算法设计技巧与分析自测2答案
《计算机算法设计与分析》答案
![《计算机算法设计与分析》答案](https://img.taocdn.com/s3/m/8b90ac781711cc7931b71682.png)
《计算机算法设计与分析》试卷 考试时间120分钟2002年-2003年第二学期学号 姓名 成绩一、阐述题1. 请说明算法的五个基本特性,并进行简要的分析(5分) 答:算法的五个基本特性如下:① 确定性 算法的每一种运算必须要有确切的定义,即每一种运算应该执行何种动作必须是相当清楚的、无二义性的。
② 能行性 一个算法是能行的是指算法中有待实现的运算都是基本的运算,每种运算至少在原理上能由人用纸和笔在有限时间内完成。
③ 输入 一个算法有0个或多个输人,这些输人是在算法开始之前给出的量,它取自特定的对象集合。
④ 输出 一个算法产生一个或多个输出,这些输出是同输人有某种特定关系的量。
⑤ 有穷性 一个算法总是在执行了有穷步的运算之后能够终止,且每一步都可在有穷时间内完成。
这里的有穷的概念不是纯数学的,而是在实际上是合理的,可以接受的。
凡是算法,都必须满足以上五条特性。
只满足前四条特性的一组规则不能称为算法,只能叫做计算过程。
2. 若森林非空,请按照森林和树相互递归的定义,阐述森林的两种遍历的方法。
(10分) 答:森林是由m(m ≥0)棵互不相交的树构成的集合。
对树中的每一个结点而言,其子树的集合即为森林。
所以,森林和树是可以相互递归定义的。
对于一个非空的森林F=(T 1,T 2,…,T m ),因为至少存在一棵树,不妨假设为T 1,则森林F 可以分解成T 1和由T 2,…,T m 构成的森林。
于是,可得到森林的两种遍历算法。
① 先序遍历森林若森林非空,则可按下述规则遍历这个森林: (1) 访问树中第一棵树的根结点;(2) 先序遍历第一棵中根结点的所有子树构成的森林; (3) 先序遍历除去第一棵树外剩下的树构成的森林。
② 中序遍历森林若森林非空,则可按下述规则遍历这个森林:(1) 中序遍历第一棵中根结点的所有子树构成的森林; (2) 访问树中第一棵树的根结点;(3) 中序遍历除去第一棵树外剩下的树构成的森林。
算法设计与分析试卷及答案
![算法设计与分析试卷及答案](https://img.taocdn.com/s3/m/b6b2a39704a1b0717fd5ddcd.png)
算法设计与分析1、(1) 证明:O(f)+O(g)=O(f+g)(7分)(2) 求下列函数的渐近表达式:(6分)① 3n 2+10n;② 21+1/n;2、对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。
(15分)(1);5log )(;log )(2+==n n g n n f (2);)(;log )(2n n g n n f == (3);log )(;)(2n n g n n f == 3、试用分治法对数组A[n]实现快速排序。
(13分)4、试用动态规划算法实现最长公共子序列问题。
(15分)5、试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。
试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少。
(12分)6、试用动态规划算法实现下列问题:设A 和B 是两个字符串。
我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括:(1)删除一个字符。
(2)插入一个字符。
(3)将一个字符改为另一个字符。
将字符串A 变换为字符串B 所用的最少字符操作数称为字符串A 到B 的编辑距离,记为d(A,B)。
试设计一个有效算法,对任给的两个字符串A 和B ,计算出它们的编辑距离d(A,B)。
(16分)⎣⎦2/)(;3)(i i g i i f ==。
对于给定的两个整数n 和m ,要求用最少的变换f 和g 变换次数将n 变为m 。
(16分)1、⑴证明:令F(n)=O(f),则存在自然数n 1、c 1,使得对任意的自然数n ≥n 1,有:F(n)≤c 1f(n)……………………………..(2分)同理可令G(n)=O(g),则存在自然数n 2、c 2,使得对任意的自然数n ≥n 2,有:G(n)≤c 2g(n)……………………………..(3分)令c 3=max{c 1,c 2},n 3=max{n 1,n 2},则对所有的n ≥n 3,有: F(n)≤c 1f(n)≤c 3f(n)G(n)≤c 2g(n)≤c 3g(n)……………………………..(5分) 故有:O(f)+O(g)=F(n)+G(n)≤c 3f(n)+c 3g(n)=c 3(f(n)+g(n)) 因此有:O(f)+O(g)=O(f+g)……………………………..(7分) ⑵ 解:① 因为;01033)103(lim 222=+-+∞→n n n n n n 由渐近表达式的定义易知: 3n 2是3n 2+10n 的渐近表达式。
算法设计技巧与分析习题答案
![算法设计技巧与分析习题答案](https://img.taocdn.com/s3/m/7eeb43cd19e8b8f67c1cb991.png)
算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
《算法设计与分析》复习题参考答案
![《算法设计与分析》复习题参考答案](https://img.taocdn.com/s3/m/559f748e6529647d2728529d.png)
《算法设计与分析》复习题参考答案一、概念题:请解释下列术语。
1.数据元素的集合。
2.队列是一个线性表,限制为只能在固定的一端进行插入,在固定的另一端进行删除。
3.对于算法a,如果存在一多项式p(),使得对a的每个大小为n的输入,a的计算时间为o(p(n)),则称a具有多项式复杂度4.二叉树的层数i与该层上的结点数n的关系为:n(i)=i2。
5.如果可满足性约化为一个问题L,则称该问题为NP-难度的。
6.算法就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算。
7.多数据单指令流8.若图的任意两个节点间均存在路径可达,则称该图为连通图。
9. 是指一个数学模型以及定义在该模型上的一组操作。
10.算法的复杂度只能用指数函数对其限界。
11.函数或过程直接或间接调用它自己。
12.和高度相同的满二叉树的每个对应的顶点编号相同的树13.由所有可行状态所构成的树。
14.如果L时NP难度的且L∈NP,则称问题L是NP-完全的。
15.算法是一个步骤的序列,满足:有穷性、可行性、确定性、输入、输出;过程不需要满足由穷性。
16.有向图的每条边有起点与终点之分,且用箭头指向边的终点。
无向图的边无起点和终点之分,边无箭头。
17.树(tree)是一个或多个结点的有限集合,,它使得:①有一个特别指定的称作根(root)的结点;②剩下的结点被分成m≥0个不相交的集合tl,…,tm,这些集合的每一个都是一棵树,并称t1,…,tm为这根的子树(subtree)。
