叶绿体的结构PPT课件
合集下载
用高倍显微镜观察叶绿体和细胞质的流动ppt(共32张PPT)

玻片 说明:细胞内的水通过细胞膜排出
2、植物细胞的质体(p5) 刮去花生子叶细胞少许置于载玻片水滴中央,加1滴苏丹III染色,制成临时装片观察。
5、移动装片时要明确“倒像原理”。
3、观察 低倍镜:找到叶片细胞 蔗糖溶液中细胞壁与细胞膜分离了
使用光学显微镜观察叶片表皮细胞
3、用削尖的铅笔(一般用3H),根据观察到的物象轻轻地画出轮廓,经修改后再正式画好,线条要光滑均匀,衔接自然。
叶绿体在细胞中的分布与结构
刮去花生子叶细胞少许(置 3)脂肪的观察
于载玻片水滴中央,加1
滴苏丹III染色,制成 临时装片观察。
细胞内大的具同心圆结 构的就是淀粉粒
较小的颗粒,被染成金 黄色的球形或晶体结构
的,是糊粉粒
橙红色的是脂肪
普通光学显微镜的构造
粗准焦螺旋 细准焦螺旋
镜臂
镜座
目镜
镜筒
转换器 物镜 聚光器
5、移动装片时要明确“倒像原理”。即:在显微镜下 观察到的物体是倒像。因此,要使物象向上移动,就 要向下移动装片;要使物象向左移动,就要向右移动 装片。
绘图方法及注意事项
1、实事求是,科学准确,简单明了。
2、图的大小要是适中,在纸的位置一般要偏左上方,以便在右 侧和下方留出注字和写图名的地方。
3、用削尖的铅笔(一般用3H),根据观察到的物象轻轻 地画出轮廓,经修改后再正式画好,线条要光滑均匀,衔 接自然。 4、图中较暗的地方要用小点来表示,越暗的地方小点越 密集,绝对不能用阴影表示。 5、字尽量注在图的右侧,要用尺子引出水平的指示线, 然后注字。 6、最后在图的下方写上所绘图的名称。
黑藻
高倍镜:观察叶绿体的形态分布
(叶绿体:扁平的椭球形,并散乱地分布在细胞质基质中)
6-2叶绿体

◆线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌。
◆发现介于胞内共生蓝藻与叶绿体之间的结构--蓝小体,其特征在很多方 面可作为原始蓝藻向叶绿体演化的佐证。
不足之处
◆从进化角度,如何解释在代谢上明显占优势的共生体反 而将大量的遗传信息转移到宿主细胞中?
◆不能解释细胞核是如何进化来的,即原核细胞如何演化
P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S
的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还 蛋白(FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子
传给NADP+,形成NADPH。
光合磷酸化
由光照引起的电子传递与磷酸化
作用相偶联而生成ATP的过程,称为
光合磷酸化。 ◆光合磷酸化的类型 ◆光合磷酸化的作用机制
为真核细胞? ◆线粒体和叶绿体的基因组中存在内含子,而真细菌原核 生物基因组中不存在内含子;如果同意内共生起源学说 ,那么线粒体和叶绿体基因组中的内含子从何发生?
非共生起源学说
◆ 主要内容:
真核细胞的前身是一个进化上比较高 等的好氧细菌--原核细胞。它比典型原核细
胞大
---要逐渐增加具有呼吸功能的膜表面
---原核细胞质膜内陷、扩张、分化形成
◆成功之处:解释了真核细胞核被膜的形成
与演化的渐进过程。
不足之处
◆实验证据不多 ◆无法解释为何线粒体、叶绿体与细菌在DNA分 子结构和蛋白质合成性能上有那么多相似之处
◆对线粒体和叶绿体的DNA酶、RNA酶和核糖体
的来源也很难解释。
◆真核细胞的细胞核能否起源于细菌的核区?
