的分析和检测。

3.快速:气相色谱仪的分析时间短,适用于大批量样品的分析。

4.准确:气相色谱仪的定量精确度高。

5.多功能:气相色谱仪可与不同类型的检测器结合使用,可根据需要选择不同的检测器进一步提高分析灵敏度和选择性。

常用的检测器有质谱检测器、氮磷检测器、火焰离子化检测器等。

综上所述,气相色谱仪具有广泛的应用领域,可用于环境监测、食品安全、药物分析、石油化工、生物学研究等领域中对样品的分离、分析和检测。

其高效、敏感、快速、准确等优势使其成为科研和生产中不可或缺的重要仪器。

色谱检测器的分类介绍

色谱检测器的分类介绍

色谱检测器的分类介绍色谱技术是一种常用于化学分析的手段,它主要基于样品分子不同的亲和性和不同的性质,通过分离来满足分析需求。

而色谱检测器的作用则是将色谱分离后的化学物质的特征信息转换为检测信号,在分析过程中起到至关重要的作用。

在实际应用中,不同种类的色谱检测器根据其原理、使用范围以及性能特点等方面进行了分类,本文就对其进行简单介绍。

1.气体色谱检测器气体色谱检测器是一种常用的检测单元,其适用于气相色谱仪中检测许多不同类型的化合物。

常见的气体色谱检测器包括热导检测器、电化学检测器、火焰离子化检测器、热解吸质谱检测器和金属离子检测器等。

①热导检测器:指使用导热率随化合物浓度变化而变化来检测气相色谱中的化合物。

这种检测器可以对大多数非极性有机物具有良好的灵敏度,非常适合于测定有机化合物的含量。

但是,它并不适用于所用化合物具有相似导热率的样品分析。

②电化学检测器:可以检测固体、液体和气体样品中各种有机和无机物质。

在检测器中,分子被氧化或还原成电子,实现了转化。

这样就产生了电流,说明化合物的浓度。

③火焰离子化检测器(FID):是一种常见的检测器,基于金属离子检测器,用于检测有机分子的氢、氧原子含量。

FID在检测硝基芳香化合物、有机酸、醇、酮、醛、烯酮、醚等方面均表现出色。

2.液相色谱检测器液相色谱检测器主要用于测定水相中的有机化学物质,包括药物、农药、天然产物和生物大分子等。

常见的液相色谱检测器包括光学检测器、荧光检测器和电化学检测器等。

①光学检测器:常用的有紫外-可见光谱(UV-Vis)检测器。

光学检测器基于化合物的吸收光谱进行检测。

化合物与特定范围内的光波长吸收。

光学检测器适用于可溶于水或有机溶液的化合物。

②荧光检测器:适用于样品中存在紫外线吸收的化合物,如花生四烯酸(PGA)、苯氧基酸(BOA)、半胱氨酸等,亦适用于对多种细胞色素中荧光团进行判定。

荧光检测器基于一种电离激发分子从基态到激发态上移动,激发态分子有自旋和次态之分,分子在自旋和次态间的跃迁导致荧光发射。

气相色谱的原理和应用

气相色谱的原理和应用

气相色谱的原理和应用1. 气相色谱的基本原理气相色谱(Gas Chromatography,简称GC)是一种分离和分析化合物的常用技术,它基于样品在固定相(称为色谱柱)中的分配与释放,利用不同化合物在固定相中的保持时间差异来实现分离。

其基本原理如下:1.样品注入与挥发:气相色谱仪通过样品注射器将待测物质注入到色谱柱中。

随后,在高温条件下,样品中的挥发性成分会被蒸发并分解为气态分子。

2.固定相和流动相:色谱柱内部涂覆有固定相,常用的固定相有聚硅氧烷、聚酰胺等。

气相色谱中,固定相起到分离化合物的作用。

流动相或称为载气,常用的有氢气、氦气等,其作用是将挥发性物质带到色谱柱的进样口,并通过柱内的固定相逐步分离。

3.保持时间和分离度:不同化合物在色谱柱中停留的时间不同,称为保持时间。

通过测量不同保持时间的化合物,可以实现它们的分离和定量。

分离效果好坏可通过分离度来衡量,分离度越大,代表化合物分离得越好。

4.检测器和信号记录:气相色谱检测器根据化合物与其相互作用引起的某种物理或化学变化来检测目标化合物,并将其转化为电信号进行记录。

常用的气相色谱检测器有火焰离子化检测器(FID)、质谱检测器(MS)等。

2. 气相色谱的应用气相色谱在各个领域均有广泛的应用,以下列举了几个典型的应用领域:(1) 医药化学•药物分析:气相色谱可用于药物分析,例如药物含量的测定、相关物质的检测等。

