平面控制测量
第九章平面控制测量

闭合导线
如图所示,从一个 已知控制点A出发,经 过P1、P2、P3、P4、 P5,最后又回到该已 知点上,形成一个闭 合多边形,在闭合导 线中必须要有一个已 知点坐标和一条已知 边的坐标方位角。闭 合导线的优点是图形 本身有着严密的几何 条件,具有检核作用。
支导线
如图所示,从一个已 知控制点出发,既不附 合到另外一个已知控制 点上,也不回到原来的 起始点。由于支导线没 有检核条件,故一般只 限于地形测量的图根导 线中采用,同时,边数 一般不超过3条。
第二节 导线测量外业工作和内业计算
一、导线测量的外业工作
导线测量是平面控制测量的方法之一,导线 测量常用于城市建设的平面控制、地形测图的平 面控制和工程建设的平面控制等方面。将相邻控 制点用直线连接而构成的折线,称为导线。构成 导线的控制点,称为导线点。导线测量就是依次 测定各导线边的边长和各转折角;根据起算数据, 推算各边的坐标方位角,从而求出各导线点的坐
标。
用经纬仪测定各转折角,用钢尺测定 其边长的导线,称为经纬仪导线,用光电 测距仪测定边长的导线,则称为光电测距 导线。
导线测量是建立小地区平面控制网的 主要方法,特别适用了地物分布比较复杂 的城市建筑区,通视较困难的隐蔽地区、 带状地区以及地下工程等控制点的测量。
图根导线量距的技术要求:
导线布设的形式
控制测量的任务
在测绘各种大比例尺地形图时,要进 行必要的图根控制测量;在工程建设施工 阶段,要进行一定精度的施工控制测量; 在工程竣工后的营运阶段,为进行各种变 形观测而作的专用控制测量。由此可见, 控制测量是进行其他各项测量工作的基础, 它具有传递点位坐标并高精度控制全局的 作用,具有限制测量误差的传播和积累的 作用。
根据测区的地形及测区内控制点的分布 情况,导线可以布设成单一导线(附合导 线、闭合导线、支导线)、结点导线(单 结点导线、多结点导线)和导线网等形式。
平面控制测量

平面控制测量
国家三角网
2.城市平面控制网
平面控制测量
在城市和市政工程建设地区,为了测绘更大比例 尺的1∶2 000~1∶500地形图和城市工程建设的观 测等,需要布设密度更大的平面控制网。在国家控 制网的统一控制下,按《城市测量规范》(CJJ/T 8—2011)的规定,城市平面控制网的布设分为: 二、三、四等和一、二级三角网;三、四等和一、 二、三级导线网。
4.图根平面控制网
平面控制测量
在上述基本控制测量的基础上进一步加密,建 立直接供测绘地形图使用的测站点而进行的控制测 量称为图根控制测量,由此得到的控制点称为图根 控制点(简称图根点)。图根控制测量可用图根三 角测量技术,也可用导线测量技术,图根导线测量 主要技术要求见表6-2。图根点的密度(包括高级 点),取决于测图比例尺和地物、地貌的复杂程度。 平坦开阔地区图根点的密度可参考表6-3的规定; 地形复杂地区、城市建筑密集区和山区,应根据测 图需要并结合具体情况加大密度。
平面控制测量
1.1 平面控制测量概述
平面控制测量分类
平面控制测量
三角形网测量
导线测量
1.国家平面控制网
平面控制测量
国家平面控制网又称基本控制网,是在全国范围 内建立的控制网,采用逐级控制、分级布设的原则, 在全国范围内按统一的方案建立控制网,利用精密 仪器采用精密方法测定,并进行严格的数据处理, 最后求出控制点的平面位置。它是全国各种比例尺 测图和工程建设的基本控制,也为空间科学技术和 军事提供精确的点位坐标、距离、方位资料,并为 研究地球大小和形状、地震预报等提供重要资料。
平面控制测量
1.2 平面坐标计算的公式
如图6-5所示,设A点的已知坐标为(xA, yA),又已知A至B点的边长为DAB,坐标方 位角为αAB。求B点坐标(xB,yB)。 设A至B点的纵坐标增量和横坐标增量分别 为ΔxAB 和ΔyAB,由图中关系可知,计算 ΔxAB 和ΔyAB的公式为
平面控制测量

精度要求:符合规范规定。
例:图根导线
测距方法: 钢尺量距 电磁波测距