内共生起源学说的主要论据
◆基因组在大小、形态和结构方面与细菌相似。 ◆有自己完整的蛋白质合成系统,能独立合成蛋白质,蛋白质合成机制有 很多类似细菌而不同于真核生物。 ◆两层被膜有不同的进化来源,外膜与细胞的内膜系统相似,内膜与繁殖方式相同。
叶绿体形态、结构、分布及发生课件

学习交流PPT
12
四.叶绿体的超微结构
学习交流PPT
13
学习交流PPT
14
四.叶绿体的超微结构
• 双层膜 • 类囊体 • 叶绿体基质
学习交流PPT
15
1. 叶绿体膜
• 外膜:厚6-8nm, 通透性大,含孔蛋白,相对分子质量达104的分子亦可 • 内膜:厚6-8nm, 通透性小,不含孔蛋白,仅允许O2、CO2、H2O分子自
学习交流PPT
3
一.形态、分布及数目
•高等植物叶肉细胞含20-200个叶绿体 •稳定性:高等植物叶肉细胞内叶绿体体积和数目的稳定
•动态性:叶绿体定位(叶绿体在细胞内位置和分布受到的动态调控) 包括叶绿体的移动及移动后在新的最适位置上的“锚定”
躲避响应:叶绿体通过位移避开强光的行为
积聚响应:在光照较弱的情况下,叶绿体汇集到细胞的受光面的行为 动态连接(通过内外膜延伸形成管状突出——基质小管,实
学习交流PPT
24
• 半自主性 起源
学习交流PPT
20
1.叶绿体的半自主性
• 1962年,Ris和Plant在衣藻叶绿体中发现DNA状物质 • 叶绿体DNA(cpDNA)或称质体DNA(ptDNA) • 半自主性:线粒体和叶绿体的功能依赖数以千记的和基因编码的蛋白质
时,这两种细胞器还具有自身遗传物质,编码一小部分必需的RNA和蛋白
叶绿体形态、结构、分布及发生
2013级非师1班2组
李红艳 程鸿敏 陈昆鹏 陈杨 董哲旭 贺蒋勇 金超凡 刘 罗茜 谭新苗 肖开元 袁莉 曾俊岚 张雪
学习交流PPT
1
一.形态、分布及数目
学习交流PPT
2
光学显微镜下观察到的叶绿体
叶绿体形态、结构、分布及发生 PPT

叶绿体形态、结构、分布及发生
1
2013级非师1班2组 李红艳 程鸿敏 陈昆鹏 陈杨 董哲旭 贺蒋勇 金超凡 刘晨 罗茜 谭新苗 肖开元 袁莉 曾俊 岚 张雪
叶绿体形态、结构、分布及发生
一.形态、分布及数目
2
叶绿体形态、结构、分布及发生
3
光学显微镜下观察到的叶绿体
绿色 凸透镜或铁饼状
分布在细胞质膜与液泡间薄层的细胞质中,呈平层排列
部位:生长中的幼叶内 前叶绿体:幼叶中的叶绿体,体积为成熟叶绿体的1/10-1/5,基质内置形成
少数基质类囊体,尚未或正在开始形成基粒类囊体。
分裂机制:分裂环(外环和内环)缢缩 叶绿体分裂装置:所有与叶绿体分裂相关的蛋白组成的分裂功能单位(未知)
叶绿体形态、结构、分布及发生
11
叶绿体形态、结构、分布及发生
17
2. 类囊体
定义:叶绿体内部由内膜衍生而来的封闭的扁平膜囊,主要成分是蛋白质和 脂类(60:40),不饱和脂肪酸含量高,膜流动性强
形成基粒与基质片层(或基质类囊体)
类囊体膜的主要蛋白有:光系统Ⅱ(PSⅡ),Cytb6f复合物,光系统Ⅰ (PSⅠ)及CF0-CF1ATP合酶复合物
叶绿体形态、结构、分布及发生
5
叶绿体形态、结构、分布及发生
光照强度对叶绿体分布及位置影响的示意图
二.叶绿体的分化与去分化
6
叶绿体形态、结构、分布及发生
7
二.叶绿体的分化与去分化
在种子萌发过程中,子叶、叶鞘和真叶细胞中的原质体相继分化叶绿体,这 种分化依赖于光照
分化表现:形态上,体积的增大,内膜系统的形成,叶绿素的累积 生化和分子生物学,叶绿体功能所必需的酶、蛋白质、大分子的
叶绿体形态、结构、分布及发生
1
2013级非师1班2组 李红艳 程鸿敏 陈昆鹏 陈杨 董哲旭 贺蒋勇 金超凡 刘晨 罗茜 谭新苗 肖开元 袁莉 曾俊 岚 张雪
叶绿体形态、结构、分布及发生
一.形态、分布及数目
2
叶绿体形态、结构、分布及发生
3
光学显微镜下观察到的叶绿体
绿色 凸透镜或铁饼状
分布在细胞质膜与液泡间薄层的细胞质中,呈平层排列
部位:生长中的幼叶内 前叶绿体:幼叶中的叶绿体,体积为成熟叶绿体的1/10-1/5,基质内置形成
少数基质类囊体,尚未或正在开始形成基粒类囊体。
分裂机制:分裂环(外环和内环)缢缩 叶绿体分裂装置:所有与叶绿体分裂相关的蛋白组成的分裂功能单位(未知)
叶绿体形态、结构、分布及发生
11
叶绿体形态、结构、分布及发生
17
2. 类囊体
定义:叶绿体内部由内膜衍生而来的封闭的扁平膜囊,主要成分是蛋白质和 脂类(60:40),不饱和脂肪酸含量高,膜流动性强
