初中数学相交线与平行线全集汇编及解析
七年级下数学相交线与平行线专题总结(含答案)
一、知识点填空1. 2. 对顶角的性质可概括为:3. 互_______.4. 垂线的性质:⑴过一点5.6. 关系的一对角叫做在第三条直线的两侧,角叫做7. 的位置关系只有________8.9. 条直线平行.简单说成:角互补,那么.简单说成:条平行直线被第三条直线所截,内错角相等.简单说成:⑶两条平行直线被第三条直线所截,.简单说成:________________________________ .叫做_______.命题由________和_________两部分组成.______________________.命题常可以写成“如的形式,这时“如果”后接的部分是 ,“那_________. 如果题设成立,那么结论一定成立.像这样的___________.如果题设成立时,不能保证结论一定成立,像这样的___________.定理都是真命题._______.图形平移的方向不一定是水平的.___ ___.⑵新图形中的每一点,都是由原图形中的某一点移动后.连接各组对应点的线段_________________.,8,6,10,BC AC CB cm AC cm AB cm ⊥===那A 到BC 的距离是_____,点B 到AC 的距离是_______,B 两点的距离是_____,点C 到AB 的距离是________.b 、c 为平面上三条不同直线,若//,//a b b c ,则a 与c 的位置关系是;若,a b b c ⊥⊥,则a 与c 的位置关系是_________;若//a b ,b c ⊥,则a 与c 的位置关系是________.17. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠求∠COE 、∠AOE 、∠AOG 的度数.18. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与∠线,试判断OD 与OE 的位置关系,并说明理由.19. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2+∠E =∠BCE .1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.AB ∥CD ,∠1=∠2,试说明EP ∥FQ . AB ∥CD ,MEB =∠MFD ( ) 1=∠2,MEB -∠1=∠MFD -∠2, MEP =∠______.( )DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC 的大小;⑵∠PAG 的大小.ABC ∆,AD BC ⊥于D ,E 为AB 上EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠24. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 三:兴趣拓展平行线问题:平行线是我们日常生活中非常常见的图形.平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.例1 如图 1-18,直线a ∥b ,直线 AB 交 a 与 b 于 A ,B ,CA CB 平分∠ 2,求证:∠C=90°例2 如图1-21所示,AA 1∥BA 2求∠A 1=∠B 1+∠A 2.1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°, 求∠C .180°. 360°. 1-29所示.直线l 的同侧有三点A ,B ,C ,且AB ∥l ,BC ∥ A ,B ,C 三点在同一条直线上.1-30所示.∠1=∠2,∠D=90°,EF ⊥CD .求证:∠3=∠B .四,课后思考题1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG∠BEG和∠DEG.2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠DE∥BC.求∠EDC和∠BDC的度数.3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?4.证明:五边形内角和等于540°.5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF平分∠DEB.参考答案2.对顶角,对顶角相等3.垂直有且只有垂线段最短4.点5.同位角内错角同旁内角6.平行相交平行8.同位角相等两直线平行;内错角相等两同旁内角互补两直线平行.9.平行10.两直线平行同位角内错角相等;两直线平行同旁内角互补.11.命题题设结题设结论真命题假命题12.平行且相等13.6cm 8cm 10cm 4.8cm.14.平行平行28°118°59°16. OD⊥OE理由略17. 1(两直线DE∥CF(平行于同一直线的两条直线平行)2(两直线.18.⑴∵∠1=∠2,又∵∠2=∠3(对顶角相等),3∴a∥b(同位角相等两直线平行)⑵∵a∥b∴∠1=∠3(两直线)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19. 两直线MFQ FQ同位角相等两直线平行20..21.,AD BC FE BC⊥⊥90EFB ADB∴∠=∠=//EF AD∴23∴∠=∠//,31DG BA∴∠=∠1 2.∴∠=∠∠F.∵∠1=∠DGF(对顶角相等)又∠1=∠2∴∠DGF=∠2(同位角相等,两直线平行)∴∠DBA=∠C∵∠C=∠D∴∠DBA=∠D∴DF∥AC=∠F(两直线平行,内错角相等).三例1 如图 1-18,直线a∥b,直线 AB交 a与 b于 A,B,CA平分∠1,CB平分∠ 2,求证:∠C=90°分析由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=过C点作直线 l,使 l∥a(或 b)角转移.过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,1+∠2=180°(同侧内角互补).因为AC平分∠1,BC2,所以又∠3=∠,∠4=∠CBF(内错角相等),所以∠3+∠4=∠CAE+∠CBF即“两条b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠C=90°,问直线a与直线b是否一定平行?”(将条件与结论交换位置),因此,不1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.分析本题对∠A1,∠A2,∠B1案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠是零,即∠A1+∠A2=∠B1.①一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1证过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图示)因为AA1∥BA2,所以B1E∥BA2.从而∠1=∠A1,∠2=∠A2(所以∠B1=∠1+∠2=∠A1+∠A2,即∠A1-∠B1+∠A2=0.说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2A1,A2两点之间的折线段的数目无关,如图1-23所示.连接间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有∠A1+∠A2+∠A3=∠B1+∠B2.(即那些向右凸出的角的和=向左凸的角的和)即∠A1-∠B1+∠A2-∠B2+∠A3=0.A1-∠B1+∠A2-∠B2+…-∠B n-1+∠A n=0.A1,A n之间的折线段共有n段A1B1,B1A2,…,B n-1A n(当然,仍1∥BA n).有些简单的问题,如果抓住了问那么,在本质不变的情况下,可以将问题推广到复杂的情况.1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?1-25所示.若A1+∠A2+…+∠A n=∠B1+∠B2+…+∠B n-1,问AA1与BA n是否平行?这两个问题请同学加以思考.例3 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .分析 或∠AFB .若能将∠1,∠2,∠C 过的了,过F 点作BC 的平行线恰能实现这个目标. 解 过F 到 FG ∥CB ,交 AB 于G ,则∠C=∠AFG(同位角相等), ∠2=∠BFG(内错角相等).因为 AE ∥BD ,所以∠1=∠BFA(内错角相等),所以∠C=∠AFG=∠BFA -∠BFG=∠1-∠2=3∠2-∠2=2∠2=50°. 说明(1)运用平行线的性质,将角集中到适当位置,线)的常用技巧.(2)便的解法:∠1=∠DFC=∠C+∠2,即∠C=∠1-∠2=2∠2=50°.180°.180°.若能运用平行线的性质,将三角形三个内角集中 下面方法是最简单的1-27所示,在△ABC 中,过A 引l ∥BC ,则∠B=∠1,∠C=∠2(内错角相等).显然 ∠1+∠BAC+∠2=平角, 所以 ∠A+∠B+∠C=180°.或干脆不在三角形的边上的其他任360°.3类似的方法,添加适当的平行线,将这四个角“聚合”在添加平行线中,尽可能利用原来的证 如图1-28所示,四边形ABCD 中,过顶点B 引BE ∥AD ,并延长 AB ,CB 到 H ,G .则有∠A=∠2(同位角相等),∠D=∠相等),∠1=∠3(同位角相等).∠C=∠4(同位角相等),又 ∠B)=∠GBH(对顶角相等).由于∠2+∠3+∠4+∠GBH=360∠A+∠B+∠C+∠D=360°.说明(1)同例3不变.(2)总结例3、例4广:三角形内角和=180°=(3-2)×180°, 四边形内角和=360°=2×180°=(4-2)×180°. 人们不禁会猜想:五边形内角和=(5-2)×180°=540°,…………………………n 边形内角和=(n -2)×180°.这个猜想是正确的,它们的证明在学过三角形内角和之后,简单.(3)是发展人的思维能力的一种重要方法.例6 如图1-29所示.直线l 的同侧有三点A ,B ,C ,且AB l .求证: A ,B ,C 三点在同一条直线上.B ,C 三点在同一条直线上可以理解为∠ABC 为平角,即只要证与BC 所夹的角为180°即可,考虑到以直线l 上任意一点为结合所给平B 作与l 相交的直线,就可将l 上的平角转换到顶点B 处. BD ,交l 于D .因为AB ∥l ,CB ∥l ,所以,∠2=∠CBD(内错角相等).2=180°,所以∠ABD+∠CBD=180°,°=平角.A ,B ,C 三点共线.思考 若将问题加以推广:n 个点A1,A2,…,An -1,An ,且有AiAi+1∥l(i=1,2,…,1-30所示.∠1=∠2,∠D=90°,EF ⊥CD .求证:∠3=∠B .分析如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC ∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.证因为∠1=∠2,所以AD∥BC(内错角相等,两直线平行).因为∠D=90°及EF⊥CD,所以AD∥EF(同位角相等,两直线平行).所以 BC∥EF(平行公理),所以∠3=∠B(两直线平行,同位角相等).。
中考数学第五章 相交线与平行线知识归纳总结及解析
中考数学第五章 相交线与平行线知识归纳总结及解析一、选择题1.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D .2.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和3.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个 4.如图,//,2,2,AB CD FEN BEN FGH CGH ∠=∠∠=∠则F ∠与H ∠的数量关系是( )A .90F H ︒∠+∠=B .2H F ∠=∠C .2180H F ︒∠-∠=D .3180H F ︒∠-∠=5.如图,在四边形ABCD 中,∠1=∠2,∠A=60°,则∠ADC=( )A .65°B .60°C .110°D .120°6.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°7.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4 8.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④10.已知:如图AB//EF ,BC CD ⊥,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠∠∠=+B .αβγ180∠∠∠++=C .αβγ90∠∠∠+-=D .βγα90∠∠∠+-=二、填空题11.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.12.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.13.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.14.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.15.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)16.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 016,则n 的值为__________.17.下列说法中正确的有_____________(填序号).①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC,则点C是线段AB的中点;⑤相等的角是对顶角;⑥180°角是补角;⑦65.5°=65.50′;⑧如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.18.如图,直线a∥b∥c,直角∠BAC的顶点A在直线b上,两边分别与直线a,c相交于点B,C,则∠1+∠2的度数是___________.19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.