D往 D返 1 D平均 3000
2020/10/16
27
3.导线角度测量
——观测导线各转折角、连接角。
DJ6一个测回(图根导线)。左 右40
边长较短时,采用光学对点。
全部测左角,或全部测右角;闭合导线测内角。
4.导线连接测量
2 1
(4)推算各边的坐标方位角α: (用改正后的β改)
前 后 18 0 右 左
计算出的 终 终 , 否则,需重算。
2020/10/16
36
(5)计算坐标增量ΔX、ΔY:
Xi Di cosi
Yi Di sini
(6)计算坐标增量闭合差:
fx x(x终x始)
fy y(y终y始)
由于 f x , f y 的存在,使导线不能和CD连接,存
2020/10/16
14
7-2导线测量
1-2 导线测量
一.导线测量概述 二.导线测量的外业 三.导线测量的内业计算
2020/10/16
15
导线测量概述
导线测量概述
导线测量是平面控制测量中最常 用的方法。
闭合导线
导线的已知点和新建点组成的若 干条直线(即导线边)联结成一系 列折线或闭合多边形。
导线测量时,通常只需要前后两 点相互通视。
已知数据:AB,XB,YB;CD,XC,YC。
C CD
B
1 DB1
D12
2 D23
AB B
1
2
3 D34 4 D4C C
3
4 (XC,YC)
D
(XB,YB)
附合导线图
A
第6章 平面控制测量

(XC,YC)
C
D
2
附合导线图
观测数据:连接角β ∇观测数据:连接角βB 、βC ;
导线转折角β 导线转折角β1, β2, β3 ,β4 ; 导线各边长D 导线各边长DB1,D12,……,D4C。 ,
3.支导线 3.支导线
βB DB1
β1 1
D12
2
αAB
A
B (XB,YB)
∇A、B为已知边,点1、2为新建支导线点。 为已知边, 为新建支导线点。 ∇已知数据:αAB,XB,YB
控制测量 采用精密仪器和严密的方法, 采用精密仪器和严密的方法,对控制网测 确定控制点的平面位置和高程, 量,确定控制点的平面位置和高程,作为其它 测量的基准。 测量的基准。
C
D
E
F
A
B
M
G
控制点—具有准确可靠坐标(X,Y,H) —具有准确可靠坐标(X 的基准点。 作用:
1.为测图或工程建设的测区建立统一的平面和高 1.为测图或工程建设的测区建立统一的平面和高 程控制网 2.控制误差的积累 2.控制误差的积累 3.作为进行各种细部测量的基准 3.作为进行各种细部测量的基准
4
2.附合导线 2.附合导线
∇AB、CD为已知边,点1、2、3、4为新建导线点。 AB、CD为已知边, 为已知边 为新建导线点。 ∇已知数据:αAB,XB,YB;αCD,XC,YC。
β3 βB DB1 β1 D12 β2 D23 βC αCD D34 β4 D4C
3
αAB A
B (XB,YB)
1
4
城市导线网
表7 - 3
城市三边网的主要技术要求来自城市导线控制测量的主要技术要 求
3、工程控制网
6平面控制测量、导线测量

现 代 测 量 技 术 室
土木工程测量学
点 名
观测角 方位角 真方位角 边长
160 35 42
i
yi
M A 1
2 3 B N fβ = -10″
+ 02 80 04 52
60 40 34
60 40 36
281.457 269.974 315.345 392.121
+ 02 247 27 32 128 08 06 128 08 10 + 02 91 12 43 39 20 49 39 20 55 + 02 255 03 51 114 24 40 114 24 48 + 02 219 58 55 154 23 45
2. 计算坐标方位角的通用公式
AB
M o d e r n
X AB 180 90 sgn(YAB ) arctan Y AB
S u r v e y
现 代 测 量 技 术 室
土木工程测量学
§6-4
aAB = a Δ YAB > 0 Δ XAB >0 a a A AB B
单导线的近似平差计算