形成基粒与基质片层(或基质类囊体)
类囊体膜的主要蛋白有:光系统Ⅱ(PSⅡ),Cytb6f复合物,光系统Ⅰ (PSⅠ)及CF0-CF1ATP合酶复合物
叶绿体形态、结构、分布及发生
5
叶绿体形态、结构、分布及发生
光照强度对叶绿体分布及位置影响的示意图
二.叶绿体的分化与去分化
6
叶绿体形态、结构、分布及发生
7
二.叶绿体的分化与去分化
在种子萌发过程中,子叶、叶鞘和真叶细胞中的原质体相继分化叶绿体,这 种分化依赖于光照
分化表现:形态上,体积的增大,内膜系统的形成,叶绿素的累积 生化和分子生物学,叶绿体功能所必需的酶、蛋白质、大分子的
叶绿体形态、结构、分布及发生
叶绿体形态、结构、分布及发生(课堂PPT)

动态连接(通过内外膜延伸形成管状突出——基质小管,实现叶绿 体间相互联系
基质小管的融合与分断有助于实现实时的物质或信息交换,还可能具备其他重要 生理功能
5
CHUP1: chloroplast unusual positional 1, 一种微丝结合蛋白, 编码该蛋白的基因突 变后叶绿体呈现定位 异常
高等植物叶肉细胞含20-200个叶绿体 稳定性:高等植物叶肉细胞内叶绿体体积和数目的稳定 动态性:叶绿体定位(叶绿体在细胞内位置和分布受到的动态调控) 包括叶绿体的移动及移动后在新的最适位置上的“锚定” 躲避响应:叶绿体通过位移避开强光的行为 积聚响应:在光照较弱的情况下,叶绿体汇集到细胞的受光面的行为
光照强度对叶绿体分布及位置影响的示意图
6
二.叶绿体的分化与去分化
7
二.叶绿体的分化与去分化
在种子萌发过程中,子叶、叶鞘和真叶细胞中的原质体相继分化叶绿体,这 种分化依赖于光照
分化表现:形态上,体积的增大,内膜系统的形成,叶绿素的累积 生化和分子生物学,叶绿体功能所必需的酶、蛋白质、大分子的
合成、运输及定位
叶绿体内膜与类囊体之间的液态胶体物质
主要成分:可溶性蛋白质和其他代谢活跃物质
如Rubisco,叶绿体DNA,核糖体, 核糖体,脂滴,植物铁蛋白和淀粉粒等 物质
19
20
五. 叶绿体的半自主性及其起源
半自主性 起源
21
1.叶绿体的半自主性
1962年,Ris和Plant在衣藻叶绿体中发现DNA状物质
23
DAPI对细胞进行染色
24
2. 叶绿体的起源
内共生起源学说认为(Mereschkowsky):叶绿体来源于行光能自养的蓝细菌与宝箱 相当
基质小管的融合与分断有助于实现实时的物质或信息交换,还可能具备其他重要 生理功能
5
CHUP1: chloroplast unusual positional 1, 一种微丝结合蛋白, 编码该蛋白的基因突 变后叶绿体呈现定位 异常
高等植物叶肉细胞含20-200个叶绿体 稳定性:高等植物叶肉细胞内叶绿体体积和数目的稳定 动态性:叶绿体定位(叶绿体在细胞内位置和分布受到的动态调控) 包括叶绿体的移动及移动后在新的最适位置上的“锚定” 躲避响应:叶绿体通过位移避开强光的行为 积聚响应:在光照较弱的情况下,叶绿体汇集到细胞的受光面的行为
光照强度对叶绿体分布及位置影响的示意图
6
二.叶绿体的分化与去分化
7
二.叶绿体的分化与去分化
在种子萌发过程中,子叶、叶鞘和真叶细胞中的原质体相继分化叶绿体,这 种分化依赖于光照
分化表现:形态上,体积的增大,内膜系统的形成,叶绿素的累积 生化和分子生物学,叶绿体功能所必需的酶、蛋白质、大分子的
合成、运输及定位
叶绿体内膜与类囊体之间的液态胶体物质
主要成分:可溶性蛋白质和其他代谢活跃物质
如Rubisco,叶绿体DNA,核糖体, 核糖体,脂滴,植物铁蛋白和淀粉粒等 物质
19
20
五. 叶绿体的半自主性及其起源
半自主性 起源
21
1.叶绿体的半自主性
1962年,Ris和Plant在衣藻叶绿体中发现DNA状物质
23
DAPI对细胞进行染色
24
2. 叶绿体的起源
内共生起源学说认为(Mereschkowsky):叶绿体来源于行光能自养的蓝细菌与宝箱 相当
叶绿体的结构和成分

Chloroplast: structure and function
叶绿体
(Chloroplast)
被膜 (envelop)
类囊体 (thylacoid)
外被膜—permeability
内 被 膜 — selective permeability (H2O,O2,CO2— Free; Pi, TP, aa--Transporters) 膜—光合色素、光合链——原初反应、电子传递和光合磷酸 化(光合膜 photosynthetic membrane)