三、解答题AB CD,且点E在射线AB与CD之间,请说明21.(1)如图a所示,//∠=∠+∠的理由.AEC A CAB CD,但点E在AB与CD的上方,(2)现在如图b所示,仍有//①请尝试探索1∠,2∠,E ∠三者的数量关系.②请说明理由.22.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.23.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .24.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 25.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.26. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.2.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A 、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B 、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C 、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D 、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B .【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.3.B解析:B【分析】根据平行线的性质,点到直线的距离依次判断.【详解】解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确;③直线外一点到直线的垂线段叫点到直线的距离,说法错误;④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误;正确的说法有2个,故选:B .【点睛】此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.4.D解析:D【分析】先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解.【详解】设,NEB HGC αβ∠=∠=则2,2FEN FGH αβ∠=∠=∵//AB CD∴H AEH HGC ∠=∠+∠NEB HGC =∠+∠αβ=+F FEB FGD ∠=∠-∠()180FEB FGC =∠-︒-∠()31803αβ=-︒-()3180αβ=+-︒∴F ∠3180H =∠-︒3180H F ∴∠-∠=︒故选:D .【点睛】本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用.5.D解析:D【解析】试题分析:根据平行线的判定,内错角相等,两直线平行,由∠1=∠2得到AB∥CD,然后根据平行线的性质可知∠A+∠ADC=180°,可求得∠ADC=120°. 故选:D.6.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A 的两边分别和∠B 的两边平行,∴∠B 和∠A 可能相等也可能互补,即∠B 的度数是20°或160°,故选:D.7.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD ∥BC ,由∠1=∠4,得到AB ∥CD.故选C.8.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC =∠B ,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】解:如图,分别过C 、D 作AB 的平行线CM 和DN ,AB//EF ,AB//CM //DN //EF ∴,αBCM ∠∠∴=,MCD NDC ∠∠=,NDE γ∠∠=,αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠∴+=++=++,又BC CD ⊥,BCD 90∠∴=,αβ90γ∠∠∠∴+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .二、填空题11.30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°, ∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.12.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.13.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C18=∠BEC;…据此得到规律∠E n12n=∠BEC,最后求得∠BEC的度数.【详解】如图1,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图2.∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE312=∠ABE212+∠DCE212=∠CE2B18=∠BEC;…以此类推,∠E n12n=∠BEC,∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.①②③【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠D CB,则①正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴解析:①②③【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,则①正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+1 2(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,则②正确;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且EG⊥CG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,则③正确;④无法证明CA平分∠BCG,则④错误.故答案为①②③.15.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.16.【解析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出ABn=(n+1)×5+1求出n即解析:【解析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=6-5=1,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出AB n=(n+1)×5+1求出n即可.解:∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1−A1A2=6−5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11=2×5+1,∴AB2的长为:5+5+6=16=3×5+1;……∴AB n=(n+1)×5+1=2016,解得:n=402.故答案为:402.点睛:本题主要考查找规律.根据所求出的数字找出其变化规律是解题的关键.17.①③【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段A解析:①③【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段AB的中点,④不正确;根据对顶角的定义,可知相等的角不一定是对顶角,⑤不正确;根据和为180°的两角互为补角,知⑥不正确.故答案为:①③.18.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.19.70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:,∴∠解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.20.70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.三、解答题21.(1);(2)①∠1+∠2-∠E=180°;②见解析【分析】(1)过点E作EF∥AB,根据平行线的性质得到∠A=∠AEF和∠FEC=∠C,再相加即可;(2)①、②过点E作EF∥AB,根据平行线的性质可得∠AEF+∠1=180°和∠FEC=∠2,从而可得三者之间的关系.【详解】解:(1)过点E作EF∥AB,∴∠A=∠AEF,∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,∵∠AEC=∠AEF+∠FEC,∴∠AEC=∠A+∠C;(2)①∠1+∠2-∠E=180°,②过点E作EF∥AB,∴∠AEF+∠1=180°,∴EF ∥CD ,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA ,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.【点睛】本题考查了平行线的性质,作辅助线并熟记性质是解题的关键.22.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解; (2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.23.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.24.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB ,∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠, ∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.25.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P 作PE ∥AB ,先推出PE ∥AB ∥CD ,再通过平行线性质可求出∠APC ; (2)过P 作PE ∥AB 交AC 于E ,先推出AB ∥PE ∥DC ,然后根据平行线的性质得出α=∠APE ,β=∠CPE ,即可得出答案;(3)过点P 作PE ∥AB 交OA 于点E ,同(2)中方法根据平行线的性质得出α=∠APE ,β=∠CPE ,即可得出答案.【详解】解:(1)过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P 作PE ∥AB 交AC 于E ,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.26.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。
中考数学第五章 相交线与平行线(讲义及答案)附解析
中考数学第五章相交线与平行线(讲义及答案)附解析一、选择题1.如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角2.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其中正确的有()A.0个B.1个C.2个D.3个3.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个4.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB=BC,则点B是线段AC的中点.其中正确的有( )A.1个 B.2个 C.3个 D.4个5.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°6.下列说法中正确的是()A.两条射线组成的图形叫做角B.小于平角的角可分为锐角和钝角两类C.射线就是直线D.两点之间的所有连线中,线段最短7.下列说法中,错误的有( )①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A.3个 B.2个 C.1个 D.0个8.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°9.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°10.下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个二、填空题11.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD 的条件是_______.(填序号)12.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).13.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.14.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________15.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)16.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动12°,B 灯每秒转动4°.B 灯先转动12秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 .17.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.18.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.19.