二、双定向附(闭)合导线计算 1.方位角闭合差及其配赋
M o d e r n
S u r v e y
现 代 测 量 技 术 室
土木工程测量学
§6-5 单导线的近似平差计算
β
n
M β A
β
2
Pn P2
1
N
Sn β n+1
S1
S2 P 3
B
1 MA 1 180
2 1 2 180
x B
αBA
平面控制测量方法

平面控制测量方法平面控制测量方法是对二维平面上的点、线、面进行测量和控制的方法。
它广泛应用于建筑、制造、土木工程等领域,对于确保产品和建筑物的准确度和质量至关重要。
平面控制测量方法包括以下几种主要方法:1.全站仪全站仪是一种高精度的测量仪器,可以同时测量水平角、垂直角和斜距,并可根据测得的角度和斜距计算出点的坐标。
全站仪通常具有自动测量、数据存储和数据处理功能,能够提高测量效率和数据的准确性。
2.电子经纬仪电子经纬仪是一种测量方位角和斜距的仪器,它可以通过测量目标点与基准点之间的角度和斜距来计算目标点的坐标。
电子经纬仪具有高灵敏度和高精度的特点,在测量平面控制点时非常有效。
3.测距仪测距仪是一种利用光学、电磁波或声波等原理测量距离的仪器。
在平面控制测量中,常用的测距仪有激光测距仪和电磁波测距仪。
测距仪可以快速、准确地测量出点与点之间的距离,从而实现对平面控制点的测量和控制。
4.全息测量法全息测量法是一种基于全息干涉原理的测量方法,它利用激光的相干特性实现对平面控制点的测量。
全息测量法具有非接触、高精度、高效率的特点,可以广泛应用于平面控制测量领域。
5.相位测量法相位测量法是一种通过测量光或电磁波的相位差来计算距离或坐标的方法。
在平面控制测量中,常用的相位测量法有干涉测量法和调制成像测量法。
相位测量法具有高精度和快速的特点,适用于高精度的平面控制测量任务。
6.全息成像法全息成像法是一种通过全息技术实现对平面控制点的测量和控制的方法。
全息成像法可以记录和还原目标点的光场信息,从而实现对其位置和形状的测量和控制。
全息成像法具有非接触、高精度的特点,在一些特殊的平面控制测量任务中得到了广泛应用。
综上所述,平面控制测量方法包括全站仪、电子经纬仪、测距仪、全息测量法、相位测量法和全息成像法等多种方法。
这些方法在测量平面上的点、线、面时具有各自的特点和适用范围,可以根据测量任务的要求选择合适的方法进行测量和控制。
平面控制测量

一.控制测量的概念
3.有关名词
控制点:对整个测区起控制作用的测量标志点。 控制网:由按一定规范布设,由一系列相互联系的
控制点所构成的网状几何图形。 图根控制网:直接为测图而建立的控制网。 图根点: 图根控制网中的控制点。
控制测量: 为建立控制网所进行的测量工作。
庆
食品店
路
8.75m D5
中
山
中西 北 18-1 12.36m
路
2.导线边长测量
——测定导线各边长(往返丈量)。
精度要求:符合规范规定。
例:图根导线
测距方法: 钢尺量距 电磁波测距
D往 D返 1 D平均 3000
2 导线测量
一.导线测量概述 二.导线测量的外业 三.导线测量的内业计算
导线测量概述
导线测量是平面控制测量中最常 用的方法。
闭合导线
导线的已知点和新建点组成的若 干条直线(即导线边)联结成一系 列折线或闭合多边形。
附合导线
导线测量时,通常只需要前后两 点相互通视。
闭合导线和附合导线也称为单导 线,结点导线和两个环以上的导 线称为导线网。
导线各边长DB1,D12,……,D51。
2.附合导线
AB、CD为已知边,点1、2、3、4为新建导线点。
已知数据:AB,XB,YB;CD,XC,YC。
C CD
B
1 DB1
D12
2 D23
AB B
1
2
3 D34 4 D4C C
3
4 (XC,YC)
D
(XB,YB)
附合导线图
A
观测数据:连接角B 、C ; 导线转折角1, 2, 3 ,4 ;
第七章控制测量ppt课件全

Rb Rc
R R
c a
Ra
Rb
二、后方交会