这对于药品质量控制和药物研究非常重要。

•药代动力学研究:通过气相色谱对人体内药物及其代谢产物的测定,可以研究药物在体内的代谢过程和动力学参数,为临床用药提供依据。

(2) 环境分析•空气污染监测:气相色谱可以用于监测大气中的污染物,例如挥发性有机化合物(VOCs)、亚甲基双(苯并[c]环戊二烯)-4,4’-二异氰酸酯(MDI)等。

这对于环境保护和空气质量控制至关重要。

•水质分析:气相色谱可用于水质中有机物的分析,例如苯酚、挥发性有机酸等。

它可以快速、准确地检测水中的有机物,为水质监测和水源保护提供帮助。

简述气相色谱仪的原理组成及应用

简述气相色谱仪的原理组成及应用

简述气象色谱仪的原理组成及应用气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。

首先我们对气象色谱仪进行探讨:1 气象色谱流程与分离原理气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。

由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。

气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。

可用流程方框图表示,如下图:2 气象色谱仪的基本组成和核心部分2.1气路控制系统主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。

气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。

2.3 色谱柱和柱箱色谱柱的作用就是分离混合物样品中的有关组分。

是色谱分析的关键部分,主要有填充柱和毛细柱两大类。

色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。

柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。

2.4 检测器检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。

检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。

一般色谱仪的检测器都有热导检测器和氢焰检测器:A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。

色谱仪(气相检测)

色谱仪(气相检测)

第三章色谱仪(3.2.1)3.1 各种色谱仪流程及主要部件1. 气相色谱仪流程2. 高效液相色谱仪流程及其主要部件3.离子色谱仪4. 超临界流体色谱仪(SFC)5. 毛细管电泳仪3.2 气相色谱检测器一、检测器特性1.检测器类型2.检测器性能评价指标二、检测器工作原理及其应用1. 热导池检测器(TCD)2. 氢焰离子化检测器(FID)3. 氮磷检测器NPD(热离子化检测器TID)4. 火焰光度检测器(FPD)(flame photometric detector)5. 电子俘获检测器(electron capture detector ECD)6. 多检测器组合3.3 高效液相色谱检测器第三章色谱仪3.2 气相色谱检测器工作原理及其应用一、检测器特性1.检测器类型按样品破坏与否分:破坏型检测器:组分在检测过程中其分子形式被破坏,为破坏型检测器,如FID、NPD、FPD等;非破坏型检测器:组分在检测过程中仍保持其分子形式,为非破坏型检测器,如TCD等。

按响应值与浓度还是质量有关可分为:浓度型检测器:测量的是载气中通过检测器组分浓度瞬间的变化,检测信号值与组分的浓度成正比。

如:TCD;ECD;其峰高正比于流出组分的浓度,进样量一定时,峰高基本上与流速无关,峰面积与流速成反比,即改变载气速度时只是改变了组分通过检测器的速度,改变了其半峰宽,其浓度不变,峰高不变;质量型检测器:测量的是载气中某组分进入检测器的速度变化,即检测信号值与单位时间内进入检测器组分的质量成正比。

如:FID,NPD、FPD等;峰高随载气流速的增加而增大,当组分量一定时,在一定的载气流量范围内,改变载气流速时,改变了单位时间内进入检测器的组分量,流速越快峰越窄越高,但峰面积保持常数。

按不同类型化合物响应值的大小分:通用型检测器:TCD;检测器对不同化合物的响应值基本相当;专用型检测器:ECD;2.检测器性能评价指标●噪声与漂移:要求无组分通过时稳定而无波动;●灵敏度与检测限:要求痕量组分通过就有响应;●通用性与选择性:在某些情况下希望对进入检测器的所有组分均有响应,而在另一些情况下,希望仅对某种化合物有响应;●希望保持高效毛细管柱的分离效能,就有柱后谱带不变宽的要求;●希望谱带快速通过检测器时,峰形不失真,就有检测器的响应时间的要求;●响应因子、线性和线性范围:为了定量准确可靠灵敏度与检测限响应值(或灵敏度)S:在一定范围内,信号E与进入检测器的物质质量m呈线性关系:E = S mS = E / m单位:mV/(mg / cm3);(浓度型检测器)mV /(mg / s);(质量型检测器)S表示单位质量的物质通过检测器时,产生的响应信号的大小。

