信号与系统实验报告
信号与系统软件实验实验报告
信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。
二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。
计算机配置为_____处理器,_____内存,_____硬盘。
三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。
对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。
2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。
输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。
3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。
通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。
4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。
采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。
四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。
2、按照实验内容的要求,依次进行各项实验操作。
在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。
然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。
对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。
通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。
在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。
通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。
信号与系统实验报告3-(2)
信号与系统实验实验三:信号的卷积(第三次实验)【实验目的】1. 理解卷积的物理意义;2. 掌握运用计算机进行卷积运算的原理和方法;3. 熟悉卷积运算函数conv的应用;【实验内容】给定如下因果线性时不变系统:y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3](1)不用impz函数,使用filter命令,求出以上系统的单位冲激响应h[n]的前20个样本;代码如下:clear all;N=[0:19];num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,N);stem(N,h);xlabel('ʱ¼äÐòºÅ');ylabel('Õñ·ù');title('µ¥Î»³å¼¤ÏìÓ¦');grid;图像如下:(2)得到h[n]后,给定x[n],计算卷积输出y[n];并用滤波器h[n]对输入x[n]滤波,求得y1[n];代码如下:clear all;N=[0:19];num=[0.9 -0.45 0.35 0.002];den=[1 0.71 -0.46 -0.62];h=filter(num,den,N);x=[1 -2 3 -4 3 2 1];y=conv(h,x);n=0:25;subplot(2,1,1);stem(n,y);xlabel('时间序号n');ylabel('振幅');title('用卷积得到的输出');grid;x1=[x zeros(1,19)];y1=filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('时间序号n ');ylabel('振幅');title('用滤波得到的输出');grid;图像如下:(3)y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?(4)思考:设计实验,证明下列结论① 单位冲激信号卷积:)()(*)(t f t f t =δ)()(*)(00t t f t f t t -=-δ代码如下:clc;clear all ;n=[0:20];d=(n==0);f=sin(n);f1=conv(d,f);subplot(3,1,1);f1=f1(1:21);stem(n,f1);title('¦Ä[n]*f[n]');grid;subplot(3,1,2);stem(n,f);title('f[n]');grid;subplot(3,1,3);stem(n,f-f1);title('¦Ä[n]*f[n]-f[n]');grid;图像如下:② 卷积交换律:)(*)()(*)()(1221t f t f t f t f t f ==代码如下:clc;clear all;n=0:30;f1=sin(n);f2=cos(n);y1=conv(f1,f2);y1=y1(1:31);y2=conv(f2,f1);y2=y2(1:31); subplot(3,1,1); stem(n,y1);title('f1*f2'); grid;subplot(3,1,2); stem(n,y2);title('f2*f1'); grid;subplot(3,1,3);y3=(y1-y2)>10^-14; stem(n,y3);grid;图像如下:③卷积分配律:)(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+代码如下:clc;clear all ;n=1:50;f1=(-1).^n;f2=cos(n);f3=sin(n);y1=conv(f1,(f2+f3));y1=y1(1:50);y2=conv(f1,f2)+conv(f1,f3);y2=y2(1:50);subplot(3,1,1);stem(n,y1);title('f1*[f2+f3]');grid;subplot(3,1,2);stem(n,y2);title('f1*f2+f1*f3');grid;subplot(3,1,3);y3=(y1-y2)>10^-14;stem(n,y3);title('f1*[f2+f3]-f1*f2+f1*f3');grid;图像如下:【实验分析】:1.y[n]和)y1[n]有差别吗?为什么要对x[n]进行补零得到的x1[n]来作为输入来产生y1[n]?答:y[n]和)y1[n]是对同一个系统输入的响应,该系统是因果线性时不变系统,所以y[n]和)y1[n]没有差别;由于y[n]和)y1[n]没有差别,滤波器h[n]对x[n]滤波得到的y1[n]和用卷积计算得到的y[n]是同一个信号;2.卷积分配率程序代码中f1的n时间序号长度n为[1:50],f2的n时间序号长度为[1:50],所以输出完整信号的长度为99,而程序中输出长度仅50,说明这只是信号的部分波形。