18.P是所有可在多项式时间内用确定算法求解的判定问题的集合。
19.运算结果是唯一确定的算法20. nP是所有可在多项式时间内用不确定算法求解的判定问题的集合二、填空题1.n2.O ( n )3.最优化问题4.宽度优先搜索5.结点的最大级数6.互异7.内结点和外结点8.方形9.内部路径长度、外部路径长度10.一次11.归并分类算法12.贪心选择性质13.最优子结构14.二元归并15.最小成本生成树16.最优性17.最优决策18.可容许最大成本c19.最小成本三、程序填空题。
算法设计与分析智慧树知到课后章节答案2023年下山东交通学院
![算法设计与分析智慧树知到课后章节答案2023年下山东交通学院](https://img.taocdn.com/s3/m/3626a1eedc3383c4bb4cf7ec4afe04a1b071b0d4.png)
算法设计与分析智慧树知到课后章节答案2023年下山东交通学院山东交通学院第一章测试1.解决一个问题通常有多种方法。
若说一个算法“有效”是指( )A:这个算法能在一定的时间和空间资源限制内将问题解决B:这个算法能在人的反应时间内将问题解决C:这个算法比其他已知算法都更快地将问题解决D:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)答案:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)2.农夫带着狼、羊、白菜从河的左岸到河的右岸,农夫每次只能带一样东西过河,而且,没有农夫看管,狼会吃羊,羊会吃白菜。
请问农夫能不能过去?()A:不一定B:不能过去 C:能过去答案:能过去3.下述()不是是算法的描述方式。
A:自然语言 B:E-R图 C:程序设计语言 D:伪代码答案:E-R图4.有一个国家只有6元和7元两种纸币,如果你是央行行长,你会设置()为自动取款机的取款最低限额。
A:40 B:29 C:30 D:42答案:305.算法是一系列解决问题的明确指令。
()A:对 B:错答案:对6.程序=数据结构+算法()A:对 B:错答案:对7.同一个问题可以用不同的算法解决,同一个算法也可以解决不同的问题。
()A:错 B:对答案:对8.算法中的每一条指令不需有确切的含义,对于相同的输入不一定得到相同的输出。
( )A:错 B:对答案:错9.可以用同样的方法证明算法的正确性与错误性 ( )A:错 B:对答案:错10.求解2个数的最大公约数至少有3种方法。
( )A:对 B:错答案:错11.没有好的算法,就编不出好的程序。
()A:对 B:错答案:对12.算法与程序没有关系。
( )A:错 B:对答案:错13.我将来不进行软件开发,所以学习算法没什么用。
( )A:错 B:对答案:错14.gcd(m,n)=gcd(n,m m od n)并不是对每一对正整数(m,n)都成立。
2020智慧树知到《算法分析与设计》章节测试完整答案
![2020智慧树知到《算法分析与设计》章节测试完整答案](https://img.taocdn.com/s3/m/a957f75879563c1ec4da713b.png)
2020智慧树知到《算法分析与设计》章节测试完整答案智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。
答案: 错2、一个问题的同一实例可以有不同的表示形式答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。
答案: 对4、问题的两个要素是输入和实例。
答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。
(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。
A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。
B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。
C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。
D:证明算法不正确,需要证明对任意实例算法都不能正确处理。
答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。
8、下面关于程序和算法的说法正确的是()。
A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
B:程序是算法用某种程序设计语言的具体实现。
C:程序总是在有穷步的运算后终止。
D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。
答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
,程序是算法用某种程序设计语言的具体实现。
,算法是一个过程,计算机每次求解是针对问题的一个实例求解。
9、最大独立集问题和()问题等价。
A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案: 最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是( ) 。
2020智慧树知到《算法分析与设计》章节测试完整答案
![2020智慧树知到《算法分析与设计》章节测试完整答案](https://img.taocdn.com/s3/m/a957f75879563c1ec4da713b.png)
2020智慧树知到《算法分析与设计》章节测试完整答案智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。
答案: 错2、一个问题的同一实例可以有不同的表示形式答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。
答案: 对4、问题的两个要素是输入和实例。
答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。
(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。
A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。
B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。
C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。
D:证明算法不正确,需要证明对任意实例算法都不能正确处理。
答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。
8、下面关于程序和算法的说法正确的是()。
A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
B:程序是算法用某种程序设计语言的具体实现。