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.20.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.三、解答题EF MN,点,A B分别为EF,MN上的点.21.已知直线//(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒; (3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)23.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).24.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.25.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=26.如图1,//PQ MN ,点A ,B 分别在MN ,QP 上,2BAM BAN ∠=∠射线AM 绕A 点顺时针旋转至AN 便立即逆时针回转,射线BP 绕B 点顺时针旋转至BQ 便立即逆时针回转.射线AM 转动的速度是每秒2度,射线BQ 转动的速度是每秒1度.(1)直接写出QBA ∠的大小为_______;(2)射线AM 、BP 转动后对应的射线分别为AE 、BF ,射线BF 交直线MN 于点F ,若射线BP 比射线AM 先转动30秒,设射线AM 转动的时间为t ()0180t <<秒,求t 为多少时,直线//BF 直线AE ?(3)如图2,若射线BP 、AM 同时转动m ()090m <<秒,转动的两条射线交于点C ,作120ACD ∠=︒,点D 在BP 上,请探究BAC ∠与BCD ∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据同位角、内错角以及同旁内角的概念解答即可.【详解】解:A .∠B 与∠2是BC 、DE 被BD 所截而成的同旁内角,故本选项正确;B .∠A 与∠1不是同位角,故本选项错误;C .∠3与∠A 是AE 、DE 被AD 所截而成的同旁内角,故本选项正确;D .∠3与∠4是内错角AD 、CE 被ED 所截而成的内错角,故本选项正确;故选:B .【点睛】本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.2.A解析:A【分析】据平行线的性质可判断①③错误;根据对顶角相等,可判断②错误;据线段的性质可判断④错误;即可得出结论.【详解】解:①在同一个平面内,垂直于同一条直线的两条直线互相平行,故①错误;②对顶角相等,相等的角不一定是对顶角,故②错误;③两条平行直线被第三条直线所截,同位角相等,故③错误;④两点之间线段最短;故④错误;故选:A.【点睛】本题考查了平行公理、平行线的性质、相等的性质、对顶角相等的性质;熟记有关性质是解决问题的关键.3.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.4.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.B解析:B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.6.D解析:D【解析】根据真假命题的概念,可知:A、有公共端点的两条射线组成的图形叫做角,选项错误;B、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.C、射线是直线的一部分,选项错误;D、两点之间的所有连线中,线段最短,选项正确;故选:D.7.B解析:B【解析】①若a与b相交,b与c相交,则a与c相交或平行,故本小题错误;②若a∥b,b∥c,则a∥c;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.故选:B.8.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D.【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.9.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.10.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.二、填空题11.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.14.90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.15.n或180﹣n【分析】分两种情况讨论:当点在线段上;点在延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵解析:n或180﹣n【分析】分两种情况讨论:当点M在线段BC上;点C在BM延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=180°﹣∠B=180°﹣n°,过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.16.6秒或19.5秒【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.【详解析:6秒或19.5秒【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),推出t≤45−12,即t≤33.利用平行线的性质,结合角度间关系,构建方程即可解答.【详解】解:设A灯旋转t秒,两灯的光束平行,B灯光束第一次到达BQ需要180÷4=45(秒),∴t≤45﹣12,即t≤33.由题意,满足以下条件时,两灯的光束能互相平行:①如图,∠MAM'=∠PBP',12t=4(12+t),解得t=6;②如图,∠NAM'+∠PBP'=180°,12t﹣180+4(12+t)=180,解得t=19.5;综上所述,满足条件的t的值为6秒或19.5秒.故答案为:6秒或19.5秒.【点睛】本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.17.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.18.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.19.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.20.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD=∠DAE=45°;当BC ∥AD 时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).三、解答题21.(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n∠=∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CGEF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH ,∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.22.(1)∠G=∠AEG+∠CFG ;(2)见解析;(3)FR ⊥HK ,理由见解析【分析】(1)根据平行线的判定和性质即可写出结论;(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证;(3)根据平行线的性质得角相等,即可求解.【详解】解:(1)如图:过点G 作//GH AB ,∵//AB CD ,∴//GH CD ,∴AEG EGH ∠=∠,CFG FGH ∠=∠,EGF AEG CFG ∴∠==∠+∠AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.故答案为:G AEG CFG ∠=∠+∠.(2)如图,过点G 作//GP AB ,180BEG EGP ∴∠+∠=︒,180EHG HGP ∠+∠=︒,90180EHG EGP ∴∠+︒+∠=︒,90EHG EGP ∴∠+∠=︒,//AB CD ,DFG EHG ∴∠=∠,180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,90EGF ∴∠=︒,90GFT ERT ∴∠+∠=︒,90KFT ERT ∴∠+∠=︒,ERT TEB ∠=∠,90KFT TEB ∴∠+∠=︒,//AB CD ,FKT TEB ∴∠=∠,90KFT FKT ∴∠+∠=︒,90FTK ∴∠=︒,KT FR ∴⊥,即FR HK ⊥.∴FR 与HK 的位置关系是垂直.【点睛】本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.23.(1)65°;(2)1118022αβ︒-+【分析】(1)如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考彤彤思考问题的方法即可求∠BED 的度数;(2)如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考彤彤思考问题的方法即可求出∠BED 的度数.【详解】(1)如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC , ∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°, ∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;(2)如图2,过点E 作EF ∥AB ,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=12α,∠EDC=12∠ADC=12β,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣12α +12β.答:∠BED的度数为180°﹣12α +12β.【点睛】本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.24.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α【分析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠α=∠APE ,∠β=∠CPE ,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P 在BD 延长线上时,∠CPA=∠α-∠β;如图所示,当P 在DB 延长线上时,∠CPA=∠β-∠α.【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.25.(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ,1EBP EBQ , 2132BPD EBP .②如图4中,连接EH .180AAEH AHE ,180C CEB CBE , 360A AEH AHE CEH CHE C ,360A AEC C AHC .(3)如图5中,设AC 交BG 于H .AHB A B F ,AHB CHG ∠=∠, 在五边形HCDEG 中,540CHG CD E G , 540A B F C D E G【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.26.(1)60°;(2)当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,2BAC BCD ∠=∠.【分析】(1)根据2BAM BAN ∠=∠得到60BAN ∠=︒,再根据直线平行的性质即可得到答案;(2)设灯转动t 秒,直线//BF 直线AE ,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出BAC ∠,再根据三角形内角和即可表示出BCD ∠,即可得到答案;【详解】解:(1)∵2BAM BAN ∠=∠180BAM BAN ∠+∠=︒,∴60BAN ∠=︒,∴QBA ∠60BAN =∠=︒(两直线平行,内错角相等)故结果为:60︒;(2)设灯转动t 秒,直线//BF 直线AE ,①当090t <<时,如图,//PQ MN ,PBF BFA ∴∠=∠,//AE BF ,EAM BFA ∴∠=∠,EAM PBF ∴∠=∠,21(30)t t ∴=⋅+,解得30t =;②当90180t <<时,如图,//PQ MN ,180PBF BFA ∴∠+∠=︒,//AE BF ,EAN BFA ∴∠=∠180PBF EAN ∴∠+∠=︒,1(30)(2180)180t t ∴⋅++-=,解得110t =,综上所述,当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,理由:设射线AM 转动时间为m 秒,作//CH PQ ,//PQ MN ,////CH PQ MN ∴,2180QBC ∴∠+∠=︒,1180MAC ∠+∠=︒,21360QBC MAC ∴∠+∠+∠+∠=︒,180QBC m ∠=︒-,2MAC m ∠=,()123601802180BCA m m m ∴∠=∠+∠=---=︒︒-︒,而120ACD ∠=︒,()12012018060BCD BCA m m ︒︒∴∠=-∠=--=-︒︒,1802CAN m ∠=︒-,()18022120BAC QBA m m ︒︒∴∠=∠--=-,:2:1BAC BCD ∴∠∠=,即2BAC BCD ∠=∠,BAC ∴∠和BCD ∠关系不变.【点睛】本题主要考查了补角、角的运算、直线平行的性质和判定以及三角形的内角和定理,结合图形添加辅助线、分类讨论是解题的关键.。
安阳市初中数学相交线与平行线单元汇编含答案
∴∠3=∠1,
∵∠1=2∠2,∠3+∠4+∠2=180°,
∴5∠2=180°,即∠2=36°,
∴∠AEF=∠3=∠1=72°
故选B.
【点睛】
本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.