常见气相色谱检测器及应用范围

常见气相色谱检测器及应用范围

常见气相色谱检测器及应用范围
气相色谱检测器是用于检测气相色谱分离出的成分的设备。

以下是一些常见的气相色谱检测器及其应用范围:
1. 热导检测器(TCD):通用性好,几乎对所有物质都有响应,常用于检测永久性气体和低沸点有机物。

2. 火焰离子化检测器(FID):对大多数有机物有高灵敏度响应,是应用最广泛的检测器之一,适用于检测烃类、醇类、酮类等有机物。

3. 电子捕获检测器(ECD):选择性高,对电负性物质如卤代烃、含氮化合物等有很高的灵敏度,常用于检测农药、环境污染物等。

4. 火焰光度检测器(FPD):对含硫、含磷化合物有高选择性和高灵敏度,常用于检测硫化物、磷化物等。

5. 质谱检测器(MSD):具有高灵敏度和高选择性,能够提供化合物的分子量和结构信息,广泛应用于复杂混合物的分析。

这些检测器在气相色谱分析中具有不同的特点和优势,可以根据分析的需求选择合适的检测器。

气相色谱检测器的应用范围涵盖了环境监测、食品分析、医药研究、化工等多个领域。

气相色谱法及其在药物分析中的应用

气相色谱法及其在药物分析中的应用

气相色谱法及其在药物分析中的应用一、概述气相色谱法(Gas Chromatography,简称GC)是一种高效、灵敏且应用广泛的分离分析技术,其基本原理是利用不同物质在两相——固定相和流动相中分配系数的差异,当两相做相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各组分达到分离的目的。

在气相色谱法中,流动相通常为惰性气体,如氮气、氦气等,而固定相则可以是固体或液体,根据分析需求进行选择。

药物分析是气相色谱法的重要应用领域之一。

药物作为一类特殊的化学物质,其纯度、组成和含量对于药物的质量和疗效具有至关重要的影响。

气相色谱法凭借其高分离效能、高灵敏度以及良好的选择性,在药物分析中发挥着不可替代的作用。

通过气相色谱法,可以对药物进行定性分析,确定其化学成分;也可以进行定量分析,准确测定药物中各组分的含量。

随着科学技术的不断进步,气相色谱法也在不断发展完善。

通过与质谱技术(MS)联用,形成气相色谱质谱联用技术(GCMS),不仅可以实现药物的定性分析,还可以进行更深入的结构分析和代谢研究。

新型的检测器、色谱柱以及样品前处理技术的开发和应用,也进一步拓展了气相色谱法在药物分析中的应用范围。

气相色谱法作为一种强大的分离分析技术,在药物分析领域具有广泛的应用前景。

随着技术的不断进步和创新,相信气相色谱法将在未来的药物分析中发挥更加重要的作用。

1. 气相色谱法的基本原理及发展历程气相色谱法(Gas Chromatography,GC)的基本原理是利用不同物质在两相间分配系数的差异,当两相作相对运动时,这些物质随流动相移动,在两相间进行反复多次的分配,使各组分得到分离,从而达到分析的目的。

其固定相一般是一种具有吸附活性的固体或是涂覆在惰性载体上的液体,流动相则是一种惰性气体,样品通过进样口被引入色谱柱,并在流动相携带下沿色谱柱向前移动。

由于不同物质与固定相的作用力不同,它们在色谱柱中的移动速度也会有所差异,从而实现分离。

气相色谱检测器原理

气相色谱检测器原理

气相色谱检测器原理
气相色谱检测器是一种用于分析气体混合物中成分的仪器。

它可以根据待测物在特定条件下与检测器之间的相互作用产生的物理或化学变化来检测和定量化合物。

常见的气相色谱检测器包括火焰离子化检测器(FID)、热导
检测器(TCD)、电子捕获检测器(ECD)、氮磷检测器(NPD)、质谱检测器(MS)等。

以火焰离子化检测器为例,其原理是利用化合物在燃烧火焰中的电离产生的离子流进行检测。

当化合物进入火焰时,分子被燃烧产生离子和电子。

离子被电场加速并收集到电极上,形成电流。

通过测量这个电流的大小和时间来确定化合物的浓度。

热导检测器的原理是利用待测物导热性与载气导热性的差异来检测。

待测物与载气混合进入热元件,由于待测物的导热性较低,导致热元件温度发生变化。

通过测量和记录这种温度变化,可以确定待测物的浓度。

电子捕获检测器则利用待测物对电子的俘获作用来进行检测。

待测物与气体漂移进入电子源时,电子会与待测物发生反应,并将其电离和俘获。

通过测量电信号的强度和持续时间,可以确定待测物的浓度。

气相色谱检测器的选择取决于待测物的特性和分析要求。

不同的检测器具有不同的检测灵敏度、选择性和适应性。

在实际应
用中,可以根据需要选择合适的检测器以获得准确和可靠的分析结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱检测器的分类和工作原理及应用范围
待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。

气相色谱监测器根据其测定范围可分为:
通用型检测器:对绝大多数物质够有响应;
选择型检测器:只对某些物质有响应;对其它物质无响应或很小。

根据检测器的输出信号与组分含量间的关系不同,可分为:
浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。