C:程序总是在有穷步的运算后终止。
D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。
答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
,程序是算法用某种程序设计语言的具体实现。
,算法是一个过程,计算机每次求解是针对问题的一个实例求解。
9、最大独立集问题和()问题等价。
A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案: 最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是( ) 。
算法设计与分析复习题目及答案_2
![算法设计与分析复习题目及答案_2](https://img.taocdn.com/s3/m/c660567fef06eff9aef8941ea76e58fafab045bf.png)
一。
选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( B )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A )。
算法设计与分析(第2版)习题答案
![算法设计与分析(第2版)习题答案](https://img.taocdn.com/s3/m/1e97d5d6b52acfc788ebc922.png)
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图 1.7是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C ++描述。
//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。
算法设计技巧与分析英文版课后练习题含答案
![算法设计技巧与分析英文版课后练习题含答案](https://img.taocdn.com/s3/m/4bcc3efad4bbfd0a79563c1ec5da50e2524dd115.png)
Algorithm Design Techniques and Analysis: English VersionExercise with AnswersIntroductionAlgorithms are an essential aspect of computer science. As such, students who are part of this field must master the art of algorithm design and analysis. Algorithm design refers to the process of creating algorithms that solve computational problems. Algorithm analysis, on the other hand, focuses on evaluating the resources required to execute those algorithms. This includes computational time and memory consumption.This document provides students with helpful algorithm design and analysis exercises. The exercises are in the formof questions with step-by-step solutions. The document is suitable for students who have completed the English versionof the Algorithm Design Techniques and Analysis textbook. The exercises cover various algorithm design techniques, such as divide-and-conquer, dynamic programming, and greedy approaches.InstructionEach exercise comes with a question and its solution. Read the question carefully and try to find a solution withoutlooking at the answer first. If you get stuck, look at the solution. Lastly, try the exercise agn without referring to the answer.Exercise 1: Divide and ConquerQuestion:Given an array of integers, find the maximum possible sum of a contiguous subarray.Example:Input: [-2, -3, 4, -1, -2, 1, 5, -3]Output: 7 (the contiguous subarray [4, -1, -2, 1, 5]) Solution:def max_subarray_sum(arr):if len(arr) ==1:return arr[0]mid =len(arr) //2left_arr = arr[:mid]right_arr = arr[mid:]max_left_sum = max_subarray_sum(left_arr)max_right_sum = max_subarray_sum(right_arr)max_left_border_sum =0left_border_sum =0for i in range(mid-1, -1, -1):left_border_sum += arr[i]max_left_border_sum =max(max_left_border_sum, left_b order_sum)max_right_border_sum =0right_border_sum =0for i in range(mid, len(arr)):right_border_sum += arr[i]max_right_border_sum =max(max_right_border_sum, righ t_border_sum)return max(max_left_sum, max_right_sum, max_left_border_s um+max_right_border_sum)Exercise 2: Dynamic ProgrammingQuestion:Given a list of lengths of steel rods and a corresponding list of