13.如图,在下列四组条件中,不能判断AB∥CD的是( )
18.如图,△ABC中,∠C=90°,则点B到直线AC的距离是( )
A.线段ABB.线段ACC.线段BCD.无法确定
【答案】C
【解析】
D.如果点的横坐标和纵坐标互为相反数,那么点 在直线 的图像上,故D是真命题
故选:D
【点睛】
本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.
10.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是( )
A.两点确定一条直线B.垂直线段最短
C.两点之间线段最短D.三角形两边之和大于第三边
【答案】B
【解析】
【分析】
根据垂线段的定义判断即可.
【详解】
解: 直线外一点与直线上各点连接的所有线段中,垂线段最短,
选:B.
【点睛】
直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.
D.如果点 的横坐标和纵坐标互为相反数,那么点 在直线 的图像上.
【答案】D
【解析】
【分析】
根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.
初中数学相交线与平行线知识点总复习附解析
初中数学相交线与平行线知识点总复习附解析一、选择题1.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.4.如图,直线AB AC ⊥,AD BC ⊥,如果4AB cm =,3AC cm =, 2.4AD cm =,那么点C 到直线AB 的距离为( )A .3cmB .4cmC .2.4cmD .无法确定【答案】A【解析】【分析】 根据点到直线的距离是指垂线段的长度,根据AB ⊥AC ,得出点C 到直线AB 的距离为AC .【详解】解:∵AB ⊥AC ,∴点C 到直线AB 的距离是指AC 的长度,即等于3cm .故选:A .【点睛】此题考查点到直线的距离,解题关键在于掌握点到直线的距离是指垂线段的长度,难度适中.5.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【分析】利用平行线定理即可解答.【详解】解:根据∠1=∠F,可得AB//EF,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.6.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.7.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.8.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°【答案】B【解析】【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.9.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤【答案】D【解析】如图,①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;⑤∠1和∠3是直线BC和直线AB被直线AC截得的同旁内角,所以⑤正确.故答案选D.(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.10.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.11.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.【答案】B【解析】略12.A、B、C是直线L上三点,P为直线外一点,若PA=2cm,PB=3cm,PC=5cm,则P 到直线L的距离是()A.等于2cm B.大于2cm C.不小于2cm D.不大于2cm【答案】D【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】∵PA=2cm ,PB=3cm ,PC=5cm ,∴PA <PB <PC .∴①当PA ⊥L 时,点P 到直线L 的距离等于2cm ;②当PA 与直线L 不垂直时,点P 到直线L 的距离小于2cm ;综上所述,则P 到直线L 的距离是不大于2cm .故选:D .【点睛】本题考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.13.如图,△ABC 中,∠C=90°,则点B 到直线AC 的距离是 ( )A .线段ABB .线段AC C .线段BCD .无法确定【答案】C【解析】【分析】直接利用点到直线的距离定义得出答案.【详解】解:如图,三角形ABC 中,∠C=90°,则点B 到直线AC 的距离是:线段BC .故选:C .【点睛】本题考查点到之间的距离,正确把握相关定义是解题关键.14.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠=∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.15.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·OH=4OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 336a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.16.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.17.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.18.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .19.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.20.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.。
初中数学七年级数学第五章相交线和平行线(全章知识图文详解)
(4) ……
20
… 2 … n(n—1) 对对顶角 若有n条直线相交于一点O,那么有__________
七年级数学相交线和平行线
对顶角知识总结
1、两条直线相交成四个角,其中不相邻的两个角是对顶角。 2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做 对顶角。 3、对顶角的性质:对顶角相等。 4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两 个角 相等的依据及重要桥梁。 5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是 对顶角。
F
七年级数学相交线和平行线
观察∠1和∠5两角:
8
5 6
7 3 2
4
1
七年级数学相交线和平行线
观察∠1和∠5两角:
∠5在截线的________ (左侧、右侧) ∠1在截线的________ (左侧、右侧) 都在截线的同侧 5 8 5 4 6 3 2 7 1
1
七年级数学相交线和平行线
观察∠1和∠5两角:
C 一个角的邻补角有两个。如图∠3的邻补角有∠1和 ∠2 A
2 3
D
O 1
B
七年级数学相交线和平行线
提问:∠1、∠2还是邻补角吗?
1
2
1
2
邻补角是有特殊位 置关系的两个互补 的角。
∠1、∠2的和是多少度?
∠1和∠2还是补角吗?
∠1和∠2还是邻补角吗?
七年级数学相交线和平行线
练习:
1 、如图所示,三条直线 AB 、 CD、EF相交于一点O,∠AOC C 的对顶角是 , ∠COF的对顶角是_______, E ∠COB的邻补角是 。
2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延 长线,那么这两个角叫做对顶角。 如图所示,∠1与∠3、∠2与∠4都是 对顶角。
七年级初一数学第五章 相交线与平行线知识点-+典型题附解析
七年级初一数学第五章 相交线与平行线知识点-+典型题附解析一、选择题1.下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短2.在同一坐标平面内,图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是( )A .22(1)1y x =+-B .223y x =+C .221y x =--D .2112y x =- 3.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56° 4.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°5.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为( )A .115°B .65°C .35°D .25°6.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个7.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个 8.如图,在△ABC 中,AB=AC ,CD∥AB,点E 在BC 的延长线上.若∠A=30°,则∠DCE 的大小为( )A .30°B .52.5°C .75°D .85°9.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠4 10.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 二、填空题11.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.12.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.13.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)14.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.15.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.16.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图②,则图②中的∠CFG 的度数是_____________.17.如图,已知EF ∥GH ,A 、D 为GH 上的两点,M 、B 为EF 上的两点,延长AM 于点C ,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.18.如图,直线a∥b,且∠1=28°,∠2=50°,则∠ABC=_______.19.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.20.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.三、解答题21.(感知)如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE=∠AEC;(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°;(应用)点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.22.已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50º,∠ADC=70º,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.23.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.24.如图,已知//,60AM BN A ︒∠=,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点.C D 、()1CBD ∠=()2若点P 运动到某处时,恰有ACB ABD =∠∠,此时AB 与BD 有何位置关系?请说明理由.()3在点P 运动的过程中,APB ∠与ADB ∠之间的关系是否发生变化?若不变,请写出它们的关系并说明理由;若变化,请写出变化规律.25.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.26.如图,已知直线//AB CD ,,M N 分别是直线,AB CD 上的点.(1)在图1中,判断,BME MEN ∠∠和DNE ∠之间的数量关系,并证明你的结论; (2)在图2中,请你直接写出,BME MEN ∠∠和DNE ∠之间的数量关系(不需要证明);(3)在图3中,MB 平分EMF ∠,NE 平分DNF ∠,且2180F E ∠+∠=,求FME ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A .立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质; B .从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C .把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D .直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质; 故选:C .【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.2.D解析:D【解析】分析:根据图形平移的性质可得,平移后的图形与原图形大小、形状、开口相同,再根据抛物线的形状由二次项的系数a 决定的进行分析即可.解:由于抛物线的形状由二次项的系数a 决定,所以两个函数表达式中的a 要相同或互为相反数才可以通过平移变换、轴对称变换得到,A 、B 选项的二次项系数为2;C 选项的二次项系数为-2;D 选项的二次项系数为12,故D 不能由原函数平移而得到. 故选D . 3.B解析:B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补),可求∠4=56°,然后借助平角的定义求得∠3=180°-∠2-∠4=36°.故选B考点:平行线的性质4.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用5.D解析:D【解析】解:∵直线a ∥b ,∴∠1+∠ABC +∠2=180°.