回归分析PPT演示文稿
合集下载
回归分析实例PPT课件
![回归分析实例PPT课件](https://img.taocdn.com/s3/m/8b6ca061cec789eb172ded630b1c59eef8c79ae6.png)
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
回归分析法(精品PPT课件)
![回归分析法(精品PPT课件)](https://img.taocdn.com/s3/m/81c3e1490722192e4436f646.png)
b0
i 1
W 2 n yi b0 b1xi xi 0
b1
i 1
8
求解上述方程组得:
n
n
n
n xiyi
xi
yi
b1 i1
n
x x n i1
i 1 i 1
2
i
n
2
i
i 1
1 n
bn
b0
yi
补充内容:回归分析法
回归分析是计量经济学中最为基础的一 部份内容。在这里我们简单地介绍回归 分析中估计模型具体参数值的方法。
1
一、一元线性回归与最小二乘法
Y=b0+b1x+ε,其中y 为应变量,x为自变量, b0为模 型的截距,b1为x变量的系数, ε为随机误差项。
如果现在有一系列的y与x的值,我们可以用很多方法 来找到一个线性的方程,例如任意连接两个特定的点, 但这种方法显然不能给出一条最好的拟合直线。另一 种方法是找出一条直线,使得直线与已有的点之间的 距离的和最小,但由于这条直线与点之间的距离有时 为正有时为负,求和时会相互抵消,所以用这种方法 找到的直线也并不一定最好。于是我们想到要找到一 条这样的直线,使得直线与点之间的距离的平方和最 小:
xi
n i1
n i1
9
例1:
某地区人均收入与某耐用消费品销售额的资料如 下表所示:请求出其一元回归模型。
年份 1991
人均收 入x/元
680
耐用消
费品销 售额y/
164
万元
1992 760
180
1993 900
200
1994 940
228
回归分析应用PPT课件
![回归分析应用PPT课件](https://img.taocdn.com/s3/m/3de0e42e24c52cc58bd63186bceb19e8b8f6ecb4.png)
回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析
《回归分析 》课件
![《回归分析 》课件](https://img.taocdn.com/s3/m/4c9d50604a73f242336c1eb91a37f111f0850d79.png)
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
第章线性回归分析详解演示文稿
![第章线性回归分析详解演示文稿](https://img.taocdn.com/s3/m/6b7dde641fd9ad51f01dc281e53a580216fc501c.png)
数学模型为: y=β0+β1x+ε
上式表明:y的变化可由两部分解释:第一,由解释
变量x的变化引起的y的线性变化部分,即y=β0+β1x; 第二,由其他随机因素引起的y的变化部分,即ε。 β0 、β1 都是模型中的未知参数,β0为回归常数,β1为 y对x回归系数(即x每变动一个单位所引起的y的平
一元二乘估计:
多元二乘估计(略)
第十一页,共52页。
9.3回归方程的统计检验
拟合优度检验 回归方程的显著性检验
回归系数的显著性检验 残差分析
第十二页,共52页。
9.3.1回归方程的拟合优度检验
用于检验样本数据点聚集在回归线周围的密集程度, 从而评价回归线对样本数据的代表程度。 思想:因变量y(儿子身高)取值的变化受两个因素
第二十九页,共52页。
第二、计算残差的自相关系数 自相关系数用于测定序列自相关强弱,其取值范围 -1~+1,接近1表明序列存在正自相关
第三十页,共52页。
第三、DW(durbin-watson)检验
DW检验用于推断小样本序列是否存在自相关的方法。其原 假设为:总体自相关系数ρ与零无显著差异。采用统计量 为:
的影响:自变量x(父亲身高)不同取值的影响,其 他因素(环境、饮食等)的影响。
可表示如下:
因变量总变差 = 自变量引起的 + 其他因素引起的 即因变量总变差= 回归方程可解释的+不可解释的 即,因变量总离差平方和SST =回归平方和 SSA + 剩余平
方和SSE
第十三页,共52页。
图示:
y y i
素对 y 的影响造成的。
第十五页,共52页。
一、一元线性回归方程
拟合优度的检验采用R2统计量,称为判定系数
上式表明:y的变化可由两部分解释:第一,由解释