prices, determine the maximum revenue you can get by cutting these rods into smaller pieces and selling them. Assume the cost of each cut is 0.Lengths: [1, 2, 3, 4, 5, 6, 7, 8]Prices: [1, 5, 8, 9, 10, 17, 17, 20]If the rod length is 4, the maximum revenue is 10.Solution:def max_revenue(lengths, prices, n):if n ==0:return0max_val =float('-inf')for i in range(n):max_val =max(max_val, prices[i] + max_revenue(length s, prices, n-i-1))return max_valExercise 3: Greedy AlgorithmQuestion:Given a set of jobs with start times and end times, find the maximum number of non-overlapping jobs that can be scheduled.Start times: [1, 3, 0, 5, 8, 5]End times: [2, 4, 6, 7, 9, 9]Output: 4Solution:def maximum_jobs(start_times, end_times):job_list =sorted(zip(end_times, start_times))count =0end_time =float('-inf')for e, s in job_list:if s >= end_time:count +=1end_time = ereturn countConclusionThe exercises presented in this document provide a practical way to master essential algorithm design and analysis techniques. Solving the problems without looking at the answers will expose students to the type of problems they might encounter in real life. The document’s solutionsprovide step-by-step instructions to ensure that students can approach the problems with confidence.。
算法设计技巧与分析课后答案吴永昶
![算法设计技巧与分析课后答案吴永昶](https://img.taocdn.com/s3/m/0cd12b5df6ec4afe04a1b0717fd5360cba1a8d76.png)
算法设计技巧与分析课后答案吴永昶习题1-2 方法头签名方法签名由方法的名称和它的每一个形参(按从左到右的顺序)的类型和种类(值、引用或输出)组成。
需注意的是,方法签名既不包含返回类型,也不包含params 修饰符(它可用于最右边的参数)。
实例构造函数签名由它的每一个形参(按从左到右的顺序)的类型和种类(值、引用或输出)组成。
具体说来,实例构造函数的签名不包含可为最右边的参数指定的params 修饰符。
索引器签名由它的每一个形参(按从左到右的顺序)的类型组成。
具体说来,索引器的签名不包含元素类型。
运算符签名由运算符的名称和它的每一个形参(按从左到右的顺序)的类型组成。
具体说来,运算符的签名不包含结果类型。
签名是对类、结构和接口的成员实施重载的机制:方法重载允许类、结构或接口用同一个名称声明多个方法,条件是它们的签名在该类、结构或接口中是唯一的。
实例构造函数重载允许类或结构声明多个实例构造函数,条件是它们的签名在该类或结构中是唯一的。
索引器重载允许类、结构或接口声明多个索引器,条件是它们的签名在该类、结构或接口中是唯一的。
运算符重载允许类或结构用同一名称声明多个运算符,条件是它们的签名在该类或结构中是唯一的。
习题1-10 函数渐进阶大写O符号(上界,最坏)f(n)=O(g(n)),这里f(n)是分析出来算法的执行次数的函数,O的定义:当且仅当存在正的常数c和n0,使得对于所有的n>=n0,有f(n)<=cg(n)。
这里cg(n)就是函数f(n)的上限。
几种函数的例子:1.线性函数f(n)=3n+2,当n>=2时,3n+2<=3n+n=4n。
所以f(n)=O(n),这里c 就是4,n0=2。
2.平方函数f(n)=2n^2+3n+3,当n>=3时,3n+3<=4n,当n>=4时,4n<n^2,f(n)=2n^2+n^2=3n^2。
f(n)=O(n^2),这里c是3,n0=4。
算法设计技巧与分析答案
![算法设计技巧与分析答案](https://img.taocdn.com/s3/m/be14ef2e5a8102d276a22f8a.png)
算法设计技巧与分析参考答案第1章算法分析基本概念 1.1 (a)6 (b)5 (c)6 (d)6 1.4 算法执行了7+6+5+4+3+2+1=28次比较 45 33 24 45 12 12 24 12 12 33 24 45 45 12 24 12 12 12 24 45 45 33 24 12 12 12 12 45 45 33 24 24 12 24 12 12 45 33 45 24 12 12 12 24 24 33 45 45 12 12 12 24 24 33 45 45 12 12 12 24 24 33 45 45 1.5 (a)算法MODSELECTIONSORT执行的元素赋值的最少次数是0,元素已按非降序排列的时候达到最小值。
(b) 算法MODSELECTIONSORT执行的元素赋值的最多次数是,元素已按非升序排列的时候达到最小值。
2 1.7 4 3 12 5 6 7 2 9 1次 3 4 1次 3 4 12 2次 3 4 5 123 4 5 6 12 2次 7 12 3 4 5 6 2次 2 3 4 5 6 7 12 6次 7 9 23 4 5 6 12 2次由上图可以看到执行的比较次数为1+1+2+2+2+6+2=16次。
1.11 比较9次 2 4 5 7 8 11 12 13 15 17 19 比较为6次 2 4 5 8 11 13 17 19 7 12 15 比较为3次,2 5 17 19 4 8 11 13 7 12 15 2次,1次 2 17 5 19 11 134 8 12 15 7比较均为1次,共5次 2 17 19 5 13 11 4 8 15 12 7 由上图可以得出比较次数为5+6+6+9=26次。
1.13 FTF,TTT,FTF,TFF,FTF 1.16 (a)执行该算法,元素比较的最少次数是n-1。