又∵BC ⊥AB ,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D .6.A解析:A【详解】∵BF ∥AC ,∴∠C=∠CBF , ∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC , ∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.7.D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两8.C解析:C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.9.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.10.A解析:A【详解】解:∵∠4=∠1=70°,∠2=110°,∴∠4+∠2=180°;∴a∥b.∵∠2≠∠3,∴c与d不平行.故选A.二、填空题11.PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.12.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.13.【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.14.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 15.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 16.130°【解析】∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°,∴∠CFG=155°-25°=130°.故答案为130°.点睛:本题主要是根据折叠能解析:130°【解析】∵AD ∥BC ,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°,∴∠CFG=155°-25°=130°.故答案为130°.点睛:本题主要是根据折叠能够发现相等的角,同时运用了平行线的性质.17.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.18.78°【解析】解:过点B作BE∥a,∵a∥b,∴a∥b∥BE,∴∠1=∠3=28°,∠2=∠4=50°,∴∠ABC=∠3+∠4=78°.故答案为:78°.点睛:此题考查了平行线的性质:两直线解析:78°【解析】解:过点B作BE∥a,∵a∥b,∴a∥b∥BE,∴∠1=∠3=28°,∠2=∠4=50°,∴∠ABC=∠3+∠4=78°.故答案为:78°.点睛:此题考查了平行线的性质:两直线平行,内错角相等.解此题的关键是辅助线的作法.19.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.20.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.三、解答题21.【感知】见解析;【探究】∠BAE+∠AEC+∠DCE=360°;【应用】396°.【分析】感知:如图①,过点E作EF∥AB.利用平行线的性质即可解决问题;探究:如图2中,作EG∥AB,利用平行线的性质即可解决问题;应用:作FH∥AB,利用平行线的性质即可解决问题;【详解】解:理由如下,【感知】过E点作EF//AB∵AB//CD∴EF//CD∵AB//CD∴∠BAE=∠AEF∵EF//CD∴∠CEF=∠DCE∴∠BAE+∠DCE=∠AEC.【探究】过E点作AB//EG.∵AB//CD∴EG//CD∵AB//CD∴∠BAE+∠AEG=180°∵EG//CD∴∠CEG+∠DCE=180°∴∠BAE+∠AEC+∠DCE=360°过点F作FH∥AB.∵AB∥CD,∴FH∥CD,∴∠BAE+∠AEF+∠EFH=360°,∠HFG+∠FGC+∠GCD=360°,∴∠BAE+∠AEF+∠EFH+∠HFG+∠FGC+∠GCD=720°,∴∠BAE+∠AEF+∠EFH+∠HFG+∠FGC+∠GCD+∠EFG=720°+36°,∴∠BAE+∠AEF+∠FGC+∠DCG=720°-360°+36°=396°故答案为396°.【点睛】本题考查平行线的性质,解题的关键是学会添加辅助线构造平行线解决问题,属于中考常考题型.22.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠EDC=∠DEF,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE.∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=12∠ABC,∠DEF=12∠ADC,∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC.【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.23.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论.【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.24.(1)60°;(2)AB BD ⊥,证明详见解析;(3)不变,2APB ADB ∠=∠,理由详见解析【分析】(1)由平行线的性质可得∠ABN =120°,即∠ABP +∠PBN =120°,再根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =120°,即∠CBD =∠CBP +∠DBP =60°;(2)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,再根据角平分线的定义可得1 4ABC CBP DBP DBN ABN ∠=∠=∠=∠=∠,最后根据∠ABN =120°可得390ABD ABC ︒∠=∠=,进而可得答案;(3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB =2∠ADB .【详解】解:(1)∵AM ∥BN ,∠A =60°,∴∠A +∠ABN =180°,∴∠ABN =120°;∵AM ∥BN ,∴∠ABN +∠A =180°,∴∠ABN =180°﹣60°=120°,∴∠ABP +∠PBN =120°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP +2∠DBP =120°,∴∠CBD =∠CBP +∠DBP =60°;()2AB BD ⊥理由: // AM BN,180ACB CBN A ABN ︒∴∠=∠∠+∠=ACB ABD ∠=∠CBN ABD ∴∠=∠CBN CBD ABD CBD ∴∠-∠=∠-∠,即DBN ABC ∠=∠BC BD 、分别平分ABP ∠和PBN ∠,,ABC CBP DBP DBN ∴∠=∠∠=∠1 4ABC CBP DBP DBN ABN ∴∠=∠=∠=∠=∠ 180A ABN ︒∠+∠=180 ********ABN A ︒︒︒︒∴∠=-∠=-=1304ABC ABN ︒∴∠=∠= 390ABD ABC ︒∴∠=∠=,即AB BD ⊥()3不变.且2APB ADB ∠=∠理由: // ,AM BN,APB PBN ADB DBN ∴∠=∠∠=∠ BD 平分,PBN ∠2PBN DBN ∴∠=∠2.APB ADB ∴∠=∠【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.25.(1)∠A +∠C +∠APC =360°,证明详见解析;(2)∠APC =∠A −∠C ,证明详见解析;(3)55°.【分析】(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,然后进一步得出∠PEG=12∠FEG,∠GEH=12∠BEG,最后根据∠PEH=∠PEG−∠GEH即可得出答案.【详解】(1)∠A+∠C+∠APC=360°,证明如下:如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,又∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A−∠C,证明如下:如图2所示,过点P作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC =∠A −∠C ;(3)由(2)知,∠APC =∠PAB −∠PCD ,∵∠APC =30°,∠PAB =140°,∴∠PCD =110°,∵AB ∥CD ,∴∠PQB =∠PCD =110°,∵EF ∥PC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG , ∵EH 平分∠BEG , ∴∠GEH =12∠BEG , ∴∠PEH =∠PEG −∠GEH =12∠FEG −12∠BEG =12∠BEF =55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.26.(1)BME DNE MEN ∠+∠=∠,证明见析;(2)MEN BME DNE ∠=∠-∠;(3)120FME ∠=【解析】【分析】(1)如图,过点E 作直线//EF AB ,由平行线的性质得到BME MEF ∠=∠,FEN DNE ∠=∠,即可求得MEN BME DNE ∠=∠+∠;(2)如图,记AB 与NE 的交点为G ,由平行线的性质得∠EGM=∠DNE ,由三角形外角性质得∠BME=∠MEN+∠EGM ,由此即可得到结论;(3)由角平分线的定义设BMF BME β∠=∠=∠,设22DNF DNE α∠=∠=∠,由(1),得E αβ∠=∠+∠,由(2),得2F βα∠=∠-∠,再根据2180F E ∠+∠=,可求得60β∠=,继而可求得2120FME β∠=∠=.【详解】(1)BME DNE MEN ∠+∠=∠,证明如下:如图,过点E 作直线//EF AB ,∵//EF AB ,∴BME MEF ∠=∠,又∵//AB CD ,∴//EF CD ,∴FEN DNE ∠=∠,∴MEN MEF FEN BME DNE ∠=∠+∠=∠+∠;(2)MEN BME DNE ∠=∠-∠,理由如下:如图,记AB 与NE 的交点为G ,又∵AB//CD ,∴∠EGM=∠DNE ,∵∠BME 是△EMG 的外角,∴∠BME=∠MEN+∠EGM ,∴∠MEN=∠BME-∠DNE ;(3)∵MB 平分EMF ∠,∴设BMF BME β∠=∠=∠,∵NE 平分DNF ∠,∴设22DNF DNE α∠=∠=∠,由(1),得E BME DNE αβ∠=∠+∠=∠+∠,由(2),得2F BMF DNF βα∠=∠-∠=∠-∠,又∵2180F E ∠+∠=,∴22()180βααβ∠-∠+∠+∠=,∴3180β∠=,即60β∠=,∴2120FME β∠=∠=.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。
新乡市初中数学相交线与平行线全集汇编及答案
新乡市初中数学相交线与平行线全集汇编及答案一、选择题1.如图,AB ∥CD ,EG 、EM 、FM 分别平分∠AEF ,∠BEF ,∠EFD ,则图中与∠DFM 相等的角(不含它本身)的个数为( )A .5B .6C .7D .8【答案】C【解析】 解:∵FM 平分∠EFD ,∴∠EFM =∠DFM =12∠CFE .∵EG 平分∠AEF ,∴∠AEG =∠GEF =12∠AEF .∵EM 平分∠BEF ,∴∠BEM =∠FEM =12∠BEF ,∴∠GEF +∠FEM =12(∠AEF +∠BEF )=90°,即∠GEM =90°,∠FEM +∠EFM =12(∠BEF +∠CFE ).∵AB ∥CD ,∴∠EGF =∠AEG ,∠CFE =∠AEF ,∴∠FEM +∠EFM =12(∠BEF +∠CFE )=12(BEF +∠AEF )=90°,∴在△EMF 中,∠EMF =90°,∴∠GEM =∠EMF ,∴EG ∥FM ,∴与∠DFM 相等的角有:∠EFM 、∠GEF 、∠EGF 、∠AEG 以及∠GEF 、∠EGF 、∠AEG 三个角的对顶角.故选C . 点睛:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.2.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.3.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55︒,故选:B.【点睛】此题考查平行线的性质,折叠的性质.4.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.5.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 6.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.7.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.8.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.10.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.本题考查角的运算,邻补角的性质,比较简单.11.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .【答案】B【解析】略12.下列说法中,正确的是( )A .不相交的两条直线是平行线B .过一点有且只有一条直线与已知直线平行C .从直线外一点作这条直线的垂线段叫做点到这条直线的距离D .在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A 、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A 选项错误;B 、过直线外一点有且只有一条直线与已知直线平行,故B 选项错误;C 、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D 、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D 选项正确.故选:D .【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .15.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A .1个B .2个C .3个D .4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.。
郑州市初中数学相交线与平行线知识点总复习含答案解析
【解析】
【分析】
根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.
