二次函数概念说课.课件演示教学

合集下载

《二次函数》课件

《二次函数》课件

一二
元次
二函
次数
方与

抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)

沪科版九年级上册21.1.1二次函数的概念(共17张PPT)

沪科版九年级上册21.1.1二次函数的概念(共17张PPT)

1 x2
不是
(3) y x(1 x)

(4) y (x 1)2 x2 不是
先化简后判断
知识巩固
2. 把下列函数化成二次函数的一般式,并分别说出二);
解:(1)y=(x-2)(x-3)=x2-5x+6; 1,-5,6
(2)y=(x+2)(x-2)-2(x-1)2; (3)y=-2(x+3)2.
S= x(20-x) =-x2+20
y=(190-10x)(15+x) =-10x2+40x+2850
上述三个问题中的函数表达式具有哪些共同的特征? 经化简后都具有y=ax²+bx+c(a,b,c是常数, a≠0 )的形式.
二次函数的相关概念
一般地,表达式形如 y=ax²+bx+c (其中a,b,c是常数,a≠0)的函数叫做x
(2)y=(x+2)(x-2)-2(x-1)2=-x2+4x-6; -1,4,-6 (3)y=-2(x+3)2=-2x2-12x-18. -2,-12,-18
例题分析
例1 关于x的函数 y (m 1)xm2m 是二次函数,求m的值.
解 根据题意得m+1≠0且 m²-m=2,解得m=2.
注意:二次函数的二次项系数不能为零.
课堂小结
y=ax²+bx+c(a,b,c是常数, a≠0 )
6. 列出函数表达式,并求自变量的取值范围. (1)一块矩形草地的长为100m,宽为80m,欲在中间修筑两条互相垂直的宽为 x(m)的小路,这时坪的面积为y(m²).求y与x的函数关系式,并求出x的取值范围.
(2)某商品每件成本40元,以单价55元试销,每天可售出100件。根据市场预 测,定价每减少1元,销售量可增加10件. 求每天销售该商品获利金额y(元)与定 价x(元)之间的函数关系.

二次函数课件 二次函数PPT

二次函数课件  二次函数PPT

y 2(x 2)2 3
向右平移
向下平移3
2个单位
个单位
y 2x2 向左平移 y 2(x 2)2 向上平移3 y 2(x 2)2 3
2个单位
个单位
(检测学生对该节课的掌握程度,并对该节课的内 容进行巩固。)
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我 们可以利用配方法推导出它的对称轴和 顶点坐标.
画图: 步骤:列表,描点,连线(光滑曲线)
y 3x2 y 3(x 1)2
老师指导学生按照步 骤画出图像,然后让 他们互相讨论,再做 总结,让学生在动手 操作中的过程中学到 知识,感受学习带来 的乐趣。
观察两个图形有什么关系?
老师给予适当的提示,引发学生思考,培养学生勤于思考的习惯。
函数 y 3x2 的图像
式是(A)
4
A、y 1 (x 2)2 2
4
B、y
1 4
(x
2)2
2
C、y 1 (x 2)2 2 4
D、y
1 4
(x
2)2
2
3、抛物线y=3x²先向上平移2个单位,后向右平移3个
单位,所得到的抛物线是( D )
A、y=3(x+3)²-2
B、 y=3(x+3)²+2
C、y=3(x-3)²-2
一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图 象:y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴 整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左 平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平 移;当k<0时,向下平移)得到的.

二次函数说课PPT课件

二次函数说课PPT课件
22.1.1 二次函数
教材及学情分析 教学目标 教学重难点 教学方法与教学手段 教学过程 教学预测
板书展示
教材及学情分析
本章是学生在学习了一次函数的基础上,继续进行函 数的学习,是对函数知识的完善与提高,为高中继续学习 函数作准备.二次函数的概念是通过具体问题引入的,从 现实生活或具体情境中抽象出数学问题,用数学符号建立 函数中的数量关系和变化规律.这些内容的学习有助于学 生初步形成建模思想,提高学习数学的兴趣和应用意识.
联系生活,探索新知
设计意图:通过辨析,使 学生更深刻地认识二次函 数的概念,判断一个函数 是否为二次函数的关键是 看二次项系数a是否为0, 突破本节课的难点.
设计意图:提高学生分析问 题、解决问题的能力,让学 生在独立思考的基础上,参 与对问题的讨论,锻炼学生 的表达能力,培养学生的合 作意识,引导学生感受数学 的价值.
教学过程
创设情境 引入新课
联系生活 探索新知
反思总结 布置作业
游戏闯关 巩固新知
动手实践 应用新知
学生活动:自由设计,合作分享.
教师活动:通过实物投影把学生的设计的题目展示出来.
设计意图:这样的设计既促使学生灵活应用新知,又为学生创设 了一个充分展现创造力的空间,提供了一个实践与创新的机会,同时 也为学生搭建了一个展示自我的平台,获得成功的体验和与他人分享 的喜悦.
教学过程
创设情境 引入新课
联系生活 探索新知
反思总结 布置作业
游戏闯关 巩固新知
反动思手总实结践 布应置用作新业知
联系生活,探索新知
师生活动: 独立思考,小组讨论, 师生交流,共同总结, 类比思想,得出定义.
设计意图:通过几个实际问题引出二次函数的表达式,与一次函数对比,引 发学生的认知冲突,实现从一次函数到二次函数的顺利过渡突出本节课的重 点并引入课题.