腔—光合放O2
间质(stroma) ——光合碳循环酶(Rubisco), CO2固定(同化); DNA,RNA,核糖体70S——部分遗传自主
Elements of chloroplast
H2O:75-80%。 Dry matter:20-25% Proteins:30-50%——糖protein Lipids:20-30%,优势的为MGDG和DGDG,PG占总脂的10% 左右。 Pigments:8% Ash:10% 空间结构—— “板块流动模型”。
274
绿
490-550
230
黄
550-580
212
橙
585-640
196
红
640-700
181
远红
700-740
166
红外
>740
85
荧光和磷光现象的产生
激发态
第二单线态 ~ 60千卡
放热
第一单线态 ~ 43千卡
蓝 光
基态
红
光
荧
光
三线态
磷 光
~ 31千卡
叶绿素分子受光激发时电子能量水平图解
《叶绿体的结构》课件

ERA
色素
01
02
03
叶绿素a
主要吸收红光和蓝光,是 植物进行光合作用的主要 色素。
叶绿素b
辅助叶绿素a吸收光能, 同时保护叶绿素a免受光 破坏。
类胡萝卜素
吸收蓝光和紫光,有助于 植物适应不同光照条件。
蛋白质
叶绿体蛋白
是叶绿体内重要的功能蛋白,参与光 合作用的各个阶段,如光能捕获、电 子传递和二氧化碳固定等。
02
叶绿体的结构
BIG DATA EMPOWERS TO CREATE A NEW
ERA
外膜
总结词
叶绿体的外膜是叶绿体的最外层结构 ,由双层膜组成,膜上分布着孔道和 酶,具有通透性。
详细描述
外膜的主要功能是保护叶绿体内部结 构不受外界环境的影响,同时允许营 养物质和代谢产物的进出。外膜上还 附有许多酶,这些酶参与叶绿体内部 的代谢反应。
基粒
总结词
基粒是叶绿体内的一种重要结构,由许 多类囊体垛叠而成,是光合作用暗反应 的场所。
VS
详细描述
基粒是由许多类囊体组成的立体结构,类 囊体之间通过膜片层相连。在基粒中,二 氧化碳被固定成为三碳化合物,并进一步 被还原成糖类等有机物。
03
叶绿体的组成成分
BIG DATA EMPOWERS TO CREATE A NEW
叶绿体的合成对于植物的光合作用具有重 要意义,能够将光能转化为化学能,合成 有机物。
叶绿体的降解
降解过程
叶绿体在衰老或环境恶化时,会逐渐失去其结构和功能,最终被细胞 内的溶酶体分解消化。
降解产物
叶绿体被降解后,会释放出内部的色素和蛋白质,这些物质可以被细 胞重新利用。
降解意义
叶绿体的降解对于维持细胞内的平衡和更新具有重要意义,同时也有 助于植物对环境的适应和生存。
色素
01
02
03
叶绿素a
主要吸收红光和蓝光,是 植物进行光合作用的主要 色素。
叶绿素b
辅助叶绿素a吸收光能, 同时保护叶绿素a免受光 破坏。
类胡萝卜素
吸收蓝光和紫光,有助于 植物适应不同光照条件。
蛋白质
叶绿体蛋白
是叶绿体内重要的功能蛋白,参与光 合作用的各个阶段,如光能捕获、电 子传递和二氧化碳固定等。
02
叶绿体的结构
BIG DATA EMPOWERS TO CREATE A NEW
ERA
外膜
总结词
叶绿体的外膜是叶绿体的最外层结构 ,由双层膜组成,膜上分布着孔道和 酶,具有通透性。
详细描述
外膜的主要功能是保护叶绿体内部结 构不受外界环境的影响,同时允许营 养物质和代谢产物的进出。外膜上还 附有许多酶,这些酶参与叶绿体内部 的代谢反应。
基粒
总结词
基粒是叶绿体内的一种重要结构,由许 多类囊体垛叠而成,是光合作用暗反应 的场所。
VS
详细描述
基粒是由许多类囊体组成的立体结构,类 囊体之间通过膜片层相连。在基粒中,二 氧化碳被固定成为三碳化合物,并进一步 被还原成糖类等有机物。
03
叶绿体的组成成分
BIG DATA EMPOWERS TO CREATE A NEW
叶绿体的合成对于植物的光合作用具有重 要意义,能够将光能转化为化学能,合成 有机物。
叶绿体的降解
降解过程
叶绿体在衰老或环境恶化时,会逐渐失去其结构和功能,最终被细胞 内的溶酶体分解消化。
降解产物
叶绿体被降解后,会释放出内部的色素和蛋白质,这些物质可以被细 胞重新利用。
降解意义
叶绿体的降解对于维持细胞内的平衡和更新具有重要意义,同时也有 助于植物对环境的适应和生存。
5章 叶绿体

3.基质