通常观测四个已知点,组成两组后方交会,分别计算P点的两 组坐标值,求其较差。若较差在限差之内,即可取两组坐标的平均 值作为P点的最后坐标。
过三个已知点构成的圆称为危险圆。
待定点P 不能位于危险圆的圆周上,否 则P点将不能惟一确定。
若接近危险圆(待定点P至危险圆圆周 的距离小于危险圆半径的五分之一),确 定P点的可靠性将很低,
导线全长闭合差
fD fx2fy2
导线全长相对闭合差
1 k
D/ fD
(4)坐标增量闭合差的计算和分配
当全长相对闭合差不大于容许值时,可将坐标增量闭合差反符 号按边长成正比例地改正它们的坐标增量,其改正数为:
v x ij
fx D
D
ij
v y ij
fy D
D
ij
改正后的坐标增量为
xij xij vxij
一、前方交会
三点前方交会
为了避免错误并提高待定点的精度,一般 测量中都要求布设有三个已知点的前方交会。
计算时,分两组利用余切公式计算P点坐 标。若两组坐标的较差在允许限差内,则取两 组坐标的平均值作为P 点的最后坐标。
由未知点至两相邻已知点方向间的夹角称 为交会角(γ)。
前方交会测量中,要求交会角一般应大于 30°并小于150°。
yij
yij
vyij
2.附合导线计算
(5)坐标计算 根据起始点坐标及改正后的坐标增量,依次计算各导线点的坐
标。 由推算而得的B 点的坐标应与已知值完全相符,以此作为计算
检核。
3.闭合导线的计算
闭合导线的计算步骤与附合导线完 全相同,仅在角度闭合差和坐标增量闭 合差的计算上有所不同。
平面控制测量方法及实施步骤

平面控制测量方法及实施步骤1. 前言大家好,今天咱们聊聊平面控制测量的方法和实施步骤。
这可是个重要的话题,尤其是对于那些在测量行业摸爬滚打的朋友们来说,听起来可能有些专业,但其实没那么复杂。
我们一起来捋一捋,保准让你听得明明白白,心里也能有个数。
2. 平面控制测量的基本概念2.1 什么是平面控制测量?平面控制测量,顾名思义,就是为了确定某个区域内的点位,以确保我们在进行各种工程建设时,不会偏离轨道。
想象一下,咱们要盖房子,如果基础没打好,后面就跟着一大堆问题了,对吧?平面控制测量就是帮助我们找准那个“点”,把一切都建立在坚实的基础上。
2.2 为啥要做平面控制测量?可能你会问,为什么要这么麻烦呢?其实,不做这一步,就像无头苍蝇一样,哪里飞哪里。
平面控制测量能让我们在一开始就设定好基准点,确保后面的工作都能顺顺利利。
比如,公路建设、桥梁修建、甚至是小区的绿化,都是离不开这个过程的。
3. 实施步骤3.1 步骤一:准备工作首先,准备工作是必须的,咱们不能盲目上阵。
要做好充分的准备,包括设备的检查、人员的培训和现场的勘察。
这就像是出门远行之前,先看看天气,带上伞和防晒霜,免得到时候遭遇暴风雨或者晒得跟红烧肉似的。
设备方面,一定要确保测量仪器的准确性和可靠性。
比如,全站仪、GPS设备等,都是咱们的好帮手。
检查完这些,接下来就要对测量区域进行勘察,标记出基准点和控制点,确保后面的工作可以顺利进行。
3.2 步骤二:测量实施接下来,进入到实际的测量环节。
这时候,可得认真了。
我们会使用全站仪进行测量,把选定的控制点进行记录。
这就像是写日记,把每一个重要的点都标记下来,方便后续的查阅。
每测量一个点,心里都得盘算一下,确保没有出错。
毕竟,点错了,就相当于盖房子的时候打歪了地基,后果可不堪设想!此外,还需要对测量数据进行整理和校核。
这里有个小窍门,就是在现场可以和同事们互相确认一下,确保大家的测量结果一致。
这就像是一群朋友一起去旅行,谁都不想在景点前面迷路,对吧?4. 数据处理与分析4.1 数据整理测量完毕后,我们要把所有的数据汇总起来,进行整理。
平面控制测量

的骨干。
三等、四等三角网和导线网,根据测区的需要,在二
等三角网的基础上进行加密,基本图形如下:
图7-3 三角网或三边网
图7-4 导线网
4.常规平面控制测量的主要技术要求
表7-2
城市三角测量的主要技术要求
表7-3
城市三边网的主要技术要求
表7-4