元素已按非降序排列时候达到最小值。
(b) 执行该算法,元素比较的最多次数是。
《算法设计与分析》考试题目及答案(2)
![《算法设计与分析》考试题目及答案(2)](https://img.taocdn.com/s3/m/8ae73467a517866fb84ae45c3b3567ec102ddc8d.png)
《算法设计与分析》考试题⽬及答案(2)《算法分析与设计》期末复习题⼀、选择题1.应⽤Johnson 法则的流⽔作业调度采⽤的算法是(D ) A. 贪⼼算法 B. 分⽀限界法 C.分治法 D. 动态规划算法塔问题如下图所⽰。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )HanoiA. void hanoi(int n, int A, int C, int B) {if (n > 0) { hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);3. 动态规划算法的基本要素为(C ) A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质 C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤4. 算法分析中,记号O 表⽰(B ),记号Ω表⽰(A ),记号Θ表⽰(D )。
A.渐进下界 B.渐进上界 C.⾮紧上界 D.紧渐进界E.⾮紧下界5. 以下关于渐进记号的性质是正确的有:(A ) A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ?=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==?= C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n)O(g(n))g(n)O(f (n))=?=6. 能采⽤贪⼼算法求最优解的问题,⼀般具有的重要性质为:(A )A. 最优⼦结构性质与贪⼼选择性质 B .重叠⼦问题性质与贪⼼选择性质D. void hanoi(int n, int C, int A, int B){if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);C .最优⼦结构性质与重叠⼦问题性质 D. 预排序与递归调⽤7. 回溯法在问题的解空间树中,按(D )策略,从根结点出发搜索解空间树。
算法设计技巧与分析(沙特版) 第1_2章课后习题参考解答
![算法设计技巧与分析(沙特版) 第1_2章课后习题参考解答](https://img.taocdn.com/s3/m/d25ae119c5da50e2524d7f11.png)
g(n) 100n +2n n log n 5
n 2 2
f=O(g) False True False True False
f=(g) True True True False True
f=(g) False True False False False
陈卫东(chenwd@) 1 华南师范大学 计算机学院
《算法分析与设计》——第 1-2 章习题参考解答
因此, f(n)=c·3n (n≥0) ,其中 c 由初始条件 f(0)确定。 解方程 f(0)=5=c,得 c=5。 于是,f(n)=5·3n (n≥0) 。 (b) 特征方程为 x=2。 因此,f(n)=c·2n (n≥0) ,其中 c 由初始条件 f(0)确定。 解方程 f(0)=2=c,得 c=2。 于是,f(n)=2n+1 (n≥0) 。 2.19 解答: (a) 特征方程为 x2-5x +6=0, 其解为 x1=2,x2=3。 因此,递归方程的解为 f(n)= c1·2n + c2·3n (n≥0) 。常数 c1 和 c2 由下列方程组确定: f(0)=1= c1 + c2, f(1)=0=2c1 + 3c2。 解此方程组得 c1=3,c2 = -2。 于是,f(n)=3·2n-2·3n (n≥0) 。 2 (b) 特征方程为 x -4x +4=0,其解为 x1=x2=2。 因此,递归方程的解为 f(n)= c1·2n + c2·n 2n (n≥0) 。 常数 c1 和 c2 由下列方程组确定: f(0)=6= c1, f(1)=8=2c1 +2c2。 解此方程组得 c1=6,c2 = -2。 于是,f(n)=3·2n+1-n·2n+1 (n≥0) 。 2.20 解答: (a) f(n)= f(n-1)+ n2 = f(n-2)+(n-1)2+n2=…… = f(0)+12+22+…+(n-1)2+n2 =0+12+22+…+(n-1)2+n2 =n(n+1)(2n+1)/6 (n≥0) 。 n (b) 令 f(n)= 2 g(n)(g(0)=f(0)=1) 。于是, n n-1 2 g(n)= 2·2 g(n-1)+n, 从而有方程 g(n)=g(n-1)+n·2-n。 其解为 g(n) =∑i=1n i·2-i +1 = 2-(n+2)/2n+1 =3-(n+2)/2n (n≥0) 。 n 因此, f(n)= 3·2 -n-2 (n≥0) 。 n (c) 令 f(n)=3 g(n)(g(0)=f(0)=3) 。于是, n n-1 n 3 g(n)=3·3 g(n-1)+ 2 , 从而有方程 g(n)=g(n-1)+(2/3)n。 其解为 g(n) = g(0)+∑i=1n(2/3) i =3+∑i=1n(2/3) i =5-2(2/3) n (n≥0) 。 n n+1 因此, f(n)= 5·3 -2 (n≥0) 。
算法设计技巧与分析习题答案
![算法设计技巧与分析习题答案](https://img.taocdn.com/s3/m/77461946b94ae45c3b3567ec102de2bd9605de2a.png)
算法设计技巧与分析习题答案算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法设计与分析课后答案
![算法设计与分析课后答案](https://img.taocdn.com/s3/m/51abb2f6f8c75fbfc77db2d5.png)
5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法分析技巧与分析习题答案
![算法分析技巧与分析习题答案](https://img.taocdn.com/s3/m/bce8fcc5e87101f69f31956a.png)