变量x的变化引起的y的线性变化部分,即y=β0+β1x; 第二,由其他随机因素引起的y的变化部分,即ε。 β0 、β1 都是模型中的未知参数,β0为回归常数,β1为 y对x回归系数(即x每变动一个单位所引起的y的平
一元二乘估计:
多元二乘估计(略)
第十一页,共52页。
9.3回归方程的统计检验
拟合优度检验 回归方程的显著性检验
回归系数的显著性检验 残差分析
第十二页,共52页。
9.3.1回归方程的拟合优度检验
用于检验样本数据点聚集在回归线周围的密集程度, 从而评价回归线对样本数据的代表程度。 思想:因变量y(儿子身高)取值的变化受两个因素
第二十九页,共52页。
第二、计算残差的自相关系数 自相关系数用于测定序列自相关强弱,其取值范围 -1~+1,接近1表明序列存在正自相关
第三十页,共52页。
第三、DW(durbin-watson)检验
DW检验用于推断小样本序列是否存在自相关的方法。其原 假设为:总体自相关系数ρ与零无显著差异。采用统计量 为:
的影响:自变量x(父亲身高)不同取值的影响,其 他因素(环境、饮食等)的影响。
可表示如下:
因变量总变差 = 自变量引起的 + 其他因素引起的 即因变量总变差= 回归方程可解释的+不可解释的 即,因变量总离差平方和SST =回归平方和 SSA + 剩余平
方和SSE
第十三页,共52页。
图示:
y y i
素对 y 的影响造成的。
第十五页,共52页。
一、一元线性回归方程
拟合优度的检验采用R2统计量,称为判定系数
回归分析法PPT课件
![回归分析法PPT课件](https://img.taocdn.com/s3/m/4cb9a8a9534de518964bcf84b9d528ea81c72ffe.png)
线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
第二章回归分析ppt课件
![第二章回归分析ppt课件](https://img.taocdn.com/s3/m/12d8bb06c950ad02de80d4d8d15abe23482f0394.png)
U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:
Logistic回归分析(共53张PPT)
![Logistic回归分析(共53张PPT)](https://img.taocdn.com/s3/m/50a0a2d59f3143323968011ca300a6c30c22f1a4.png)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。
Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。
Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。
《回归分析)》课件
![《回归分析)》课件](https://img.taocdn.com/s3/m/a956e74303020740be1e650e52ea551810a6c9e6.png)
收集和整理相关数据,并进行数据清洗和变量转换,为模型建立做准备。
2
模型的建立和检验
选择适当的回归模型,进行参数估计和模型检验,确保模型的准确性和可靠性。
3
模型的应用和解释
利用已建立的模型进行预测和解释因变量的变化,探索自变量对因变量的影响。
回归因变量之间的关系。
非线性回归分析
使用非线性模型来描述自变 量和因变量之间的关系。
多元回归分析
考虑多个自变量对因变量的 影响,并建立多元回归模型。
回归分析的评价指标
• 实际因子与预测因子之间的相关系数 • 平均绝对误差 • 可决系数
回归分析的应用
经济学领域
回归分析可用于预测经济因素 之间的关系,如GDP与失业率的 关系。
社会学领域
回归分析可用于研究社会现象 和行为之间的关系,如教育水 平与收入的关系。
工程学领域
回归分析可用于工程问题的预 测和优化,如建筑材料的强度 与耐久性的关系。
回归分析的限制条件
• 不同因素的关系并非线性 • 自变量之间的相关性 • 数据量的大小和均匀性
总结和展望
回归分析是一种强大的工具,能够帮助我们理解变量之间的关系,并进行预 测和解释。未来,随着数据科学的发展,回归分析在各个领域的应用将会更 加广泛。
《回归分析)》PPT课件
回归分析是一种用于研究变量之间关系的统计方法。本课程将介绍回归分析 的定义、步骤、类型、评价指标以及应用领域,并探讨其限制条件。
什么是回归分析
回归分析是一种统计方法,用于研究自变量和因变量之间的关系。通过建立 数学模型,预测和解释因变量的变化。