城市导线控制测量的主要技术要求
图根导线的技术要求
测图 比例尺 附合导 平均边 测距相对 线长度 长(m) 中误差 (km) (mm) 测 角 中误差 ( ) 测回数 导线全 方位角 DJ6 长相对 闭合差 闭合差
1:500
500
75 110 180
一般地区
1:1000 1000 1:2000 2000
1/3000
20
1
1/2000
60n
1.踏勘选点及建立标志
(1).踏勘测区 实地了解测区地形; 了解已知点状况。 (2).图上(指原有旧图)设计布网方案 导线网形、等级; 导线边长、总长、点位密度等符合规范要求。
(3).实地选点(4).建立标志
(3).实地选点(考虑以下因素):
视野开阔,便于测图(重要); 点位稳定,便于保存; 边长适当,足够密度; 便于安置仪器。
注:R为测段的长度;L为附合路线的长度,均以km为单位。
7-2导线测量
2 导线测量
一.导线测量概述 二.导线测量的外业 三.导线测量的内业计算
导线测量概述
导线测量概述
导线测量是平面控制测量中最常 用的方法。
闭合导线
导线的已知点和新建点组成的若 干条直线(即导线边)联结成一系 附合导线 列折线或闭合多边形。 导线测量时,通常只需要前后两 点相互通视。 闭合导线和附合导线也称为单导 线,结点导线和两个环以上的导 单结点导线 线称为导线网。
Sl197-2013 《水利水电工程测量规范》 4 平面控制测量

Sl197-2013 《水利水电工程测量规范》4 平面控制测量4.1 一般规定4.1.1 平面控制可分为基本平面控制、图根平面控制和测站点平面控制等,可采用GNSS测量、三角形网测量和导线(网)测量等方法。
4.1.2 基本平面控制的等级可划分为二等、三等、四等、五等4个等级,各等级均可作为测区的首级控制,其布设层次和精度要求应符合表4.1.2的规定。
4.1.3 基本平面控制点均应埋设标志并绘制点之记,尺寸规格与要求应符合附录A的规定。
4.1.4 全站仪测图图根控制点的密度,应满足测图需要,不宜小于表4.1.4的规定。
表4.1.4 图根控制点密度4.1.5 平面控制测量内业计算中数字取位应符合4.1.5的规定。
4.2 GNSS测量4.2.1 GNSS测量控制网按精度可划分为五个等级,各等级控制网的相邻点间距及精度要求应按表4.2.1的规定执行。
4.2.2 GNSS网的设计应满足下列要求:1 各等级GNSS网可布设成多边形或附和路线,其相邻点最小距离不宜小于平均间距的1/3,最大距离不宜大于平均间距的3倍。
2 新建GNSS网与原有控制网联测时,其联测点数不宜少于3点,分布宜均匀。
在需用常规测量方法加密控制网的地区,GNSS网店应成对布设,对点间相互通视。
3 基线长度大于20km时,应采用GB/T18314中C级GPS网的时段长度进行静态观测。
4 二等、三等、四等GNSS控制网应采用网连式、边连式布网;五等、图根控制网可采用点连式布网。
5 GNSS控制网由非同步基线构成的多边形闭合环或附和路线的边数应满足表4.2.2的规定。
表4.2.2 GNSS控制网非同步观测闭合环或附和路线边数规定4.2.3 GNSS点的点位应顶空开阔、视场内障碍物的高度角不宜大于15°,并远离大面积水域、大功率发射台或高压线,其距离不宜小于50m。
4.2.4 各等级GNSS平面控制测量的主要技术要求应满足表4.2.4-1~表4.2.4-3的规定。
第七章平面控制测量

观测方法:单导线采用全测回法观测左角或右角, 观测方法:单导线采用全测回法观测左角或右角,支导线观 测左右角,导线网采用全圆测回法测角, 测左右角,导线网采用全圆测回法测角,精度要求同教材 表7—6。 )、测边 测边: (三)、测边: 测边的仪器工具:目前采用钢尺、光电测距仪、全站仪。 测边的仪器工具:目前采用钢尺、光电测距仪、全站仪。 钢尺丈量距离要进行钢尺检定,采用精密量距方法。 钢尺丈量距离要进行钢尺检定,采用精密量距方法。图根导 线可以采用一般方法。 线可以采用一般方法。 光电测距仪:目前是测距的主要方法, 光电测距仪:目前是测距的主要方法,测距仪等级不同对不 同等级的导线测距的技术要求不同。 同等级的导线测距的技术要求不同。测距仪的等级是按标 称精度划分。 称精度划分。 =(a+b× mD=(a+b×D) 测距中误差: mD—测距中误差: a-标称精度中的固定误差 标称精度中的固定误差: a-标称精度中的固定误差: 标称精度中的比例误差系数: b—标称精度中的比例误差系数: 测距长度: D—测距长度:
三、小区域的平面控制网 小区域平面控制网的布设同样遵守由高级到低级的原则 图根控制;测区最低一级的控制网即直接为测图建立的 图根控制; 控制网。控制点称为图根点。 控制网。控制点称为图根点。图根平面控制点的布设是在 首级控制的基础上的进一步加密。 首级控制的基础上的进一步加密。根据控制面积的大小可 分两级控制或直接布设图根控制。 分两级控制或直接布设图根控制。 控制点的密度;控制点的密度直接影响地形图的质量, 控制点的密度;控制点的密度直接影响地形图的质量, 要根据地形条件和测图的比例尺布设足够的密度, 要根据地形条件和测图的比例尺布设足够的密度,不宜过 多或过少,可以参考表7 多或过少,可以参考表7-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章平面控制测量一、思考题1.什么叫导线、导线点、导线边、转折角?2.导线的形式主要有哪几种?各在什么情况下采用?3.导线测量的目的是什么?其外业工作如何进行?4.如何计算闭合导线和附合导线的角度闭合差?5.如何根据导线各边的坐标方位角确定坐标增量的正负号?6.何谓导线坐标增量闭合差?何谓导线全长相对闭合差?坐标增量闭合差是根据什么原则进行分配的?7.闭合导线与附合导线的内业计算有何异同点?8.什么是坐标正算?什么是坐标反算?坐标反算时坐标方位角如何确定?9.导线与国家三角点联测有哪几种方法?各在什么情况下采用?10.何谓小三角测量?在路桥工程中有哪些应用?11.小三角网的布置形式有哪几种?各在什么情况下采用?12.小三角测量的目的是什么?其外业工作如何进行?13.小三角锁内业计算的主要步骤是什么?二、习题1. 如表6-1,已知坐标方位角及边长,试计算各边的坐标增量 ∆X、∆Y。
(AB边坐标增量 ∆X=49.660m、∆Y=342.935m;BC边坐标增量 ∆X=-41.702m、∆Y=522.142m;CD边坐标增量 ∆X=-24.254m、∆Y=-526.466m)表6-12. 表6-2,已知P1至P4各点坐标,试计算P1P2和P3P4的坐标方位角和边长。
(P1P2的坐标方位角和边长分别是227-24-16、340.030m、P3P4的坐标方位角和边长分别是66-52-15、313.442m)表6-23. 某闭合导线,其横坐标增量总和为 - 0.35 m,纵坐标增量总和为 + 0.46 m,如果导线总长度为1216.39 m 试计算导线全长相对闭合差和边长每100 m的坐标增量改正数。
(导线全长相对闭合差是1/2104,边长每100 m的坐标增量改正数分别为0.03 m、-0.04m)4.图6-1为闭合导线,已知 α12 = 143︒07'15",P1点坐标X P1 = 0 539.740 m,Y P1 = 6 484.080 m,观测数据如表6-3所列,求闭合导线各点坐标。
(角度闭合差为0;f x=0.001m,f y=0.096m;导线全长绝对闭合差f D=0.096m;导线全长相对闭合差是1/5132;x2=415.314m,y2=6577.400m;x3=402.768m,y3=6599.905m ;x4=511.869m,y4=6658.136m;x5=554.112m,y5=6594.258m)图6-1表6-35. 置仪器于三角点A(3 992.54 m,9 674.50 m),B(4 681.04 m,9 850.00 m)处,观测导线点P,并测得角值为α = 53︒07'44", β = 56︒06'07"(如图6-2),试用前方交会公式求P点坐标。