算法分析技巧与分析习题答案-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KIIPage 54(a)The minimum number of element comparisons performed by the algorithm is n-1.This minimum is achieved when the input A[1..n] is already sorted in nondecreasing order.(b)The maximum number of element comparisons performed by the algorithm is(n-1)+( n-2)+…+2+1=n(n-1)/2.This maximum is achieved when the input A[1..n] is already sorted in decreasing order.(c)The minimum number of element assignments performed by the algorithm is 0.This minimum is achieved when the input A[1..n] is already sorted in nondecreasing order.(d)The maximum number of element assignments performed by the algorithm is 3[(n-1)+( n-2)+…+2+1]=3n(n-1)/2.This maximum is achieved when the input A[1..n] is already sorted in decreasing order.(e) The running time of Algorithm BUBBLESORT is (n2) in terms of the -notation, and (n) in terms of the -notation.(f)The running time cannot be expressed in terms of -notation, because the running time ranges from the linear to quadratic.Page 99(a)On the one hand,∑j=1n j log j≤∑j=1n n log n≤n2 log n.On the other hand,∑j=1n j log j≥∑j=n/2n n/2log n/2≥n/2n/2log n/2≥(n-1)n/4·log(n/2).Hence,∑j=1n j log j= (n2log n).(b)Let f(x)=x log x (x≥1). Since f(x) is an increasing function,we have ∑j=1n j log j≤∫1n+1 x log x d x≤(2(n+1)2 ln(n+1)-(n+1)2+1) / (4ln2).Also,∑j=1n j log j=∑j=2n j log j≥∫1n x log x d x≥(2n2 ln n-n2+1) / (4ln2).Thus,∑j=1n j log j= (n2ln n)= (n2log n).(a)The characteristic equation isx=3.Thus, f(n)=c·3n(n≥0),where c is determined by the initial value of the sequence : f(0).Solving the equation f(0)=5=c, we obtain c=5.It follows thatf(n)=5·3n(n≥0).(b)The characteristic equation isx=2.Thus,f(n)=c·2n(n≥0),where c is determined by the initial value of the sequence : f(0).Solving the equation f(0)=2=c, we obtain c=2.It follows thatf(n)=2n+1(n≥0).(a) The characteristic equation is x2-5x +6=0, and hence x1=2 and x2=, the solution to the recurrence is f(n)= c1·2n + c2·3n (n≥0).To find the values of c1 and c2, we solve the two simultaneous equations:f(0)=1= c1 + c2 and f(1)=0=2c1 +3c2.Solving the two simultaneous equations, we obtain c1=3 and c2 = -2. It follows that f(n)=3·2n-2·3n (n≥0).(b) The characteristic equation is x2-4x +4=0, and hence x1=x2=, the solution to the recurrence is f(n)= c1·2n + c2·n 2n (n≥0).To find the values of c1 and c2, we solve the two simultaneous equations:f(0)=6= c1 and f(1)=8=2c1 +2c2.Solving the two simultaneous equations, we obtain c1=6 and c2 = -2. It follows that f(n)=3·2n+1-n·2n+1(n≥0).(a) f(n)= f(n-1)+ n2= f(n-2)+(n-1)2+n2=……= f(0)+12+22+…+(n-1)2+n2=0+12+22+…+(n-1)2+n2=n(n+1)(2n+1)/6 (n≥0).(b) Let f(n)=2n g(n)(g(0)=f(0)=1). Then,2n g(n)= 2·2n-1g(n-1)+n,which simplifies tog(n)=g(n-1)+n·2-n ,whose solution isg(n) =∑i=1n i·2-i +1= 2-(n+2)/2n+1=3-(n+2)/2n(n≥0).Hence, f(n)=3·2n-n-2 (n≥0).(c) Let f(n)=3n g(n)(g(0)=f(0)=3). Then,3n g(n)=3·3n-1g(n-1)+ 2n,which simplifies tog(n)=g(n-1)+(2/3)n ,whose solution isg(n) = g(0)+∑i=1n(2/3) i=3+∑i=1n(2/3) i=5-2(2/3) n(n≥0).Hence, f(n)=5·3n-2n+1(n≥0).Page 156-158solution:First, we note that the time complexity of RADIX is (kn), where n is the number of elements in array A, and k is the maximum size among elements in A. Thus,(1)when array A consists of n positive integers in the interval [1..n], we can concludethat k=O(log n) and the time complexity can be expressed as O(n log n) in terms of n.