类囊体的片层结构均是悬浮于叶绿体基质中。基质 主要为一些可溶性蛋白成分,其中大约 60%RuBPcase 。 RuBPcase(56OkDa)由8个大亚基 (56kDa)和8个小亚基 (14kDa)构成,每个大亚基上均含有一个催化部位和一 个调节部位,基质中还含有一些有形成分,如核糖体、 DNA、RNA、淀粉粒、质体小球和植物铁蛋白等。叶绿体 基质中的核糖体大小为70S,DNA的含量低,约叶绿体干 重的 0.03% 。叶绿体 DNA 为环状分子,长约 15Onm ,每个 叶绿体中含有20-60个拷贝。DNA分子通常总是靠近或附 着在叶绿体内膜上。
内层膜 膜间隙 外层膜
外被
叶绿体
类囊体 基质
1.叶绿体被膜
由外、内双层膜组成,每层膜厚约6-8nm,其间的 间隙厚约10-2Onm。 外膜的通透性大,细胞质中的大多数营养分子如核 苷、无机磷、磷酸衍生物、羧酸类物质和蔗糖等均 可自由穿过外膜进入膜间隙。 内膜对穿运物质有严格的选择性,物质不能自由穿 过内膜进入基质,必须依靠其上的特殊载体才能将 物质从膜间隙转运至基质中,如磷酸、磷酸甘油酸、 苹果酸、草酰乙酸、天冬氨酸等。
五、叶绿体的发生
在个体发育中,叶绿体是由前质体分化而来。前 质体为卵圆形小体,存在于根的生长区和芽的分生组 织细胞中。前质体的大小一般为 0.5-1.0(1.0-1.5 ) µ m ,外面包围有双层膜,内部为无结构的基质,含有 DNA丝、核糖体和淀粉或其他碳水化合物。在未发育的 前质体中有小管状的类囊体原基。
叶绿体是发现最早的细胞器。
17世纪Antonie Van Leeuwenhoek(1676)即对叶 绿体做过描述。 1883年,Schimper首先使用了质体一词,并认为 质体是由原有的质体产生而来。 Meyer(1883)坚持了这一主张,并且他还在某些 有花植物如兰花的叶绿体中发现了绿色的小颗粒, 把其命名为基粒。 关于叶绿体的细微结构只有在发明了电镜之后, 才进入了深入细致的观察。
物质的能量转换2叶绿体(共67张PPT)

电子传递是一种闭合的回路,故名循环式. (2)类囊体膜的化学组成 D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素及质体醌。
、光合磷酸化。 在红藻和蓝细菌中还有藻胆素。
分布:均匀分布在胞质中,或聚集在核周围或沿壁分布,光照影响分布。
1、光吸收
• 指叶绿素分子被光激发至引起第一个光化学反应 的过程,包括光能吸收、传递和转换。是光反应 最初始的反应,又称原初反应(primary reaction)
• NADP+是最后的电子受体,接受两个电子 内膜上有很多运输蛋白,选择性地转运出入Chl的分子。
膜蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统Ⅰ、光系统Ⅱ复合物等。 铁氧还蛋白也是通过Fe3+与Fe2+循环传递电子
被还原
• 同线粒体一样,光合作用中的电子载体也 组成复合体
单层膜围成的扁平囊,沿叶绿体长轴平行排列。 内膜上有很多运输蛋白,选择性地转运出入Chl的分子。 四、叶绿体主要功能: 光合作用 已知由ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4. 内膜上有很多运输蛋白,选择性地转运出入Chl的分子。
• 可分为3个主要步骤: 光能吸收、电子传递 类囊体膜中的电子传递及非循环光合磷酸化
一、叶绿体与质体
• 叶绿体是质体的一种,与其它质体不同 ,叶绿体是唯一含类囊体膜结构的质体 。
• 质体还包括:白色体、有色体、蛋白质 体、油质体、淀粉质体,均由前质体分 化发育而来。
二、叶绿体的形态与数量
• 1.形态:高等植物:呈双凸透镜形。藻:网 状、带状和星形等,可达100um
• 2.数量:因种、细胞类型、生态、生理状态 不同。高等植物叶肉细胞含50~200个,占 细胞质的40%。
、光合磷酸化。 在红藻和蓝细菌中还有藻胆素。
分布:均匀分布在胞质中,或聚集在核周围或沿壁分布,光照影响分布。
1、光吸收
• 指叶绿素分子被光激发至引起第一个光化学反应 的过程,包括光能吸收、传递和转换。是光反应 最初始的反应,又称原初反应(primary reaction)
• NADP+是最后的电子受体,接受两个电子 内膜上有很多运输蛋白,选择性地转运出入Chl的分子。
膜蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统Ⅰ、光系统Ⅱ复合物等。 铁氧还蛋白也是通过Fe3+与Fe2+循环传递电子
被还原
• 同线粒体一样,光合作用中的电子载体也 组成复合体