MATLAB信号与系统实验报告19472[五篇范文]
MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。
由于盘算历程啰嗦,最适适用MATLAB 盘算。
通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。
任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。
-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。
基波频率Ω。
2、确定系统函数 )(Ω jn H。
3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。
用两个子图画出。
2、画出系统函数的幅度频谱|H(jω)|。
3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。
用两个子图画出。
解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。
《信号与系统》课程实验报告
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验实验报告
信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告
信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告
信号与系统实验报告实验一连续时间信号1.1表示信号的基本MATLAB函数1.2连续时间负指数信号1、对下面信号创建符号表达式x(t)=sin(2πt/T)cos(2πt/T)。
对于T=6,8和16,利用ezplot 画出0<=t<=32内的信号。
什么是x(t)的基波周期?x1=sym('sin(2*pi*t/T)');x2=sym('cos(2*pi*t/T)');x=x1*x2x4=subs(x,4,'T');ezplot(x4,[0,32]);x8=subs(x,8,'T');ezplot(x8,[0,32]);x16=subs(x,16,'T');ezplot(x16,[0,32]);T=4 T=8T=162、对下面信号创建一个符号表达式x(t)=exp(-at)cos(2πt)。
对于a=1/2,1/4,1/8,利用ezplot确定td,td为|x(t)|最后跨过0.1的时间,将td定义为该信号消失的时间。
利用ezplot对每一个a值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素Q=(2π/T)/2a?x1=sym('exp(-a*t)');x2=sym('cos(2*pi*t)');x=x1*x2;xa1=subs(x,1/2,'a');ezplot(xa1);xa2=subs(x,1/4,'a');ezplot(xa2);xa3=subs(x,1/8,'a');ezplot(xa3);a=1/2 a=1/4a=1/83、将信号x(t)=exp(j2πt/16)+exp(j2πt/8)的符号表达式存入x中。
函数ezplot不能直接画出x(t),因为x*(t)是一个复数信号,实部和虚部分量必须要提取出来,然后分别画出他们。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统课程实验报告
合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。
二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。
它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。
2.实验线路检查无误后,打开实验箱右侧总电源开关。
3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。
4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。
信号与系统实验报告5
信号与系统实验报告5信号与系统实验报告5引言信号与系统是电子工程领域中的重要学科,它研究信号的产生、传输和处理过程,以及系统对信号的响应和影响。
在本次实验中,我们将探索信号与系统的一些基本概念和实际应用。
一、信号的分类与特性信号是信息的载体,可以是连续的或离散的。
根据信号的性质,我们可以将其分为模拟信号和数字信号。
模拟信号是连续变化的,可以用连续函数表示;而数字信号是离散的,以数字的形式表示。
在实验中,我们使用了示波器观察了不同类型的信号。
通过观察信号的波形、频谱和功率谱密度等特性,我们能够了解信号的频率、幅度和相位等信息。
二、系统的响应与特性系统是对信号进行处理或传输的装置或环境。
系统可以是线性的或非线性的,可以是时不变的或时变的。
在实验中,我们使用了滤波器作为系统模型来研究系统的响应和特性。
通过改变滤波器的截止频率,我们观察到不同频率的信号在系统中的响应差异。
我们还通过调整系统参数,如增益和相位延迟,来研究系统的线性性质和时不变性质。
三、信号与系统的应用信号与系统在现实生活中有着广泛的应用。
在通信领域,我们可以利用信号与系统的知识来设计和优化无线电、光纤通信和卫星通信等系统。
在音频处理领域,我们可以利用信号与系统的方法来实现音频的降噪、音效增强和语音识别等功能。
此外,信号与系统在图像处理、生物医学工程和控制系统等领域也有着重要的应用。