(2)when array A consists of n positive integers in the interval [1.. n2], we canconclude that k=O(log n) and the time complexity can be expressed as O(n log n) in terms of n.(3)when array A consists of n positive integers in the interval [1..2n], we canconclude that k=O(n) and the time complexity can be expressed as O(n2) in terms of n.solution:Since A[1..n] is an array of positive integers in the interval [1.. n!], it follows thatk=O(n log n) and the time complexity of RADIX is O(n2log n). Considering the time complexity of BOTTOMUPSORT is (n log n), it is very likely that BOTTOMUPSORT is faster.solution:The only modification is to change “for j←1 to n” to “for j←n to 1 step -1” in Step 3 of Procedure perm2 in Algorithm PERMUTATIONS2 .disproof:Take the following instance as a counterexample: n=4, A[1..n]={1,2,3,4}. Obviously, if we run Algorithm MAJORITY on this instance, then in step 7 of Procedure candidate j=n and count=0, but c=4 isn’t the majority element.Exercise 6解答:当序列中的元素都相同时,每次执行算法SPLIT,仅出现一次元素交换,即将序列的第一个元素与最后一个元素交换,且划分元素的新位置为该序列的最后一个位置。
算法设计与分析习题解答(第2版)
![算法设计与分析习题解答(第2版)](https://img.taocdn.com/s3/m/ea134521bcd126fff7050b9a.png)
第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。
算法设计技巧与分析习题参考答案
![算法设计技巧与分析习题参考答案](https://img.taocdn.com/s3/m/faa1d97c59fafab069dc5022aaea998fcc224080.png)
算法设计技巧与分析习题参考答案习题4.13(b)元素最⼤交换次数:A9~A5 各1次;A4~A3 各2次;A2最多3次;A1最多4次最多共需16次元素交换4.13另解:考虑第i个节点,其⼦节点为2i,则最多可交换1次;若⼦节点有⼦节点22i, 则最多可交换2次;若…..有⼦节点i×2k, 则最多可交换k次;因此有i×2k≤ 19求出满⾜上述不等式的最⼤的k值即可。
i=1时, k=4;i=2时, k=3;i=3或4时, k=2;i=5~9时, k=1;因此最多交换4+3+2×2+1×5=16次6.5 ⽤分治法求数组A[1…n]元素和,算法的⼯作空间是多少?输⼊:数组A[1…n]输出:数组的所有元素之和∑A[i] {i=1…n}SUM(low, high)1.if high = low then2.return A[low]3.else4.mid←?(low+high)/2?5.s1←SUM(low,mid)6.s2←SUM(mid+1, high)7.return s1+s28.end if⼯作空间:mid~Θ(logn), s1&s2~Θ(1)(后序遍历树,不断释放空间,故为常数Θ(1)),总的⼯作空间为Θ(logn).6.6 ⽤分治法求元素x在数组A中出现的频次。
freq(A[low, high], x)1.if high=low then2.if A[low]=x then3.return 14.else5.return 06.end if7.else8.mid ←?(low+high)/2?9.f1 ←freq(A[low, mid])10.f2 ← freq(A[mid+1, high])11.return f1+f212.end if复杂度:T(n)=T(?n/2?)+ T(?n/2?)≈2T(n/2) (设2k≤n<2k+1) =…=2k T(n/2k) =2k T(1) = n6.16修改后的MERGESORT算法最⼤⽐较次数(1)/2()2(/2)1n n if n m T nT n n if n m-≤=?+->最⼩⽐较次数1()2(/2)/2n if n m C nC n n if n m-≤=?+>令n/2k=m≥2,展开可知:T(n)= 2k T(n/2k) + kn - (2k-1)= n/m×m(m-1)/2 + nlog(n/m)- n/m+1= n(m-1)/2 + nlog(n/m) -n/m+1若T(n)=Θ(nlogn), 其中表达式有nm, nlogn, nlogm, n/m等. 有n/m < nlogm < nm且须有nm=O(nlogn), i.e., nm ≤ c·nlogn, 则须有m≤c·logn. 可令c=1,则m≤logn. 另⼀⽅⾯,C(n) = 2k C(n/2k)+kn/2 = n/m×(m-1) + (n/2)log(n/m)= Θ(nlogn)6.35split(A[low,...high])1. x←A[low] //备份为x2. while (low3. while (low0) --high;4. A[low] ←A[high]5. while (low6.A[high] ←A[low]7.}8.A[low] ← x//这时, low=high7.3 动态规划法计算⼆项式系数knC ,并分析其时间复杂度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 形成交叉的框架
• 熟悉的快一些,
– 节约出时间提高熟练度 – 反复是克服难点的必要手段
• 学习应该涵盖两个方面:
– 内容,方法
• 目录是帮助回忆的
– 素描,轮廓
算法例子,算法类型,对应资源
• 看着目录 • 填表检查 • 回忆算法 • 回忆资源消耗
理解文明?
• 文明是和狭隘,妒忌,仇恨,虚假背离的
• 如果你的同学没成为人才,你如何感想?