单层膜围成的扁平囊,沿叶绿体长轴平行排列。 内膜上有很多运输蛋白,选择性地转运出入Chl的分子。 四、叶绿体主要功能: 光合作用 已知由ctDNA编码的RNA和多肽有:叶绿体核糖体中4种rRNA(20S、16S、4. 内膜上有很多运输蛋白,选择性地转运出入Chl的分子。
• 可分为3个主要步骤: 光能吸收、电子传递 类囊体膜中的电子传递及非循环光合磷酸化
一、叶绿体与质体
• 叶绿体是质体的一种,与其它质体不同 ,叶绿体是唯一含类囊体膜结构的质体 。
• 质体还包括:白色体、有色体、蛋白质 体、油质体、淀粉质体,均由前质体分 化发育而来。
二、叶绿体的形态与数量
• 1.形态:高等植物:呈双凸透镜形。藻:网 状、带状和星形等,可达100um
• 2.数量:因种、细胞类型、生态、生理状态 不同。高等植物叶肉细胞含50~200个,占 细胞质的40%。
最新叶绿体的结构和成分PPT课件

H3 CCH 3 CH 3
CH 3
CH 3
β-胡萝卜 C素 H 3
H3 C CH 3 H3 CCH 3
H3 CCH 3 CH 3 HO CH 3
CH 3 叶黄素CH 3
H3 C
OH
CH 3 H3 CCH 3
• 1. 8个异戊二烯单位形成的四萜 2. 两头对称排列紫罗兰酮环 3. 不饱和C、H结构,疏水、亲脂
类胡萝卜素类 (carotenoid)
藻胆素
(Phycocobilins)
叶绿素类a 叶绿素类b 胡萝卜素(carotene) 叶黄素(xanthophyll)
(蓝绿色) (黄绿色) (橙黄色) (黄 色)
据作用分类
聚光色素(天线色素) 作用中心色素
(二)光合色素分布
chlorophyll
所有的叶绿素和类胡萝卜素都包埋在类囊体膜中
(3)Mineral nutritions 缺N、Mg、Fe、Mn、Zn、Cu时 出现缺绿病。
(4)O2 缺O2时引起Mg2+原卟啉Ⅸ及(或)Mg2+原卟啉甲酯 积累,而不能合成叶绿素。
(5)、H2O 缺水时,Chl形成受阻,易受破坏。
• 叶绿素分解:在Chl酶的作用下变为叶绿素酸 酯,再成为去Mg叶绿素酸酯,再逐步氧化分 解。
三、光合色素的光学特性
连续光谱与吸收光谱(absorption spectrum)
连
光
续 光
谱
吸
光
收
光
谱
• Absorption spectrum
• Chl:
• 强吸收区: • 640-700nm(红) & 400-
500nm(蓝紫); • 不吸收区: • 500-600nm (呈绿) • 在红光区Chla 的吸收峰波
叶绿体的结构

/programs/view/YKd3
QMJKQ0s/ /v_show/id_XOTk2MDM2 Mjg=.html /u60/v_NDE0NjkxNjk.html
叶绿体的结构
张和平
光合作用的主要场所——叶绿体
1、叶绿体的结构
内膜 双层膜 外膜
叶 绿 体
基质: 酶、DNA、RNA、核糖体
基质类囊体
色素
基粒:
基粒类囊体
酶
2、叶绿体中色素吸收的光谱:
叶绿体中的 色素提取液
结果:叶绿体中 的色素主要吸收 红光和蓝紫光
叶绿体中色素的吸收光谱
100 50
0பைடு நூலகம்
400
500
600
700 nm
3、色素的种类和作用
叶绿素a(蓝绿色)
叶绿素
(约占3/4)
叶绿素b(黄绿色)
吸收红光和 蓝紫光
(橙黄色) 胡萝卜素
类胡萝卜素
(约占1/4)
吸收蓝紫光
叶黄素 (黄色)
为什么大部分叶片在正常情况下都是绿色的? 为什么到了秋天叶片又会变成黄色?
/v_show/id_XOTk 2MDI5NjA=.html
QMJKQ0s/ /v_show/id_XOTk2MDM2 Mjg=.html /u60/v_NDE0NjkxNjk.html
叶绿体的结构
张和平
光合作用的主要场所——叶绿体
1、叶绿体的结构
内膜 双层膜 外膜
叶 绿 体
基质: 酶、DNA、RNA、核糖体
基质类囊体
色素
基粒:
基粒类囊体
酶
2、叶绿体中色素吸收的光谱:
叶绿体中的 色素提取液
结果:叶绿体中 的色素主要吸收 红光和蓝紫光
叶绿体中色素的吸收光谱
100 50
0பைடு நூலகம்
400
500
600
700 nm
3、色素的种类和作用
叶绿素a(蓝绿色)
叶绿素
(约占3/4)
叶绿素b(黄绿色)
吸收红光和 蓝紫光
(橙黄色) 胡萝卜素
类胡萝卜素
(约占1/4)
吸收蓝紫光
叶黄素 (黄色)
为什么大部分叶片在正常情况下都是绿色的? 为什么到了秋天叶片又会变成黄色?