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

《二次函数y=ax2的图象》说课稿课件

《二次函数y=ax2的图象》说课稿课件

y=x2的图象
作二次函数y=x2的图象。
(1)选择适当x值,并计算相应的y
y=x2
值,完成下表:
(2)在直角坐标系中描点。
(3)用光滑的曲线连接各点,便得
到函数y=x2的图象。
在这个环节我将引导学生通过列表、描点、连 线的方式做出最简单的二次函数y=x2的图象,做图 的过程将通过多媒体课件给学生详细讲解并把最后 的图形展示给学生。
人教版九年级数学下册第二十六章 第一节第二课时
二次函数y=ax2的 图象

一、教材分析

二、教法学法分析


三、教学过程分析

四、评价分析
(一) 教材的地位和作用 (二) 教学目标 (三) 教学重点、难点
(一)教材的地位和作用
在学习本课时之前,学生已经学习了一些函数的 图象与性质,以及二次函数的相关知识,为本节课的 学习打好了基础。本节课研究最简单的二次函数 y=ax2的图象,是学生学习函数知识的过程中的一个重 要环节,既是前面所学知识的延续,又是探究其它二 次函数的图象及其性质的基础,起到承上启下的作用 。
知识再现
y=x2的图象

观察

例题

探究

归纳

课堂练习
课堂小结
布置作业
知识再现
(1)二次函数的一般形式是什么?特殊形式是什么? (2)通常怎样画一个函数的图象?一次函数的图象是什么? 反比例函数的图象是什么? (3)二次函数的图象是什么形状呢?
首先是知识再现环节,由于学生已经学习过一些函数的 图象与性质,以及二次函数的相关知识。本节课我将通过提 问的方式复习旧的知识和引入新课,目的是通过这些问题让 学生回忆起二次函数的形式和用描点法画图的一般步骤,为 本节课的学习做好铺垫。

二次函数图象和性质省公开课获奖课件说课比赛一等奖课件

二次函数图象和性质省公开课获奖课件说课比赛一等奖课件

y 1 x2
-1
2
-2
(2) 描点
-3
(3) 连线 y x2
-4
-5
y 2 x2
函数y=-21 x2,y=-2x2旳图象与函数y=-x2 (图中蓝线图形)旳图象相比,有什么共同点和不同点?
共同点: 开口都向下; 顶点是原点而且是抛物线
旳最高点,对称轴是 y 轴
-3 -2
在对称轴旳左侧, y伴随x旳增大而增大。
3.当a<0时,开口向下,顶点是最高点, a值越大,抛物线开口越大; 在对称轴旳左侧,y随x旳增大而增大; 在对称轴旳右侧,y随x旳增大而减小。
巩固 1、说出下列函数图象旳性质:
(1) y 3x2 (2) y 3x2 (3) y 1 x2
3
2、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线旳函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6旳点旳坐标。
-4
-6
?
-8
-10 y=-x2
y
y x2
当x<0 (在对称轴旳 左侧)时,y伴随x旳增大而 增大.
当x>0 (在对称轴 旳右侧)时, y伴随 x旳增大而减小.
当x= -2时,y= -4
当x= -1时,y= -1
抛物线y= -x2在x轴旳 下方(除顶点外),顶点 是它旳最高点,开口 向下,而且向下无限 伸展;当x=0时,函数y 旳值最大,最大值是0.
当x=1时,y= -1 当x= 2时,y= -4
y ax2
二次函数y=ax2旳性质
1.抛物线y=ax2旳顶点是原点, y ax2 对称轴是y轴.
2.当a>0时,抛物线y=ax2在x轴旳上方(除顶点外), 它旳开口向上,而且向上无限伸展;

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

二次函数说课ppt课件ppt课件ppt课件

二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。

初三二次函数课件ppt课件

初三二次函数课件ppt课件

02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。

二次函数(1)PPT课件(人教版)

二次函数(1)PPT课件(人教版)
九年级上册人教版数学
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
1.一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫做 __二__次__函__数_,其中 x 是自变量,a,b,c 分别是函数解析式的_二__次__项___系数、 一__次__项___系数和常数项.
14.边长为4 m的正方形中间挖去一个边长为x(m)(x<4)的小正方形,剩 余的四方框的面积为y(m2),则y与x之间的函数关系式为y_=__1_6_-__x_2_(_0_<__x_<_,4) 它是_二__次____函数.