(x p=4479.298m,y p=9282.858m)图 6-2第六章导线测量第一节概述在测量工作中,为防止测量误差的积累,保证必要的精度,无论是将地面的形状测绘成地形图,还是将工程设计图上的建筑物测设到实地卜,都是首先在全测区范围内选定一些有控制意义的点,组成一定的几何图形,用精密的测量仪器和精确的测算方法,测定它们的平面位置和高程,再以这些点为基础,测定其他碎部点的位置。
这些有控制意义的点组成了测区的骨干,这些骨干点称为控制点。
测定它们相对位置的工作,称为控制测量。
这就是测量工作“从整体到局部,先控制后碎部”的原则。
导线测量是平面控制测量的一种方法。
所谓导线就是由测区内选定的控制点组成的连续折线,如图6-1所示。
折线的转折点A、B、C、E、F 称为导线点;转折边DAB、DBC、DCE、DEF称为导线边;水平角βB,βC,βE称为转折角,其中βB、βE在导线前进方向的左侧,叫做左角,βC 在导线前进方向的右侧,叫做右角;aAB称为起始边DAB的坐标方位角。
导线测量主要是测定导线边长及其转折角,然后根据起始点的已知坐标和起始边的坐标方位角计算各导线点的坐标。
一、导线的形式根据测区的情况和要求,导线可以布设成以下几种常用形式:1.闭合导线。
如图6-2a)所示,由某——高级控制点出发最后又回到该点,组成—个闭合多边形,这种导线布设形式叫闭合导线。
它适用于面积较宽阔的独立地区作测图控制。
2.附合导线。
如图6-2b)所示,自某一高级控制点出发最后附合到另一高级控制点上的导线,叫附合导线。
它适用于带状地区的测图控制,此外也广泛用于公路、铁路、管道、河道等工程的勘测与施工控制点的建立。
3.支导线。
如图6-2c)所示,从——控制点出发,既不闭合也不附合于另一控制点上的单一导线,叫支导线。
这种导线没有已知点进行校核,错误不易发现,所以导线的点数不得超过2—3个。
第73页二、导线的等级除国家精密导线外,在公路工程测量中,根据测区范围和精度的要求,导线测量可分为二等、四等、一级、二级和三级导线五个等级。
各级导线测量的技术要求如表6-1所列。
三、导线的种类导线按其不同的边长测定方法可以分为以下几种类别:1.量距导线直接用钢尺丈量各导线边的边长。
2.视距导线利用视距测量方法(见第八章第三节)测量导线的边长。
3.光电测距导线用红外光电测距仪测量导线的边长。
这种方法大大减轻了劳动强度,提高了测量精度和第一节概述小三角测量和导线测量一样,也是建立平面控制的方法之一。
所谓小三角测量即是在小范围内进行的三角测量,不考虑地球曲率的影响,按近似的平差方法进行成果计算。
它的特点是:各控制点(即三角点)间由连续的三角形构成,只须测量一两条边的长度(称为基线),所以丈量距离的下作量少,主要了作是观测各三角形的内角。
因此这种平面控制形式对于不适应丈量距离的地区(如山区、丘陵区等)来说是简便的。
在桥梁和隧道建筑中,为测定桥梁和隧道的轴线长度以及测设隧道开挖方向等,经常用小三角测量方法来解决。
一、小三角网的布置形式根据测区的地形条件、工程要求、原有的控制网状况等因素,小三角网可以布置成以下的形式:1、三角锁如测区形状是狭长地带,可布设成如图7—1a)所示的小三角锁,在锁的两端设置两条基线,这种图形的布设与汁算均比较简便,是桥梁、隧道勘测时常用的图形。
2.大地四边形在跨河测量、测定桥梁轴线或桥梁施工测量中,为了提高点位精度,可在两个三角形中间加入一条对角线,如图7-1b)所示,称为大地四边形,AB为基线。
二、小三角的等级在公路工程测量中,小三角测量根据测区大小、精度要求的不同分为一级和二级小三角共两个等级,它们的精度要求与同级导线基本上是一致的。
小三角测量可作为国家三角测量进一步的加密控制,在独立测区义可作为首级控制使用。
各级小三角测量的主要技术要求见表7-1。
第93页三、踏勘选点踏勘选点是一项很重要的工作,直接影响测量的精度和工作进度。