/v_show/id_XOTk 2MDI5NjA=.html
叶绿体的结构及功能

葉綠體的結構及功能
8.2 葉綠體的結構
葉脈:延伸到根部,負責運輸水分。 葉脈 延伸到根部,負責運輸水分。 延伸到根部 葉肉:儲藏水分 儲藏水分。 葉肉 儲藏水分。 表皮組織:表面覆有一層具有蠟的角質層 表面覆有一層具有蠟的角質層, 可令CO2及H2O。 表皮組織 表面覆有一層具有蠟的角質層,上面並有許多小孔 可令 。
葉綠體的結構及功能
1.葉綠體有二層膜包覆,內有巨大空間,稱為基質 葉綠體有二層膜包覆 葉綠體有二層膜包覆,內有巨大空間,稱為基質(stroma) 。 基質內含”具有酵素的水溶液,可在光合作用後,製作醣類” 基質內含”具有酵素的水溶液,可在光合作用後,製作醣類” 。 內含 類囊體-堆疊起來即為葉綠餅 堆疊起來即為葉綠餅” 葉綠素均存於此吸收太陽能 葉綠素均存於此吸收太陽能。 “類囊體 堆疊起來即為葉綠餅”---葉綠素均存於此吸收太陽能。
夜 晚 植 物 的 行 為
2
光
型反應(light (light依 型反應(light-independent reaction):
1. 需要陽光,反應 。 用ATP 2. 成, 用ATP 能量 化學)
光合作用的反應式
光合作用------------產生的氧氣,來自於水。---------18O實驗
光合作用有二種型式: 光合作用有二種型式
白 天 植 物 的 行 為
光依賴型反應(light光依賴型反應(light-dependent reaction): (light 1.需要太陽光。 1.需要太陽光。 需要太陽光 2.葉綠素吸收太陽能---電子被活化 葉綠素吸收太陽能---電子被活化。 2.葉綠素吸收太陽能---電子被活化。 3.電子被電子系統捕捉 能量釋出用來合成ATP 電子被電子系統捕捉, ATP。 3.電子被電子系統捕捉,能量釋出用來合成ATP。 化學能(ATP) 太陽能 化學能
8.2 葉綠體的結構
葉脈:延伸到根部,負責運輸水分。 葉脈 延伸到根部,負責運輸水分。 延伸到根部 葉肉:儲藏水分 儲藏水分。 葉肉 儲藏水分。 表皮組織:表面覆有一層具有蠟的角質層 表面覆有一層具有蠟的角質層, 可令CO2及H2O。 表皮組織 表面覆有一層具有蠟的角質層,上面並有許多小孔 可令 。
葉綠體的結構及功能
1.葉綠體有二層膜包覆,內有巨大空間,稱為基質 葉綠體有二層膜包覆 葉綠體有二層膜包覆,內有巨大空間,稱為基質(stroma) 。 基質內含”具有酵素的水溶液,可在光合作用後,製作醣類” 基質內含”具有酵素的水溶液,可在光合作用後,製作醣類” 。 內含 類囊體-堆疊起來即為葉綠餅 堆疊起來即為葉綠餅” 葉綠素均存於此吸收太陽能 葉綠素均存於此吸收太陽能。 “類囊體 堆疊起來即為葉綠餅”---葉綠素均存於此吸收太陽能。
夜 晚 植 物 的 行 為
2
光
型反應(light (light依 型反應(light-independent reaction):
1. 需要陽光,反應 。 用ATP 2. 成, 用ATP 能量 化學)
光合作用的反應式
光合作用------------產生的氧氣,來自於水。---------18O實驗
光合作用有二種型式: 光合作用有二種型式
白 天 植 物 的 行 為
光依賴型反應(light光依賴型反應(light-dependent reaction): (light 1.需要太陽光。 1.需要太陽光。 需要太陽光 2.葉綠素吸收太陽能---電子被活化 葉綠素吸收太陽能---電子被活化。 2.葉綠素吸收太陽能---電子被活化。 3.電子被電子系統捕捉 能量釋出用來合成ATP 電子被電子系統捕捉, ATP。 3.電子被電子系統捕捉,能量釋出用來合成ATP。 化學能(ATP) 太陽能 化學能
细胞生物学第六章-线粒体和叶绿体PPT课件

▪ 辅酶Q的氧化还原: 辅酶Q 半醌 全醌。
辅酶Q的氧化和还原形式
2021
■ 氧化还原电位与载体排列顺序
2021
▪ ● 呼吸链电子载体 的排列顺序:
▪ 电子从一个载体传 向另一个载体,直 至最终的受体被还 原为止,在该呼吸 链中的最终的受体 是O2,接收电子后 生成水。
电子传递链中几种电子载体及电子传递
2021
■ 偶联因子1(coupling factor 1)
ATP偶联因子电镜照片(负染)
2021
■ ATP合酶(ATP synthase)的结构和功能
图 ATP合酶的形态 (a) 电镜照片; (b)根据电镜照片绘制的模式图和各部分的大小。
2021
● F1颗粒组成
2021
● 定子(stator)和转子(rotor)
叶绿体内膜中苹果酸延胡索酸穿梭转运蛋白50叶绿体内膜中的其他转运载体表载体功能adpatp交换载体进行细胞质和叶绿体基质间的adpatp交换二羧酸交换载体进行细胞质和叶绿体基质间二羧酸的交换葡萄糖载体将叶绿体基质中的葡萄糖运输到胞质溶胶乙醇酸载体将叶绿体基质中的乙醇酸运输到胞质溶胶磷酸交换载体将细胞质中的无机磷与叶绿体基质中的三碳糖进行交换512类囊体thylakoid类囊体由内膜发展而来的呈扁平小囊是光合作用的光反应场所
2021
F1和γ旋转的实验证明
2021