通过对信号的采集、处理和分析,我们能够从中提取有用的信息,并对系统进行建模和控制。
结论通过本次实验,我们深入了解了信号与系统的基本概念和实际应用。
我们学习了信号的分类与特性,系统的响应与特性,以及信号与系统在各个领域的应用。
这些知识不仅对我们理解和应用电子工程学科具有重要意义,也为我们今后的学习和研究提供了坚实的基础。
信号与系统是一门复杂而又有趣的学科,它涉及了数学、物理和工程等多个领域的知识。
通过不断学习和实践,我们能够更好地理解和应用信号与系统的理论,为解决实际问题提供有效的方法和工具。
信号与系统分析实验报告
信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。
本实验报告将对信号与系统分析实验进行详细的描述和分析。
实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。
首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。
然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。
实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。
实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。
我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。
实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。
通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。
实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。
通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。
实验结果显示,不同频率的信号在频域上有不同的分布特性。
我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。
实验四:系统辨识本实验旨在研究系统的辨识方法。
我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。
实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。
结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。
实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。
这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。
通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。
信号与系统实验报告
实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。
在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。
1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。
在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。
在MATLAB中连续信号可用向量或符号运算功能来表示。
⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。
向量f为连续信号在向量t所定义的时间点上的样值。
⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。
⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。
%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。
方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。
信号与系统的实验报告
信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。
在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。
实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。
然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。
通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。
实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。
首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。
然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。
通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。
实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。
然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。
通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。
通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。
实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。
然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。
信号与系统实验报告一