回归分析的步骤
1
数据的收集和处理
《logistic回归分析》PPT课件
![《logistic回归分析》PPT课件](https://img.taocdn.com/s3/m/2d6c832ba21614791711288e.png)
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1
p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1
p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。
spss第五讲回归分析PPT课件
![spss第五讲回归分析PPT课件](https://img.taocdn.com/s3/m/89d71555ba68a98271fe910ef12d2af90242a8da.png)
关于x的残差图 关于y的残差图 标准化残差图
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)
残
差
0
残
残
差
差
0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)
残
差
0
残
残
差
差
0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
logistic回归分析(精选PPT)
![logistic回归分析(精选PPT)](https://img.taocdn.com/s3/m/1fed30fc1711cc7930b71685.png)
14
在其它影响因素相同的情况下,某危险因素 X j 两个
不同暴露水平 c1 和 c0 发病优势比的自然对数为:
ln OR j
ln
P1 P0
(1 (1
P1 ) P0 )
=
ln( P1 ) ln( P0 )
1 P1
1 P0
= j (c1 c0 )
则该因素的优势比: OR j exp[ j (c1 c0 )]
多个因变量
2
• logistic回归(logistic regression)是研究因变量为二分类或 多分类观察结果与影响因素(自变量)之间关系的一种多 变量分析方法,属概率型非线性回归。
• 在流行病学研究中,常需要分析疾病与各种危险因素间的 定量关系,同时为了能真实反映暴露因素与观察结果间的 关系,需要控制混杂因素的影响。
第十五章 logistic回归分析
Logistic Regression Analysis
山东大学公共卫生学院
1
回归分析的分类
一个 因变 量y
连续型因变量 (y) --- 线性回归分析 分类型因变量 (y) ---Logistic 回归分析 生存时间因变量 (t) ---生存风险回归分析 时间序列因变量 (t) ---时间序列分析
2 2
X X
2 2
L L
mXm) mXm)
]
1 exp(0 1X1 2 X 2 L m X m )
ln[exp(0 1X1 2 X 2 L m X m )]
0 1X1 2 X 2 L m X m
(15.2)
13
模型参数的流行病学含义
当各种暴露因素为 0 时:
ln( P ) 1 P
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 n i1
由于Qα,β yi βxi y βx y βx α
n
2
y βx α y βx α
2 n 2
yi βxi y βx 2yi βxi y βx
2 i1 n 2
β2 x i x 2β x i x y i y
2 i1 i1
n
n
y i y ny βx α
2 i1
n
2
xi x yi y n 2 2 ny βx α xi x β i1 n 2 i1 x x i i1
在必修模块中 , 我们学习过关于抽样、 用 样本估计总体、线性回 归等基本知识.本 章中 , 我们将在此基础上 , 通过对典型例案 的讨论, 进一步讨论线性回归分 析方法及 其应用, 并初步了解独立性检验 的基本思 想, 认识统计方法在决策中 的作用 .
1.1 回归分析的基本思想及 其初步应用
我们知道 ,函数关系是一种确定 性关系 , 而相关关系是一种非确 定性关系 .回归分 析(regression analysis ) 是对具有相关关 系的两个变量进行统计 分 析的一种常用 方法.在《数学3 》中, 我们对两个具有线 性相关关系的变量利用回归分析 的方法 进行了研究, 其步骤为画散点图, 求回归 直线方程 , 并用回归直线方程进行预报.