【详解】
解:①两点之间,线段最短,正确.
②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.
③经过直线外一点,有且只有一条直线与这条直线平行,正确.
④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.
6.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是( )
A.∠ABE=2∠CDEB.∠ABE=3∠CDE
C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°
【答案】A
【解析】
【分析】
延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
【详解】
因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.
故选:D.
【点睛】
本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.
新初中数学相交线与平行线真题汇编及答案
新初中数学相交线与平行线真题汇编及答案一、选择题1.如图,下列说法一定正确的是( )A .∠1和∠4是内错角B .∠1和∠3是同位角C .∠3和∠4是同旁内角D .∠1和∠C 是同位角【答案】D【解析】【分析】 根据内错角、同位角以及同旁内角的定义进行判断即可.【详解】解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F,可得AB//EF,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.3.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.4.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.5.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.6.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°【答案】B【解析】【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.7.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.8.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE . 【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4 ∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.11.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【答案】C【解析】【分析】根据点到直线的距离的定义,可得答案.【详解】由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选C.【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.13.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.14.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.15.若∠A 与∠B 是对顶角且互补,则它们两边所在的直线( )A .互相垂直B .互相平行C .既不垂直也不平行D .不能确定【答案】A【解析】∵∠A 与∠B 是对顶角,∴∠A=∠B ,又∵∠A 与∠B 互补,∴∠A+∠B=180°,可求∠A=90°.故选A .16.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°∵//AB CD∴AFE ∠=∠DEF=120°故答案为B .【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.17.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..19.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.20.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.。
中考数学点对点-相交线与平行线(解析版)
专题16 相交线与平行线专题知识点概述一、相交线1.邻补角(1)定义:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
(2)性质:邻补角的性质:邻补角互补。
2.对顶角(1)定义:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
(2)性质:对顶角的性质:对顶角相等。
3.垂线(1)定义:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
(2)垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
4.同位角、内错角、同旁内角(1)同位角定义:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
(2)内错角定义:∠2与∠6像这样的一对角叫做内错角。
(3)同旁内角定义:∠2与∠5像这样的一对角叫做同旁内角。
二、平行线1.平行线概念:在同一平面内,两条不想交的直线叫做平行线。
记做a∥b 如“AB∥CD”,读作“AB平行于CD”。
2.两条直线的位置关系:平行和相交。
3.平行线公理及其推论:(1)公理:经过已知直线外一点,有且只有一条直线与这条直线平行;(2)推论:如果两条直线都与第三条直线平行,那么这两条直线平行. 4.平行线的判定:判定方法1:两条直线被第三条直线所截,同位角相等,两直线平行;判定方法2:两条直线被第三条直线所截,内错角相等,两直线平行;判定方法3:两条直线被第三条直线所截,同旁内角互补,两直线平行. 补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
5.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
例题解析与对点练习【例题1】(2020•北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【答案】A【分析】根据对顶角定义和外角的性质逐个判断即可.【解析】A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误.【对点练习】(2019•河北省)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【答案】C.【解析】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EF C.故AB∥CD(内错角相等,两直线平行).【点拨】以角度之间的关系为前提,得出两条直线平行,是平行线判定定理的运用。
新初中数学相交线与平行线难题汇编及解析(1)
新初中数学相交线与平行线难题汇编及解析(1)一、选择题1.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.2.下列命题是真命题的是( )A .同位角相等B .对顶角互补C .如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤【答案】D【解析】如图,①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;⑤∠1和∠3是直线BC和直线AB被直线AC截得的同旁内角,所以⑤正确.故答案选D.(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.4.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.5.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分∠AEF ,如果∠1=32°,那么∠2的度数是( )A .64°B .68°C .58°D .60°【答案】A【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.6.下列结论中:①若a=b,则a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④|3-2|=2-3,正确的个数有( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】,则a=b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离④|3-2|=2-3,正确正确的个数有②④两个故选B7.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°【答案】B【分析】过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.8.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.11.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P到a的距离是PQ垂线段的长,故选C.【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.∠=∠,那么13.如图,现将一块含有60︒角的三角板的顶点放在直尺的一边上,若12∠的度数为()1A.50︒B.60︒C.70︒D.80︒【答案】B【解析】【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【详解】∵AB∥CD,∴∠3=∠2,∠1=∠2,∴∠1=∠3,∴2∠3+60°=180°,∴∠3=60°,∴∠1=60°,故选:B.【点睛】此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.14.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.15.A、B、C是直线L上三点,P为直线外一点,若PA=2cm,PB=3cm,PC=5cm,则P 到直线L的距离是()A.等于2cm B.大于2cm C.不小于2cm D.不大于2cm【答案】D【解析】【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】∵PA=2cm,PB=3cm,PC=5cm,∴PA<PB<PC.∴①当PA⊥L时,点P到直线L的距离等于2cm;②当PA与直线L不垂直时,点P到直线L的距离小于2cm;综上所述,则P到直线L的距离是不大于2cm.故选:D.【点睛】本题考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.16.如图,△ABC中,∠C=90°,则点B到直线AC的距离是 ( )A.线段AB B.线段AC C.线段BC D.无法确定【答案】C【解析】【分析】直接利用点到直线的距离定义得出答案.【详解】解:如图,三角形ABC中,∠C=90°,则点B到直线AC的距离是:线段BC.故选:C.【点睛】本题考查点到之间的距离,正确把握相关定义是解题关键.17.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .18.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.20.如图,ABCD 为一长方形纸带,AB ∥CD ,将ABCD 沿EF 折叠,A 、D 两点分别与A′、D′对应,若∠1=2∠2,则∠AEF 的度数为( )A .75°B .72°C .70°D .65°【答案】B【解析】【分析】 如图,由折叠的性质可知∠3=∠4,已知AB ∥CD ,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°【详解】如图,由折叠的性质可知∠3=∠4,∵AB∥CD,∴∠3=∠1,∵∠1=2∠2,∠3+∠4+∠2=180°,∴5∠2=180°,即∠2=36°,∴∠AEF=∠3=∠1=72°故选B.【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.。