氧化磷酸化抑制剂
▪ 1.电子传递抑制剂: ▪ 抑制NADH→CoQ的电子传递。阿米妥、鱼藤酮。 ▪ 抑制复合物III。抗霉素A 。 ▪ 抑制复合物IV。如:CO、CN、H2S。 ▪ 电子传递抑制剂可用来研究呼吸链各组分的排列顺序,当
呼吸链某一特定部位被抑制后,底物一侧均为还原状态, 氧一侧均为氧化态,可用分光光度计检测。
辅酶Q的氧化和还原形式
2021
■ 氧化还原电位与载体排列顺序
2021
▪ ● 呼吸链电子载体 的排列顺序:
▪ 电子从一个载体传 向另一个载体,直 至最终的受体被还 原为止,在该呼吸 链中的最终的受体 是O2,接收电子后 生成水。
电子传递链中几种电子载体及电子传递
2021
■ 偶联因子1(coupling factor 1)
ATP偶联因子电镜照片(负染)
2021
■ ATP合酶(ATP synthase)的结构和功能
图 ATP合酶的形态 (a) 电镜照片; (b)根据电镜照片绘制的模式图和各部分的大小。
2021
● F1颗粒组成
2021
● 定子(stator)和转子(rotor)
叶绿体内膜中苹果酸延胡索酸穿梭转运蛋白50叶绿体内膜中的其他转运载体表载体功能adpatp交换载体进行细胞质和叶绿体基质间的adpatp交换二羧酸交换载体进行细胞质和叶绿体基质间二羧酸的交换葡萄糖载体将叶绿体基质中的葡萄糖运输到胞质溶胶乙醇酸载体将叶绿体基质中的乙醇酸运输到胞质溶胶磷酸交换载体将细胞质中的无机磷与叶绿体基质中的三碳糖进行交换512类囊体thylakoid类囊体由内膜发展而来的呈扁平小囊是光合作用的光反应场所
2021
F1和γ旋转的实验证明
2021
氧化磷酸化抑制剂
▪ 1.电子传递抑制剂: ▪ 抑制NADH→CoQ的电子传递。阿米妥、鱼藤酮。 ▪ 抑制复合物III。抗霉素A 。 ▪ 抑制复合物IV。如:CO、CN、H2S。 ▪ 电子传递抑制剂可用来研究呼吸链各组分的排列顺序,当
呼吸链某一特定部位被抑制后,底物一侧均为还原状态, 氧一侧均为氧化态,可用分光光度计检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶绿体的结构
2020/4/2
1
叶绿体的结构
请同学们自学教材P99-100,并完成知识填空: 1、在光学显微镜下,被子植物的叶绿体的形态一
般呈 扁平的或椭球形。 球形 2、叶绿体的外表具有 双层膜。 3、吸收光能的四种色素分布在 类囊体的。薄膜上
2020/4/2
2
叶绿体的结构
一、模型建构 外膜
内膜
2020/4/2
9
叶绿体的结构
三 、模型制作评定
评分项目 双层膜的颜色 基粒的构成 色素的分布部位 与光合作用有关 的酶分布部位 美观 总分
分值 20 20 20
得分
20
20
2020/4/2
得分理由
10
谢谢
2020/4/2
11
2020/4/2
类囊体
酶分子
色素分子
3
叶绿体的结构
二 、模型展示与评价
1、叶绿体双层膜是无色透明的
2020/4/2
4
叶绿体的结构
二 、模型展示与评价
2、基粒是由多个圆饼状的类囊体堆叠而成
2020/4/2
5
叶绿体的结构
二 、模型展示与评价
3、叶绿体中的色素存在于类囊体薄膜上
2020/4/2
6
叶绿体的结构
二 、模型展示与评价
4、参与光合作用的酶分布在叶绿体类囊体薄膜和基质中
2020/4/2
7
叶绿体的结构
二 、模型展示与评价
2020/4/2
8
叶绿体的结构
课堂小结
基质
类囊体
基粒
外膜 内膜
1、叶绿体双层膜是无色透明的 2、基粒是由多个圆饼状的类囊体堆叠而成 3、叶绿体中的色素存在于类囊体薄膜上 4、参与光合作用的酶分布在叶绿体类囊体薄膜和基质中
2020/4/2
1
叶绿体的结构
请同学们自学教材P99-100,并完成知识填空: 1、在光学显微镜下,被子植物的叶绿体的形态一
般呈 扁平的或椭球形。 球形 2、叶绿体的外表具有 双层膜。 3、吸收光能的四种色素分布在 类囊体的。薄膜上
2020/4/2
2
叶绿体的结构
一、模型建构 外膜
内膜
2020/4/2
9
叶绿体的结构
三 、模型制作评定
评分项目 双层膜的颜色 基粒的构成 色素的分布部位 与光合作用有关 的酶分布部位 美观 总分
分值 20 20 20
得分
20
20
2020/4/2
得分理由
10
谢谢
2020/4/2
11
2020/4/2
类囊体
酶分子
色素分子
3
叶绿体的结构
二 、模型展示与评价
1、叶绿体双层膜是无色透明的
2020/4/2
4
叶绿体的结构
二 、模型展示与评价
2、基粒是由多个圆饼状的类囊体堆叠而成
2020/4/2
5
叶绿体的结构
二 、模型展示与评价
3、叶绿体中的色素存在于类囊体薄膜上
2020/4/2
6
叶绿体的结构
二 、模型展示与评价
4、参与光合作用的酶分布在叶绿体类囊体薄膜和基质中
2020/4/2
7
叶绿体的结构
二 、模型展示与评价
2020/4/2
8
叶绿体的结构
课堂小结
基质
类囊体
基粒
外膜 内膜
1、叶绿体双层膜是无色透明的 2、基粒是由多个圆饼状的类囊体堆叠而成 3、叶绿体中的色素存在于类囊体薄膜上 4、参与光合作用的酶分布在叶绿体类囊体薄膜和基质中