信号与系统实验报告一实验一:信号与系统实验报告实验目的:1. 了解信号与系统的基本概念和理论知识;2. 学习使用MATLAB 对信号进行分析和处理;3. 掌握系统的时域和频域分析方法。
实验内容:本次实验包括以下两个部分:1. 信号的生成与表示;2. 系统的时域和频域分析。
一、信号的生成与表示1. 在MATLAB 中生成并绘制以下信号的波形图:(1) 正弦信号:A*sin(2*pi*f*t);(2) 方波信号:sign(sin(2*pi*f*t));(3) 带噪声的正弦信号:(1+N)*sin(2*pi*f*t)。
2. 对以上生成的信号进行分析和处理:(1) 计算各种信号的幅值、频率和相位;(2) 绘制各种信号的功率谱密度图。
二、系统的时域和频域分析1. 在MATLAB 中定义以下信号系统的单位脉冲响应h(n):(1) 线性时不变系统:h(n) = (0.4)^n * u(n),其中,u(n) 表示单位阶跃函数;(2) 非线性时变系统:h(n) = n * u(n)。
2. 对定义的信号系统进行时域和频域分析:(1) 绘制并分析系统的单位脉冲响应;(2) 计算系统的单位脉冲响应的离散时间傅里叶变换;(3) 绘制系统的幅频响应函数。
实验结果:1. 信号的生成与表示:(1) 正弦信号:根据给定的振幅A、频率f 和时间t,在MATLAB 中生成相应的正弦信号,并绘制出波形图。
根据波形图可以观察到正弦信号的周期性和振幅。
(2) 方波信号:根据给定的频率f 和时间t,在MATLAB 中生成相应的方波信号,并绘制出波形图。
方波信号由正负两个幅值相等的部分组成,可以通过绘制图形来观察到。
(3) 带噪声的正弦信号:根据给定的振幅A、频率f、时间t 和噪声系数N,在MATLAB 中生成带噪声的正弦信号,并绘制出波形图。
可以通过观察波形图来分析噪声对信号的影响。
2. 系统的时域和频域分析:(1) 线性时不变系统的单位脉冲响应:根据给定的线性时不变系统的单位脉冲响应函数,计算并绘制出相应的单位脉冲响应图。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统实验报告-(常用信号的分类与观察)
实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。
1、信号:指数信号可表示为f(t)=Ke at。
对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。
其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。
Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。
其信号如下图所示:7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。
用示波器测量“信号A组”的输出信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都理工大学核技术与自动化工程学院电气工程及其自动化专业信号系统实验报告学院:核技术与自动化工程学院专业 : 电气工程及其自动化姓名:薛成成学号:201106050228指导老师:李琳琳实验一MATLAB应用基础一、实验性质验证性实验二、实验目的1.掌握MATLAB编程及绘图的基本知识,2.能表示在信号与系统中常用的连续及离散时间信号。
三、实验内容与步骤(1)画出x(t)=cos(2*t)的波形,并判断x(t)是否为周期信号,若是周期信号,确定其周期。
同时画出cos(2*t)*u(t)的波形。
(1)画出x(t)cos(2*t)的波形,并判断x(t)是否为周期信号,若是周期信号,确定其周期。
同时画出cos(2*t)*u(t)的波形。
解:在MATLAB中输入虾类命令:>>t=2:0.01:10;>> y=cos(2*t);>> plot(t,y)实验二线性非时变系统的时域分析一、实验性质验证性试验二、实验目的掌握在时域中对连续和离散时间线性非时变系统响应进行分析的方法。
三、实验内容与步骤(1)已知系统的微分方程如下,用MATLAB画出该系统的冲激响应及该系统在输入信号e(t)=exp(-2*t)时的零状态响应的波形。
(改变取样的时间间隔p观察仿真的效果)实验程序及图像如下:>> a=[1 3 2];>> b=[3];>> impulse(b,a)(1)>> p=0.01;t=0:p:10;>> x=exp(-2*t);>> lsim(b,a,x,t);(2) P=0..01>> p=0.1;t=0:p:10;>> x=exp(-2*t);>> lsim(b,a,x,t);(3)P=0.1(2)已知离散系统的差分方程为:y(n)+y(n-1)+0.25y(n-2)=x(n)用MATLAB画出该系统的单位函数响应,写出相应的程序并画出波形。
实验程序与图像如下:>> a=[1 1 0.25];>> b=[1];>> impz(b,a)impz(b,a)实验注释:impulse(): 求连续系统的冲级响应并绘制其时域波形的函数impulse(b,a,t1:p:t2) b: 激励信号的行向量,缺项用0补齐。
a: 响应信号的行向量,缺项用0补齐。
t1:p:t2表示以p为间隔,在t1-t2的范围内的波形。
lsim(): 对微分方程描述的连续时间LTI系统的零状态响应进行仿真。
lsim(b,a,x,t) b: 激励信号的行向量,缺项用0补齐。
a: 响应信号的行向量,缺项用0补齐。
x: 表示输入信号 t: 输入信号的时间范围。
impz(b,a,n1:n2) b: 激励信号的行向量,缺项用0补齐。
a: 响应信号的行向量,缺项用0补齐。
ni:n2: 表示以1为间隔,在n1-n2的范围内的波形。
若impz(b,a,n)则表示以1为间隔,在0-n的范围内的波形。
实验体会:我只知道MALTLAB可以在数学中应用,但是通过信号系统中的学习我了解了它的功能强大,同时可以通过程序的设计和图形的信号输入我们可以得到不同的原理图。
同时加强了我的动手能力,还有和同学之间的合作。
实验四系统的零极点分析一、实验性质验证性实验二、实验目的1.掌握系统函数及零极点的概念;2.掌握对连续和离散系统的稳定性进行分析的方法。
三、实验原理与方法实验原理和信号与系统理论书上验证求系统的零极点类似,求出零极点使分式的分母为零解出零极点的位置坐标,主要就是通过冲激响应h(t)和系统函数H(s)的相互联系以及单位函数响应h(n)和系统函数H(z)的联系来证明。