相交线与平行线下)100题含解析相交线与平行线
相交线与平行线100题一.选择题(共45小题)1.(2014•铜仁地区)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.(2012春•鼓楼区校级期中)平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于()A.1B.2C.3D.43.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个4.(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°5.如图,直线AB、CD相交于点O,∠DOE=90°,则∠AOE与∠DOB的关系是()A.对顶角B.互补的两个角C.互余的两个角D.一对相等的角6.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°7.(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠58.如图,已知AB⊥MN于E,下列条件中不能得到CD⊥MN的是()A.CD∥AB B.∠CFE=∠AEM C.∠CFE+∠AEF=180°D.∠CFE+∠CFN=180°9.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 10.(2009秋•翠屏区期末)已知如图,∠A=135°,∠B=45°,在下面的说法中,一定正确的是()A.AD∥BC B.AB∥CD C.∠C=135°,∠D=45°D.∠C=45°,∠D=135°11.(2007春•西城区期末)下列命题中,错误的是()A.对顶角的角平分线互为反向延长线B.在同一平面内,垂直于同一直线的两条直线互相平行C.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D.同时垂直于两条平行线,并且夹在这两条平行线间的线段叫做这两条平行线的距离12.(2011秋•岳阳楼区校级期末)下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个13.(2011春•灌南县校级期末)如图,下列推理正确的是()A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3 14.(2012春•金台区期末)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,则∠ABE与∠FCD的关系是()A.同位角且相等B.不是同位角但相等C.是同位角但不相等D.不是同位角也不相等15.(2013春•下城区期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个16.(2015•河北一模)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4B.5C.10D.无法判断17.(2014•安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60°B.80°C.100°D.120°18.(2014•龙岩)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°19.(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°20.(2011秋•射洪县校级期末)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度21.(2009春•常州期末)如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于()A.40°B.50°C.65°D.115°22.(2009秋•长春校级期末)如图,已知∠1=∠2,∠3=60°,则∠4=()A.80°B.70°C.60°D.50°23.(2014春•乳山市期末)如图,AC⊥CD于C,ED⊥CD于D,AB∥EF,∠CAE=25°,∠BAE=10°,则∠DEF=()A.30°B.35°C.40°D.45°24.(2013春•下城区期末)如图,∠1=100°,∠2=100°,且∠3:∠1=6:5,则∠4的度数为()A.100°B.110°C.120°D.130°25.(2005春•武昌区期末)如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为()A.45°B.60°C.65°D.70°26.(2014春•苏州期末)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=()A.40°B.50°C.60°D.70°27.(2008秋•江苏校级期末)如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM 相等的角(不含它本身)的个数为()A.5B.6C.7D.828.(2008春•江岸区期末)如图,AB∥CD,∠D=∠E,∠B=110°,则∠D为()A.70°B.60°C.55°D.45°29.(2014春•宜宾校级期末)如图,矩形纸片ABCD中,沿折痕EF折叠,得∠EFG=40°,∠AEG的度数为()A.98°B.99°C.100°D.101°30.如图所示,AD∥BC,∠BCD=50°,∠B=80°,CA平分∠BCD,则∠CAD与∠BAC的度数分别为()A.25°,75°B.75°,25°C.20°,50°D.25°,65°31.如图,已知AB∥CD,直线EF交AB于E,交CD于F,∠1=∠2,则下列判断不正确的是()A.FN∥EM B.∠MEB=∠NFC C.∠1+∠AEF=180°D.∠AEM=∠DFN 32.(2006春•襄城区期末)如图,AB∥CD,OE平分∠AOC,OE⊥OF,∠C=60°,则∠BOF的度数为()A.15°B.30°C.60°D.90°33.(2013•台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°34.(2014春•招远市期末)如图,直线l1,l2分别截射线AB,AC,若l1∥l2,则下列各角度数关系正确的是()A.∠5+∠1=180°B.∠4+∠2>180°C.∠6+∠3<180°D.∠4+∠6<180°35.(2009春•成华区期末)如图,已知AB∥EF,则∠B+∠C+∠D+∠E的度数为()A.270°B.360°C.450°D.540°36.(2011春•抚州校级期末)如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.110°B.115°C.125°D.130°37.(2013春•太仓市期末)如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°38.(2013秋•永州期末)如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.180°+α+β﹣γB.180°+γ﹣α﹣βC.β+γ﹣αD.α+γ﹣β39.(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°40.(2014•长沙二模)如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°41.(2014春•武昌区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°42.(2013秋•招远市期末)如图,AB∥EF∥CD,连接BD,ED,则下列等式中正确的是()A.∠1﹣∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°43.(2013春•石景山区期末)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=155°,则∠BEF的度数为()A.50°B.12.5°C.25°D.15°44.(2014春•招远市期末)如图,一条公路修到湖边时,需拐弯绕湖而过,第一次拐的角∠A=110°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数为()A.120°B.130°C.140°D.150°45.(2014春•海淀区期末)如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,EG⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠EGF=50°.A.①③④B.②③C.①②③D.①②③④二.填空题(共45小题)46.(2014春•新泰市期末)如图,已知直线CD、EF相交于点O,OA⊥OB,且OC平分∠AOF,∠BOE=2∠AOE.则∠BOD=.47.(2013春•黄山期末)如图,已知直线AD、BE、CF相交于O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE=.48.(2013秋•昌平区期末)如图,直线AB,CD相交于点O,∠AOC=60°,∠1=2∠2,则∠2=°,∠AOE=°.49.(2014春•霸州市期末)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =度,∠COB=度.50.(2013•河北模拟)如图,直线AB与直线CD相交于点O,射线OP平分∠AOD,若∠BOC=130°,则∠COP 的度数为.51.(2010秋•江阴市期末)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度;若OF平分∠DOB,则∠EOF的度数是度.52.(2011秋•大兴区期末)如图,三条直线相交于一点,按从小到大的顺序排列∠1,∠2,∠3为.53.(2014春•武昌区期末)如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=度.54.(2011•平塘县校级模拟)如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是.55.看图填空:(1)∠1和∠4是角;(2)∠1和∠3是角;(3)∠2和∠D是角;(4)∠3和∠D是角;(5)∠4和∠D是角;(6)∠4和∠B是角.56.如图所示,AB与BC被AD所截得的内错角是;DE与AC被AD所截得的内错角是;∠1与∠4是直线被直线截得的角,图中同位角有对.57.(2011秋•岳阳楼区校级期末)如图所示,其中共有对对顶角.58.(2014春•富顺县校级期末)如图所示,同位角一共有对,内错角一共有对,同旁内角一共有有对.59.(2004秋•奉贤区期末)如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7中同位角有对.60.如图,DH∥EO∥BC,EF∥CD,则与∠BFE相等的角,不包括∠BFE有个.61.如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于和.62.(2014春•东城区期末)如图,直线a,b被直线c所截,现给出四个条件:①∠1=∠5;②∠2=∠7;③∠2+∠8=180°;④∠4=∠7.其中能说明a∥b的条件序号为.63.(2014•湘潭)如图,直线a、b被直线c所截,若满足,则a、b平行.64.(2011•开县校级模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A=.65.(2014春•丰城市校级期中)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.66.(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.67.(2014春•兴业县期末)如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是.68.(2011秋•东营期末)如图,若AB∥DE,BC∥FE,∠E+∠B=度.69.(2009•沙坪坝区校级模拟)如图,EF∥GH,点A在EF上,AP,AQ分别交GH于点B、C,且AP⊥AQ,∠PBG=35°,则∠FAC=.70.(2012•温州模拟)如图,AB∥CD,CD∥EF,∠A=110°,∠E=30°,则∠ACE=.71.(2012•开县校级模拟)如图,直线a∥b,直线m分别交a、b于A、B两点,CB⊥m,垂足为B,若∠1=25°,则∠2=.72.