选点前应首先收集测区原有的控制测量资料和地形图,然后在原地形图上初步拟定点位的布设方案,再到现场依照实地情况选定三角点的实地位置。
当测区没有资料可以利用时,则须到测区现场综合比较各项因素,如三角形的形状、边长、通视情况、基线位置以及加密控制的布没等,最后定出合理的三角点位置。
在选择三角点时,除厂测图或各项工程的特殊要求外,还应满足下列基本要求:(1)三角形的边长可根据有关规范、测图比例尺及地形等的不同情况确定。
一般为100m~1 000m。
(2)三角形的形状应接近等边三角形,一般在三角形中,用以推算边长的求距角不能小于30°或大于120°。
(3)二角点间应通视良好,避免建造高觇标,点位应视野开阔,控制范围广,便于加密控制,并易于长久保存;(4)基线应选在乎坦、土质坚实的地段,对于桥梁三角网,通常以垂直于桥轴线的边作基线。
般布设两条基线,如图7-2所示。
同时为了获得桥墩放样交会精度,基线一般采用直线形。
基线长度一般不小于桥轴线长度的0.7倍,困难地段不小于0.5倍。
基线场地应选在土质坚实、地势平坦、便于准确丈量的地方。
(5)若布设隧道三角网时,应尽量将隧道进出口的控制点作为三角点。
四、造标埋石三角点选定后,要在地面上埋设标志。
一般在地面上打一大木桩,桩顶画一“+”表示点位,或把一顶头带“+”的钢筋用混凝土浇筑而成,如图7-3所示。
为了观测水平角照准目标,还要在三角点上竖立标杆或三脚架,如图7-4所示。
三角点应进行命名和编号,并绘制点位草图。
五、角度观测角度观测可用J6或J2级经纬仪按方向观测法进行。
每站观测前,应根据三角网(锁)略图第九章公路路线测量公路路线测量主要讲述公路勘测阶段的测量工作,即公路中线测量,路线纵、横断面测量,带状地形图测绘和有关调查测量等。
并根据上述测量成果,绘制成路线纵、横断面图和平面图,为公路设计提供必要的基础资料。
公路中心线的平面线形是由直线和曲线构成的,如图9-1所示。
因此,中线测量的主要任务是通过直线和曲线的测设,把公路中心线的平面位置具体地测设到地面上,并实测其里程。
它是测绘路线纵、横断面图和平面图的基础。
第一节交点和转点的测设一、交点的测设公路路线的转折点称为交点,用JD表示。
对于一般低等级公路,通常采用——决定测的方法直接放线,在现场标定交点位置。
对于高等级公路或地形复杂的地段,需在带状地形图上进行纸上定线,然后把纸上定好的路线放到地面上,一般采用下述方法标定交点位置。
1.穿线交点法1)准备数据如图9-2所示,从测图导线点D2、D3、D4……出发作导线边的垂线,它们与路线设计中线(即路线导线)交于N2、N3、N4……等点。
在图上量取各垂线的长度J2、J3、J4……直角和垂线长度就是放线所需要的数据。
有时为了穿线时通视的需要,在中线通过高地的地方拟定一点N1,这时可以从图上量取角度β和距离S,用极坐标从导线点D1放出N1点。
2)放临时点实地在导线点上安置经纬仪设置第125页直角并按相应的垂线长度量距,即可标定出一系列临时性的N2、N3、N4……如图9-3a)所示。
为了检查和比较,相邻交点间的直线上至少要放三个点。
如果垂距较短,可以用方向架设置直角,如果垂距较长,宜用经纬仪设置直角。
3)穿线由于图解量取的放线数据不准确和测量误差的影响,同一直线边上的临时点往往不在一条直线上,因此要利用经纬仪定出一条尽可能多的穿过或靠近临时点的直线,这一步工作称穿线。
然后在地势较高、通视良好的直线位置设转点桩将直线标定出来(如图9-3a)所示的ZD1、ZD2和ZD3、ZD4),同时清除原来的临时桩。
4)交点相邻两直线经穿线在实地标定后,如果通视良好,即可直接延长直线进行交会定点。
如图9-3b)所示,ZD1、ZD2、ZD3、ZD4是穿线时标定的转点桩,将经纬仪安置于ZD2上,盘左照准后视点ZD1,倒转望远镜,沿视线方向在交点概略位置前后打下两桩a1、b1(称为骑马桩),并在桩顶分别标出其中心位置,盘右位置仍照准ZD,,倒转望远镜,在骑马桩a2、b2上标出其中心位置。