– 应感:平等 & -尊重
方法
• 以点带面 • 重点突破 • 张弛有度 • 综合提高 • 循环反复(最多的反复有5次)
• 主动学习,培养主动学习
自我测试
一.填空(10分)
1、F(n)=n5+n5logn, g(n)=en + nn
5
F(n)= O(n5logn ),
• 3、F。算法的确定性指给出一个确定的 输入,多次执行结果相同。确定性算法对 问题会产生的结果也可以无解,不一定只 是正确解。
三、应用合适算法
(10’)一个矩阵链乘,M1,M2,M3,M4,M5;顺序 的阶的排列为3,5,7,6,10,4; 用一个2维表,把最佳的结合方案求出来。
(10’)广东某物流公司,负责粤D,粤C,粤 E,粤A,粤B间的某种材料配送,市际 配送费用如下表,请选择一个算法,求出 最好的一次配送完A~E城市的方案。
28
(A,C)
-5
B 0 0 C 0 18
A 1 5 1 B 0 0 0
E
27
0
ABD
C E
9 27
0 0
10
18
ABC D
调配方案:(A,C),(B,A),(E,B),(C,D),(D,E), bound=129
四、综合(各15分)
1、用分治法搜索数组A,规模为n,查找 对象为x是否出现在A中,对A有何要求, 给出算法思想,计算时间费用。
AB C D E A 25 24 37 46 B 30 20 28 30 C 28 9 35 19 D 65 15 40 20 E 57 20 30 56
• 1、
C[1,1]=0 M1
C[1,2]=105 (M1×M2)
三
C[1,3]=231 C[1,4]=411 M1(M2×M3) (M1(M2×M3))M4
• 文明,我理解,不一定准确,是用科学知 识,科学方法,做有益于大家未来,大家 生活的事,文明需要一种博爱的态度(随 和,理性),和一种严谨的行为方式。
青出于蓝
• 态度
– 欣赏的 – 乐观其成的 – 例如:羽毛球,带过的学生,
• 鼓励,引导主动学习 • 如果你的同学成为人才,你如何感想?
– 应感:荣耀, & -欣赏
g(n)= (nn )
2
2、基于比较的排序算法,最好的算法费时下界为:___(nlogn)_
3、数组A={1,2,…,9,10}, 给出二分查找1的搜索树图示_____
1
4、随机算法分为两种,但有共同目的,即_使输入处于随机态,使最坏情形几乎
不出现_____
5、k=logn
nlogn/2 6、
nlogn-n+1
引导回顾
主题列表
总结 复杂度具体计算 贪婪法中最短路,最小生成树 归纳法中例子 动态规划的例子
感谢同学们遵守纪律,参与学习
• 同学们的配合,
– 到课,作业,问答,
• 同学们的实验,
– 3个教学班统一的题目,
• 被鼓励和表扬的同学,
– 榜样
• 没被我表扬的同学,
– 一样优秀, – 低调
提纲帮助有效学习
2、贪婪法能否求出最优解?求解下图的最 小生成树,用Prim,Kruskal 两种方法,并比较这两个方法的思想。
四、1 解
1)分治搜索x在n元组A中,要求A有序 2)取A[Floor(n/2)]比较x,
若A[Floor(n/2)]<x, 取A[Floor(n/2)+1,…,n]做递归输入; 若A[Floor(n/2)]>x, 取A[0,…,Floor(n/2)-1]递归输入; 3)由2)得,T(n)=T(n/2)+1, 若n=2k,
二、判断下列说法,简述理由或改正
1、由于3n和3n-1的比值极限为非0常数, 且3n-1和3n-2也是如此, … … 所以3n=(3n-1)
说法错误。 3n和3n-1的比值恒为3,它们 之间是精确关系,不适用近似表示,而且 表示要求的阶应是n的最简形式,即3n才 可以表示阶的形式。
解二
1、F。题设有陷阱,3n/3n-1 3, 3n-1/3n 1/3, 根本无需讨论极限, 3n× 1/3 () 3n -1 () 1/3 × 3n, 3n-1 =(3n).
C[1,5]=531 ((M1(M2M3))M4)M5
C[2,2]=0 M2
C[2,3]=210 (M2×M3)
C[2,4]=510 (M2×M3)M4
C[2,5]=548 M2(M3(M4M5))
C[3,3]=0 M3
C[3,4]=420 (M3×M4)
C[3,5]=408 M3(M4M5)
C[4,4]=0 M4
C[4,5]=240 (M4×M5)
C[5,5]=0 M5
三
2.写出矩阵
分ห้องสมุดไป่ตู้界限法
25 24 37 46 24
30 20 28 30 20
28
9
35
19
9
65 15 40 20 15
57
20
30
56
20
-10
-8 -5
1 0 5 17 Bound=111
0 0 0 5
9
0
18
5
40 0 25 0
27
0
10
28
选择与否二叉
(D,E)
(D,E) Bound=116
选择删去其行列
1 0 5 B ound=111 1 0 5 17
不选阻塞其行列
0 0 0
9
0 18
0 0 0 5
9
0
18
5
27
0
10
-5
40 0 25
27
0
10
7、8皇后问题的解空间大小为: __n!____ 8、能够得到最优解的算法方法有: __动态规划,贪心法,分支界限,穷举____
9、2-n, , nn, logn2 , log2n, n, 2n , n!,按增长速 度非减排序为____ 2-n< logn2 < log2n < n < 2n <n!<nn __
2、
2、快速排序的随机算法虽然最坏时为O(n2) 但是由于有了随机化,使得最坏情形永远 不出现,所以,随机快速排序为最优的。
2、F。随机算法不能让算法的时间复杂度发 生改变,最坏情形的时间消耗不变,只是 通过随机扰动,让最坏不太可能出现。使 得期望时间消耗比较理想。
3、
• 3、算法如果不能输出正确的解,那一定 是非确定算法。