质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比
目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。

一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)
(一)灵敏度——应答值
单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。

响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示:
(3)
由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。

气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:
对于浓度型检测器:
当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;
当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;
对于质量型检测器:当试样为液体和气体时,S的单位均为:mV·s/g,即每
秒钟有1g的组分被载气携带通过检测器所产生的mV数。

灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。

由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。

(二)检测限(敏感度)
噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以R N表示。

噪声大,表明检测器的稳定性差。

检测限——是指检测器产生的信号恰是噪声的二倍(2R N)时,单位体积或单位时间内进入检测器的组分质量,以D 表示。

灵敏度、噪声、检测限三者之间的关系为:
(4)
检测限的单位:对于浓度型检测器为mg/ml或 ml/ml;对质量型检测器为:g/s。

检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。

D 越小,表明检测器越敏感,用于痕量分析的性能越好。

在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。

所以常用最低检出量表示:
图2 检测器噪声
(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以Q0 表示。

(三)线性范围
检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。

通常用最大允许进样量Q M与最小检出量Q0的比值来表示。

比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。

二.(氢)火焰离子化检测器hydrogen flame ionization detector、FID
火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。

一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。

1.火焰离子化检测器的结构:该检测器主要是由离子室、离子头和气体供应三部分组成。

结构示意图见下图。

图3 火焰离子化检测器
离子室是一金属圆筒,气体入口在离子室的底部,氢气和载气按一定的比例混合后,由喷嘴喷出,再与助燃气空气混合,点燃形成氢火焰。

靠近火焰喷嘴处有一圆环状的发射极(通常是由铂丝作成),喷嘴的上方为一加有恒定电压(+300V)的
圆筒形收集极(不锈钢制成),形成静电场,从而使火焰中生成的带电离子能被对应的电极所吸引而产生电流。

2. 火焰离子化检测器的工作原理
由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。

当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。

当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。

需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。

该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。

火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。

三.电子捕获检测器electron capture detector
1.电子捕获检测器的结构:早期电子捕获检测器由两个平行电极制成。

现多用放射性同轴电极。

在检测器池体内,装有一个不锈钢棒作为正极,一个圆筒状-放射源(3H、63Ni)作负极,两极间施加流电或脉冲电压。

图4 电子捕获检测器
2. 电子捕获检测器的工作原理
当纯载气(通常用高纯N2)进入检测室时,受射线照射,电离产生正离子(N2+)和电子e-,生成的正离子和电子在电场作用下分别向两极运动,形成约10-8A的电流——基流。

加入样品后,若样品中含有某中电负性强的元素即易于电子结合的分子时,就会捕获这些低能电子,产生带负电荷阴离子(电子捕获)这些阴离子和载气电离生成的正离子结合生成中性化合物,被载气带出检测室外,从而使基流降低,产生负信号,形成倒峰。

倒峰大小(高低)与组分浓度呈正比,因此,电子捕获检测器是浓度型的检测器。

其最小检测浓度可达10-14g/ml,线性范围为103左右。

电子捕获检测器是一种高选择性检测器。

高选择性是指只对含有电负性强的元素的物质,如含有卤素、S、P、N等的化合物等有响应.物质电负性越强,检测灵敏度越高。

四. 火焰光度检测器flame photometric detector
火焰光度检测器是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。

1.火焰光度检测器的结构
燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等。

图5 火焰光度检测器
2. 工作原理
当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,最大吸收波长为394nm。

通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。

此检测器对含S化合物不成线性关系而呈对数关系(与含S化合物浓度的平方根成正比)。

当含磷化合物氧化成磷的氧化物,被富氢焰中的H还原成HPO裂片,此裂片被激发后发射出480~600nm的特征分子光谱,最大吸收波长为526nm。

因发射光的强度(响应信号)正比于HPO浓度。

火焰光度检测器
火焰光度检测器是气相色谱仪用的一种对含磷、含硫化合物有高选择型、高灵敏度的检测器。

试样在富氢火焰燃烧时,含磷有机化合物主要是以HPO碎片的形式发射出波长为526nm的光,含硫化合物则以S2分子的形式发射出波长为394nm的特征光。

光电倍增管将光信号转换成电信号,经微电流放大纪录下来。

此类检测器的灵敏度可达几十到几百库仑/克,最小检测量可达10-11克。

同时,这种检测器对有机磷、有机硫的响应值与碳氢化合物的响应值之比可达104,因此可排除大量溶剂峰及烃类的干扰,非常有利于痕量磷、硫的分析,是检测有机磷农药和含硫污染物的主要工具。

相关文档
最新文档