y βx α yi βxi y βx
i1
n
n n y βx α yi β xi ny βx i1 i1
y βx αny nβx ny βx 0,
所以 Qα, β y i βx i y βx ny βx α
2 i1
n
i1
yi βxi y βx 2 yi βxi y βx
n
y βx α ny βx α ,
2
i1
i1
注意到 yi βxi y βx y βx α
i1
n
x
180
图1.1 1
从图 1.1 1中可以看出 , 样本点呈条状分布, 身 高和体 重有比 较好的 线性相关关系,因此可 以用线 性回归方程刻
y
70 65 60 55 50 45 40 150 155 160 165 170 175
x
180
画它们之间的关系 . 1和2,可以得到 根据探究中的公式 ˆ 0.849. ˆ 85.712, b a
n
2
x i x y i y n 2 i1 y i y . n 2 i1 x x i
n i1
2
在上式中 ,后两项和α,β无关,而前两项为非负 数,因此要使Q取最小值 ,当且仅当前两项的值 均为0,即有
Байду номын сангаасβ
x
i1 n
求根据一名女大学生的 身高预报她的体重的回 归方程, 并预报一名身高为 172cm的女大学生的体重 . 70 y 解 由于问题中要求根
65
据身高预报体重 ,因此选 取身高为自变量 x , 真实 体重为因变量 y .作散点 图 (图1.1 1) :
60 55 50 45 40 150 155 160 165 170 175
图1.1 1
ˆ 0.849x ˆ 85.712. 于是得到回归方程 y 所以, 对身高为 172cm的女大学生 ,由回归方程可以 预报其体重为 y 0.849 172 85.712 60.316kg .
b 0.849是斜率的估计值 ,说明身高x每增加 1个单位时 , 体重y就增加0.849个单位, 这表明 体重与身高具有正的线 性相关关系 .如何描述 它们之间线性相关关系 的强弱? 在必修3中, 我们介绍了用相关系数 r来衡量 两个变量之间线性相关 关系的方法 .样本相 关系数的具体计算公式 为
第一章 统计案例
在现实中 , 我们经常会遇到类似下 面的问题 : 肺癌是严重威胁人类性命的一种疾病 , 吸烟 与患肺癌有关系吗 ? 肥胖是影响人类健康的 一个重要因素,身高和 体重之间是否存在 线 性相关关系 ? 等等.
为了回答这些问题 ,必须明确问题涉及的对 象 (总体) 是什么, 用怎样的量来描述要解 决的问 题, 并确定获取变量值 (数据)的方法,然后用恰 当的方法分析数据 ,以得到最可靠的结论 .
探究 对于一组具有线性相关关系的数据 x1, y1 , x 2 , y 2 , , xn , yn , 我们知道其回归方程的截距和斜率的最小 二乘估计公式分别为: n
ˆx ˆ y b a
1
ˆ b
x
i1 n
i
x y i y
i
x
i1
x
n
i
x y i y
i
x
i1
x
, α y βx .
2
这正是我们所要推导的 公式.
下面我们通过案例 , 进一步学习回归分析的 基本思想及其应用 .
例1 从某大学中随机选取8名女大学生, 其身高和体 重数据如表1 1所示. 编号 1 2 3 4 5 6 7 8 身高/ cm 165 165 157 170 175 165 155 170 体重 / kg 48 57 50 54 64 61 43 59
,
2
2
n 1 n 其中x x i , y yi .x, y 称为样本点的 n i1 i1 公式吗? 中心.你能推导出这两个计算
回归直线过样本点的中 心.
ˆ 分别是使 ˆ 和斜率b 从已经学过的知识知道 , 截距a Qα,β yi βxi α 取最小值时α,β的值.
由于Qα,β yi βxi y βx y βx α
n
2
y βx α y βx α
2 n 2
yi βxi y βx 2yi βxi y βx
2 i1 n 2
β2 x i x 2β x i x y i y
2 i1 i1
n
n
y i y ny βx α
2 i1
n
2
xi x yi y n 2 2 ny βx α xi x β i1 n 2 i1 x x i i1
在必修模块中 , 我们学习过关于抽样、 用 样本估计总体、线性回 归等基本知识.本 章中 , 我们将在此基础上 , 通过对典型例案 的讨论, 进一步讨论线性回归分 析方法及 其应用, 并初步了解独立性检验 的基本思 想, 认识统计方法在决策中 的作用 .