这里我们重点介绍判断系统稳定性的方法:1.对于连续系统:(1)若输入有界,则输出有界;(2)h(t)绝对可积;(3)H(s)的所有极点在左半平面。
2.对于离散系统(1)若输入有界,则输出有界;(2)h(n)绝对可积;(3)H(z)的所有极点在单位圆内。
我们通过考察H(s)和H(z)的零极点分布就可以判断离散系统的稳定性。
四、实验内容与步骤(1)已知一连续时间线性非时变系统的系统函数为H(s)=(s^2-4)/(s^2*s^2+2*s*s^2-3*s^2+2*s+1),画出系统的零极点图并判断系统的稳定性。
实验过程:1. 自定义M文件:function [p,z]=1jdt(D,N)p=roots(D) %系统的极点z=roots(N) %求系统的零点p=p'; %求极点列向量转置为行向量z=z'; %求将零点列向量转置为行向量x=max(abs([p z])); %用来确定坐标轴的范围x=x+0.1;y=x;hold on %重叠绘图axis([-x x -y y]); %确定坐标轴显示范围plot([-x x],[0 0]) %画出横坐标plot([0 0],[-y y]) %画出纵坐标plot(real(p),imag(p),'x') %画出极点plot(real(z),imag(z),'o') %画出零点title('连续系统的零极点图') %加标题text(0.2,x-0.2,'虚轴') %加文本标注text(y-0.2,0.2,'实轴')2.主程序:>> a=[1 2 -3 2 1];>> b=[1 0 -4];>> 1jdt(a,b);p =-3.13000.7247 + 0.6890i0.7247 - 0.6890i-0.3195z =2.0000-2.0000因为H(s)有极点在右半平面,所以该系统是一个不稳定系统。
(2)已知一离散时间线性非时变系统的系统函数为H(s)=(-3/z)/(2-5/z+2/(z^2))画出系统的零极点图并判断系统的稳定性。
实验过程1.自定义文件nljbt:function [p,z]=nljbt(D,N)p=roots(D) %系统的极点z=roots(N) %求系统的零点p=p'; %求极点列向量转置为行向量z=z'; %求将零点列向量转置为行向量x=max(abs([p z 1])); %用来确定坐标轴的范围x=x+0.1;y=x;hold on %重叠绘图axis([-x x -y y]); %确定坐标轴显示范围w=0:pi/300:2*pi;ucircle=exp(j*w);plot(ucircle) %画出单位圆plot([-x x],[0 0]) %画出横坐标plot([0 0],[-y y]) %画出纵坐标plot(real(p),imag(p),'x') %画出极点plot(real(z),imag(z),'o') %画出零点title('离散系统的零极点图') %加标题text(0.1,x,'虚轴') %加文本标注text(y,0.1,'实轴')2.主程序:>> a=[2 -5 2];>> b=[0 -3 0];>> clf>> nljbt(a,b);p =2.00000.5000z =因为H(z)的所有极点不均在单位圆内,所以该系统是一个不稳定系统。
实验体会在实验中最主要的就是程序的设置和文件的建立,开始我无从下手但是通过理论与实践相互结合。
我快速了解了零极点的求法,.同时通过了实验我进一步了解了理论中的极点的求法加深了我对信号系统的学习。
同时更好的了解了零点的求法,更好的体会到了,信号系统的作用。
实验五系统仿真一、实验性质综合性实验二、实验目的用MATLAB中的Sinmulink建立仿真模型,完成系统函数和系统冲激响应的仿真。
三、实验原理与方法原理过于繁杂,这里就不过多赘述了。
这里重点介绍实验方法,要完成此次实验,主要是通过创建Simulink 模型,具体方法如下:(1)点击工具栏中的彩色图标或在MATLAB环境下输入simulink命令,弹出“simulink library browser”浏览窗口。
(2)在浏览器上方的工具栏中选择“建立新模型的图标”,弹出名为“untitled”的空白窗口,进行自己所要尽心操作的程序所需的模拟操作信号。
(3)选择相应的系统模块并将其拷贝(或托动)到新建的系统模型中。
(4)将光标指向起始块的输出端口,此时光标变成“+”。
(5)单击鼠标左键并拖动到目标模块的输入端口,在接近到一定程度时光标变成双十字。
松开鼠标左键,连接完成。
(6)系统模块参数设置与系统仿真参数设置,双击系统模块,打开系统模块参数设置对话框,进行参数设置。
(7)运行仿真:单击系统模型编辑器上的Play图标或选择Simulation菜单下的Start对系统双击右键进行仿真分析。
四、实验内容与步骤预习题1.观察系统函数H(s)=(s+1)/(s^2+1.3*s+0.8)的系统仿真波形,激励为单位阶跃信号利用零点定理在操作中选择自己所选择的函数,输入自己将要得到的信号。
2.单位冲激响应的仿真3.任意激励的系统零状态响应的仿真作业:(1)当系统的传递函数为s/(s+1),输入分别为单位阶跃函数、单位冲激函数及正弦信号时系统的输出结果;输入为单位阶跃函数输入为单位冲激函数输入为正弦信号(2)当系统的传递函数为(2*pis)/(s^2+4*pi*pi),输入分别为单位阶跃函数、单位冲激函数及正弦信号时系统的输出结果;输入为单位阶跃函数输入为单位冲激函数输入为正弦信号实验体会这次实验大部分比较简单,主要是我们学会用MATLAB软件来进行简单的系统仿真,但有一个地方要注意:Source库中并没有单位冲激信号的模块,所以我们必须另外用阶跃信号模块经微分来产生。
而且在程序的运行过程中我们必须注意操作步骤,时刻检查过程中我们犯的错误,加强我们对该系统的学习.实验六卷积、频谱分析与抽样定理实验一、实验性质综合性实验二、实验目的1.理解卷积的概念及物理意义;通过实验的方法加深对卷积运算的理解。
2.了解使用硬件实验系统进行信号频谱分析的基本思路;掌握使用HD8662信号与系统实验平台进行实时信号频谱分析的方法。
3.观察离散信号频谱,了解其频谱特点;验证抽样定理并恢复原信号三、实验原理与方法1卷积积分与理论书上的求法相同,这里就不在过多的介绍了。
2信号频谱分析DSP数字信号处理器可以对实时采集到的信号进行FFT运算以实现时域与频域的转换,FFT运算结果反映的是频域中各频率分量幅值的大小,从而使画出频谱图成为可能。