15.若y=(m-1)xm2+2m-1+3. (1)m取什么值时,此函数是二次函数? (2)m取什么值时,此函数是一次函数?
解 : 降 低 x 元 后 , 所 销 售 的 件 数 是 (500 + 100x) , 则 y = (13.5 - 2.5 - x)(500+100x),即y=-100x2+600x+5500(0<x≤11)
18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P 从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开 始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B 同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.
C.y=12(x-1)(x+4)不是二次函数 D.在 y=1- 2x2 中,一次项系数为 1
3.若y=(a+3)x2-3x+2是二次函数,则a的取值范围是__a_≠_-__3___. 4.对于二次函数y=1-3x+2x2,其二次项系数、一次项系数及常数 项的和是__0__. 5.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3. (1)当___a≠__2____时,x,y之间是二次函数关系; (2)当___a_=__2_且__b_≠_-__2_____时,x,y之间是一次函数关系.

二次函数的解析式课件

二次函数的解析式课件

弹性力学问题
在弹性力学中,二次函数 可以用于描述物体的应力 和应变关系,以及弹性体 的变形和稳定性等问题。
04
二次函数解析式的性质
二次函数的开口方向与a的关系
总结词:a的正负决定二次函数的开口方 向 a>0时,开口向上;a<0时,开口向下。
a的符号决定了二次函数的开口方向,这 是判断二次函数增减性的关键。
几何问题
二次函数与几何图形密切相关,可以 用于研究平面几何、立体几何中的一 些问题,例如抛物线、椭圆、双曲线 的性质和图像。
在物理问题中的应用
01
02
03
运动学问题
二次函数可以用于描述物 体在重力作用下的运动规 律,例如自由落体运动、 抛体运动等。
波动问题
在波动现象中,例如声波 、光波等,二次函数可以 用于描述波的传播规律和 性质。
参数的取值还影响抛物线 的顶点位置:顶点的x坐标 为-b/2a,y坐标为(4acb^2)/4a。
03
二次函数解析式的应用
在生活中的实际应用
金融领域
二次函数可以用于描述股 票价格、债券收益率等金 融数据的变动规律,帮助 投资者进行风险评估和预
测。
建筑领域
在建筑设计中,二次函数 可以用于计算结构物的受 力分析、稳定性等,以确 保建筑的安全性和稳定性
最小值为c-b^2/4a,此时二次函数开 口向上;最大值为c-b^2/4a,此时二 次函数开口向下。
二次函数的最小值或最大值在对称轴 上取得,即x=-b/2a处。
05
二次函数解析式的求解方法
配方法求解二次函数解析式
总结词
通过配方将二次函数转化为顶点式,便于分析函数的开口方向、对称轴和顶点坐标。
详细描述

九年级数学上册《二次函数》优秀课件

九年级数学上册《二次函数》优秀课件
二次函数的意义. 会画二次函数图象.
描点法画二次函数 y = ax2 的图象.
数与形相互联系.
实际问题
要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花 圃,怎样的围法才能使围成的花圃的面积最大?
1.设矩形花圃的周长不变,垂直于墙的一边AB的长为x m, 先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的 面积 y m2.试将计算结果填写在下表的空格中:
AB的长x(m) 1 2 3 4 5 6 7 8 9
BC的长(m)
12
面23积..x我y的(们值发m是现2否),可当以AB任的意长取(?有x)限确定定4范8后围,吗矩?形的面积(y)
也随之确定,即y是x的函数,试写出这个函数的关系式.
探究
观察函数关系式
y 100x2 100,x 200
(1)函数关系式的自变量有几个?
二次函数
学习目标
【知识与能力】
理解二次函数的意义. 会用描点法画出二次函数 y = ax2 的图象. 知道抛物线的有关概念.
【过程与方法】
通过二次函数的教学进一步体会研究函数的一般方 法.
加深对数形结合思想的认识.
【情感态度与价值观】
通过变式教学,培养学生思维的敏捷性、广阔性、深刻性.
学习重、难点
观察姚明的投篮……
再看一下林书豪的投篮. 二次函数的图象是不是跟图中他们的投篮路线很像?
知识要点
抛物线:
像这样的曲线通常叫做抛物线.
二次函数的图象都是抛物线.
一般地,二次函数
y ax2 b的x图象c叫做抛
物线 y ax2 bx c.
抛物线
抛物线
抛物线
对称轴、顶点、最低点、最高点
y=ax2 (a>0) (0,0)