1.1 回归分析的基本思想及 其初步应用
我们知道 ,函数关系是一种确定 性关系 , 而相关关系是一种非确 定性关系 .回归分 析(regression analysis ) 是对具有相关关 系的两个变量进行统计 分 析的一种常用 方法.在《数学3 》中, 我们对两个具有线 性相关关系的变量利用回归分析 的方法 进行了研究, 其步骤为画散点图, 求回归 直线方程 , 并用回归直线方程进行预报.
y βx α yi βxi y βx
i1
n
n n y βx α yi β xi ny βx i1 i1
y βx αny nβx ny βx 0,
所以 Qα, β y i βx i y βx ny βx α
2 i1
n
i1
yi βxi y βx 2 yi βxi y βx
n
y βx α ny βx α ,
2
i1
i1
注意到 yi βxi y βx y βx α
i1
n
x
180
图1.1 1
从图 1.1 1中可以看出 , 样本点呈条状分布, 身 高和体 重有比 较好的 线性相关关系,因此可 以用线 性回归方程刻
y
70 65 60 55 50 45 40 150 155 160 165 170 175
x
180
画它们之间的关系 . 1和2,可以得到 根据探究中的公式 ˆ 0.849. ˆ 85.712, b a
n
2
x i x y i y n 2 i1 y i y . n 2 i1 x x i
n i1
2
在上式中 ,后两项和α,β无关,而前两项为非负 数,因此要使Q取最小值 ,当且仅当前两项的值 均为0,即有
Байду номын сангаасβ
x
i1 n
求根据一名女大学生的 身高预报她的体重的回 归方程, 并预报一名身高为 172cm的女大学生的体重 . 70 y 解 由于问题中要求根
65
据身高预报体重 ,因此选 取身高为自变量 x , 真实 体重为因变量 y .作散点 图 (图1.1 1) :
60 55 50 45 40 150 155 160 165 170 175
图1.1 1
ˆ 0.849x ˆ 85.712. 于是得到回归方程 y 所以, 对身高为 172cm的女大学生 ,由回归方程可以 预报其体重为 y 0.849 172 85.712 60.316kg .
b 0.849是斜率的估计值 ,说明身高x每增加 1个单位时 , 体重y就增加0.849个单位, 这表明 体重与身高具有正的线 性相关关系 .如何描述 它们之间线性相关关系 的强弱? 在必修3中, 我们介绍了用相关系数 r来衡量 两个变量之间线性相关 关系的方法 .样本相 关系数的具体计算公式 为
第一章 统计案例
在现实中 , 我们经常会遇到类似下 面的问题 : 肺癌是严重威胁人类性命的一种疾病 , 吸烟 与患肺癌有关系吗 ? 肥胖是影响人类健康的 一个重要因素,身高和 体重之间是否存在 线 性相关关系 ? 等等.
为了回答这些问题 ,必须明确问题涉及的对 象 (总体) 是什么, 用怎样的量来描述要解 决的问 题, 并确定获取变量值 (数据)的方法,然后用恰 当的方法分析数据 ,以得到最可靠的结论 .
探究 对于一组具有线性相关关系的数据 x1, y1 , x 2 , y 2 , , xn , yn , 我们知道其回归方程的截距和斜率的最小 二乘估计公式分别为: n
ˆx ˆ y b a
1
ˆ b
x
i1 n
i
x y i y
i
x
i1
x
n
i
x y i y
i
x
i1
x
, α y βx .
2
这正是我们所要推导的 公式.
下面我们通过案例 , 进一步学习回归分析的 基本思想及其应用 .
例1 从某大学中随机选取8名女大学生, 其身高和体 重数据如表1 1所示. 编号 1 2 3 4 5 6 7 8 身高/ cm 165 165 157 170 175 165 155 170 体重 / kg 48 57 50 54 64 61 43 59
,
2
2
n 1 n 其中x x i , y yi .x, y 称为样本点的 n i1 i1 公式吗? 中心.你能推导出这两个计算
回归直线过样本点的中 心.
ˆ 分别是使 ˆ 和斜率b 从已经学过的知识知道 , 截距a Qα,β yi βxi α 取最小值时α,β的值.