二次函数y=ax2图像和性质省公开课获奖课件说课比赛一等奖课件

二次函数y=ax2图像和性质省公开课获奖课件说课比赛一等奖课件
2.当a>0时,抛物线y=ax2在x轴旳上方(除顶点外),它旳开 口向上,而且向上无限伸展;
当a<0时,抛物线y=ax2在x轴旳下方(除顶点外),它旳开 口向下,而且向下无限伸展.
3.当a>0时,在对称轴旳左侧,y伴随x旳增大而减小;在对称轴 右侧,y伴随x旳增大而增大.当x=0时函数y旳值最小. 当a<0时,在对称轴旳左侧,y伴随x旳增大而增大;在对称轴 旳右侧,y伴随x增大而减小,当x=0时,函数y旳值最大.
二次函数y=ax2旳图象和性质
学习目的
驶向胜利 旳彼岸
1、会用描点法画二次函数y=x2和 y=-x2旳图象;
2、根据函数y=x2和y=-x2旳图象, 直观地了解它旳性质.
数形结合,直观感受
•在二次函数y=x2中,y随x旳变化而变化旳规律
是什么? •你想直观地了解它旳性质吗?
你会用描点法画二次函数y=x2旳图象吗?
(懂得4)当旳x?取什么值时,y旳值最-6大?最大值是什么?你是怎样
-8 y=-x2
(5)图象是轴对称图形吗?-假10如是,它旳对称轴是什么?请 你找出几对对称点,并与同伴交流.
二次函数y= -x2旳 图象形如物体抛射 时所经过旳路线,我 们把它叫做抛物线.
这条抛物线有关 y轴对称,y轴就 是它旳对称轴.
-2
y x2
二次函数y=x2旳 图象形如物体抛射 时所经过旳路线,我 们把它叫做抛物线.
这条抛物线有关 y轴对称,y轴就 是它旳对称轴.
对称轴与抛物 线旳交点叫做 抛物线旳顶点.
y x2
当x<0 (在对称轴旳 左侧)时,y伴随x旳增大而
减小.
当x>0 (在对称轴旳 右侧)时, y伴随x旳增大而

二次函数的说课稿ppt课件

二次函数的说课稿ppt课件

•3、猜想验证(重点) • (把书上例2改造,保持学习的连续性)猜想y=(x+1)2,
y=(x-1)2的图象与y=x2图象的关系,并作图验证,完成下表 。
•设计意图:激活思维,加深体 • 通过例1验的教学,学生学习的主动性已被调动,思维正
趋活跃,此时,适时地让学生进行猜想,激活学生的思维。 猜想的结果或许很多,但老师并不急于表态,而是引导学生 进行作图验证,从而使学生经历猜想、验证等数学活动,形 成自己对本节课重点内容的理解和有效的学习策略,有利于 培养学生的数学直觉和感悟能力,加深对数学学习的体验, 进一步突破重难点。
•二、教法学法分析
• 1` 教法(关键词:情境、探究、分层)
• 基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法
和“启发式”教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发 下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过 程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生 能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中 进行分层施教。

• ②学生个性活泼,积极性高,初步具有对数学问 题进行合作探究的意识与 能力。
• • ••
③初三学生程度参差不齐,两极分化已形成。
•5、教材处理
• 由于本节课的教学要借助图象来完成,例题间又缺乏过 渡,教材知识点较为抽象,我对教材作了以下处理: • ①在例题教学前安排了一组准备性练习。 • ②把例2进行改造,使例2的函数解析式与例1的相近。 • ③增设了一道情景课堂作业。 •目的:调整学生的思维状态,作好知识准备,提高课堂效率 ;保持学习的连续性,降低教材难度,便于问题的探究和重 难点的突破;让学生体验学习乐趣。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数是研究两个变量在某变化过程中的相互关 系,我们已学过正比例函数,反比例函数和一 次函数。看下面三个例子中两个变量之间存在 怎样的关系。

1、(1)圆的半径是r(cm)时,面积s (cm²)
与半径之间的关系是什么?
解:s=πr²(r>0)

2、用周长为20m的篱笆围成矩形场地,场
地面积y(m²)与矩形一边长x(m)之间的关系是什
数。但在实际问题中,自变量的取值范围是使实际问题 有意义的值。(如例1中要求r>0) 为什么二次函数定义中要求a≠0 ? (若a=0,ax2+bx+c就不是关于x的二次多项式了) 4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
也很容易分辨出哪个是二次函数。通过简单题目的练习,让学 生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数 学的信心。
五、反馈矫正,注重参与
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周 长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生 在实践中感悟什么样的函数是二次函数,将理论知识 应用到实践操作中。
四、启发诱导,初步应用
1.已知一个直角三角形的两条直角边长的和是10cm。 (1)当它的一条直角边的长为4.5cm时,求这个直角三角形
的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为 xcm,求 S关于x的函数关系式。
二次函数的概念说课稿
五龙口二中
一:教材分析
1.教材的地位和作用 二次函数的概念是人教版九年级数学下册第二十
六章第一节的内容。这节课是在学生已经学习了一次函 数、正比例函数、反比例函数的基础上,来学习二次 函数的概念。二次函数是初中阶段研究的最后一个具 体的函数,也是最重要的,在历年来的中考题中占有 较大比例。同时,二次函数和以前学过的一元二次方 程、一元二次不等式有着密切的联系。进一步学习二 次函数将为它们的解法提供新的方法和途径,并使学 生更为深刻的理解“数形结合”的重要思想。而本节 课的二次函数的概念是学习二次函数的基础,是为后 来学习二次函数的图象做铺垫。所以这节课在整个教 材中具有承上启下的重要作用。
么?
解: y=x(20/2-x)=x(10-x)=-x²+10x (0<x<10)
3、设人民币一年定期储蓄的年利率是x,一年到 期后,银行将本金和利息自动按一年定期储蓄转 存。如果存款额是100元,那么请问两年后的本息 和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)² =100(x²+2x+1) = 100x²+200x+100(0<x<1) 教师提问:以上三个例子所列出的函数与一次函
由例1可知,b和c均可为零.Leabharlann 若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊
形式,而y=ax2+bx+c是二次函数的一般形
式.
【设计意图】这里强调对二次函数概念的理解, 有助于学生更好地理解,掌握其特征,为接下 来的判断二次函数做好铺垫。
三、 教学重点与难点
重点:对二次函数概念的理解。 难点:由实际问题确定函数解析式和自 变量的取值范围。
四、学情分析
学生对函数已不陌生,在初二已经学过正比 例函数,一次函数,反比例函数,因此我从 三个方面:
1、从创设情境入手,通过知识再现,孕伏教 学过程
2、从学生活动出发,通过以旧引新,顺势教 学过程
数有何相同点与不同点?
【设计意图】通过三个具体事例,让学生列出关 系式,启发学生观察,思考,归纳出二次函数与 一次函数的联系: (1)函数解析式均为整式(这表 明这种函数与一次函数有共同的特征)。(2)自变 量的最高次数是2(这与一次函数不同)。
二、得出定义,揭示内涵
以上函数不同于我们所学过的一次函数,正比例函数, 反比例函数,我们就把这种函数称为二次函数。
三、手脑并用,深入理解
判断:下列函数中哪些是二次函数?哪些不是二次函

数?若是二次函数,指出a、b、c.
(1)y=3(x-1)²+1
(2) y x 2
1
x
(3)s=3-2t²
(4)y=(x+3)²- x²
(5)s=10πr²
(6)y=2²+2x
(7)y x25x6 (8)y=x4+2x2+1(可指出
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常 数) 的函数叫做二次函数。
巩固对二次函数概念的理解: 强调“形如”,即由形来定义函数名称。二次函数即y
是关于x的二次多项式(关于的x代数式一定要是整式)。 在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实
【设计意图】此题由具体数据逐步过渡到用字母表示关系式, 让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。 (1)分别写出S与x,V与x之间的函数关系式子; (2)这两个函数中,那个是x的二次函数? 【设计意图】简单的实际问题,学生会很容易列出函数关系式,
3、利用探索、研究手段,通过思维深入,领 悟教学过程
来激发学生兴趣。
五:教学过程
(一)温故知新,激发情趣 1.什么叫函数?我们之前学过了那些函数? (一次函数,正比例函数,反比例函数) 2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y=k/x, k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么? 常量是什么?为什么要有k≠0的条件? k值对函数性 质有什么影响? 【设计意图】复习这些问题是为了帮助学生弄清自变 量、函数、常量等概念,加深对函数定义的理解.强 调k≠0的条件,以备与二次函数中的a进行比较.
相关文档
最新文档