(2014•广东模拟)将三角板ABC按如图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°,且CF恰好平分∠ACB.若∠CBA=30°,则∠DAC的度数是.73.如图,如果AB∥EF,BC∥DE,那么∠E和∠B满足的关系.74.如图,直线a∥b,∠1=72°,∠2=130°,那么∠3+∠4=.75.(2009•荆州校级模拟)如图,a∥b,∠1=105°,∠2=140°,则∠3的度数是.76.(2012•湛江模拟)如图所示,AB平行CD,AE与CE相交于点E,∠BAE=30°,∠DCE=40°.∠1=,∠2=.77.(2014•孝南区校级模拟)如图,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=度.78.(2011•北京模拟)如图,已知AB∥CD,BE平分∠ABC,∠CDE=140°,则∠C=.79.(2013•深圳模拟)如图,AB∥CD,∠CFE=112°,ED平分∠BEF,交CD于D,则∠EDF=度.80.(2012•河南模拟)如图直线a与直线b平行,则|x﹣y|的值是.81.(2013秋•云阳县期末)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.82.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.83.(2009•荆州二模)如图,直线MN∥PQ,∠ABM=30°,∠D=40°,∠EFQ=70°,则∠C+∠E=.84.(2011•鸠江区校级自主招生)如图,DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,则∠B=度.85.(2009•琼海模拟)如图,∠1=∠2,要判断AB∥DF,需要增加条件.86.(2013秋•翠屏区校级期末)将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有(填序号).87.(2012•诸城市校级模拟)如图,直线AE∥BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE 的面积为.88.(2012春•盐都区期末)如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=度.89.(2014•鹿城区校级二模)如图,在四边形纸片ABCD中,∠A=100°,∠C=40°,现将其右下角向内翻折得△FGE,折痕为EF,恰使GF∥CD,GE∥AD,则∠B=度.90.如图(1)是长方形纸条,将纸条沿EF折叠成图(2),再沿AF折叠成图(3),已知图(3)中的∠CFE=120°,则图(1)中∠DEF的度数是.三.解答题(共10小题)91.(2014•益阳)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.92.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠2=∠3(已知),∴∥()(2)∵∠2=∠5(已知),∴∥()(3)∵∠2+∠1=180°(已知),∴∥()(4)∵∠5=∠3(已知),∴∥()(5)∵∠4+∠6=180°(已知),∴∥()(6)∵AB∥CD,AB∥EF(已知),∴∥()93.如图,∠PCN=45°,直线CP与CN分别交AQ、EF于点B、D,∠ABC=20°,∠CDE=25°,试说明:AQ∥EF.94.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.95.如图所示,两平面镜OM、ON的夹角为∠θ,入射光线AB沿着与镜面ON平行的方向照射到镜面OM上,经过两次反射后的反射光线CD平行于镜面OM,求∠θ的度数.96.如图,已知∠3+∠DCB=180°,∠1=∠2,∠CME:∠GEM=4:5,求∠CME的度数.97.如图,已知BD∥AC,CE∥BA,且D、A、E在同一条直线上,设∠BAC=x,∠D+∠E=y.(1)试用x的一次式表示y;(2)当x=90°,且∠D=2∠E时,DB与EC具有怎样的位置关系?98.(1)阅读填空:如图1,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则∠B=∠1【】又∵AB∥DE,AB∥CF,∴CF∥DE∴∠E=∠2【】∴∠B+∠E=∠1+∠2,即∠B+∠E=∠BCE.(2)应用解答:观察上面图形与结论,解决下面的问题:如图2,∠DAB+∠B+∠BCE=360°,作∠BCF=∠BCG,CF与∠BAH的平分线交于F,若∠F的余角等于2∠B的补角,求∠BAH的度数.(3)拓展深化:如图3,在前面的条件下,若点P是AB上一点,Q是GE上任一点,QR平分∠PQR,PM∥QR,PN平分∠APQ,下列结论:①∠APQ+∠NPM的值不变;②∠NPM的度数不变,可以证明,只有一个是正确的,请你做出正确的选择并求值.99.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF 的关系(不要求证明).100.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.相交线与平行线100题参考答案与试题解析一.选择题(共45小题)1.(2014•铜仁地区)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.2.(2012春•鼓楼区校级期中)平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于()A.1B.2C.3D.4解答:解:平面内两两相交的三条直线,最多有3个交点,最少有1个交点,即m=3,n=1,∴m+n=4.故选D.3.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个解答:解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.4.(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.5.如图,直线AB、CD相交于点O,∠DOE=90°,则∠AOE与∠DOB的关系是()A.对顶角B.互补的两个角C.互余的两个角D.一对相等的角解答:解:∵∠DOE=90°,∴∠EOC=90°,即∠AOC+∠AOE=90°,∵∠AOC=∠DOB,∴∠DOB+∠AOE=90°,即∠AOE与∠DOB互余.故选C.6.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°解答:解:根据对顶角相等,可知∠2=60°∠4=30°.由平角的定义知,∠3=180°﹣∠2﹣∠4=90°,所以∠1=∠3=90°.故选D.7.(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5解答:解:∠1的同位角是∠5,故选:D.8.如图,已知AB⊥MN于E,下列条件中不能得到CD⊥MN的是()A.CD∥AB B.∠CFE=∠AEM C.∠CFE+∠AEF=180°D.∠CFE+∠CFN=180°解答:解:A、∵CD∥AB,AB⊥MN,∴CD⊥MN.B、∵∠CFE=∠AEM,∴CD∥AB(同位角相等,两直线平行).∵AB⊥MN,∴CD⊥MN.C、∵∠CFE+∠AEF=180°,∴CD∥AB,(同旁内角互补两直线平行)∵AB⊥MN,∴CD⊥MN.D、∵∠CFE与∠CFN是邻补角,当然有∠CFE+∠CFN=180°,不能得到CD⊥MN.故选D.9.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.10.(2009秋•翠屏区期末)已知如图,∠A=135°,∠B=45°,在下面的说法中,一定正确的是()A.AD∥BC B.AB∥CD C.∠C=135°,∠D=45°D.∠C=45°,∠D=135°解答解:∵∠A=135°,∠B=45°,∴∠A+∠B=135°+45°=180°,∴AD∥BC.故选:A.11.(2007春•西城区期末)下列命题中,错误的是()A.对顶角的角平分线互为反向延长线B.在同一平面内,垂直于同一直线的两条直线互相平行C.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D.同时垂直于两条平行线,并且夹在这两条平行线间的线段叫做这两条平行线的距离解答:解:A、对顶角的角平分线成180°的角,它们互为反向延长,所以A选项的说法正确;B、在同一平面内,垂直于同一直线的两条直线互相平行,所以B选项的说法正确;C、如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,所以C选项的说法正确;D、同时垂直于两条平行线,并且夹在这两条平行线间的线段长叫做这两条平行线的距离,所以D选项的说法错误.故选D.12.(2011秋•岳阳楼区校级期末)下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个解答:解:①只有两直线平行,同位角才相等,故本小题错误;②凡直角都相等,正确;③根据定义,一个角的余角比补角小90°,所以一个角的余角一定比它的补角小,正确;④在直线、射线和线段中,只有线段有长短,直线是向两方无限延伸的,没有长度,故本小题错误;⑤两点之间的线段的长度就是这两点间的距离,正确;⑥如果一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故本小题错误;所以,正确的有②③⑤共3个.故选D.13.(2011春•灌南县校级期末)如图,下列推理正确的是()A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3解答:解:A、由MA∥NB,能够得到∠1+∠2=∠3+∠4(两直线平行,同位角相等),若∠1,∠2的大小不确定,则不能判定∠1=∠3;故A错误.B、因为∠2=∠4,则MC∥ND(同位角相等,两直线平行);故B正确.C、由∠1=∠3,不能判定MA∥NB,因为∠1、∠3不是NB、MA两直线截得的同位角;故C错误.D、由MC∥ND,可得∠2=∠4,而不能得到∠1=∠3;故D错误.故选B.14.(2012春•金台区期末)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,则∠ABE与∠FCD的关系是()A.同位角且相等B.不是同位角但相等C.是同位角但不相等D.不是同位角也不相等解答:解:∵AB⊥BC,BC⊥CD,∴∠ABC=∠DCB=90°,∵∠EBC=∠BCF,∴∠ABE=∠FCD.故选:B.15.(2013春•下城区期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个解答:解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选B.16.(2015•河北一模)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4B.5C.10D.无法判断解答:解:∵在五边形ABCDE中,AB∥DE,∴点E、点D到直线AB上的垂线段相等,即在△ABE与△ABD中,边AB上的高线相等,∴△ABE与△ABD是同底等高的两个三角形,S△ABE =S△ABD=5.故选:B.17.(2014•安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60°B.80°C.100°D.120°解答:解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),∴∠PQR=180°﹣2∠AQR=100°,∴∠QPB=180°﹣100°=80°.故选:B.18.(2014•龙岩)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°解答:解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.19.(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.20.(2011秋•射洪县校级期末)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度解答:解:A、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AB=CD,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵AB是线段,∴A、B两点间距离就是线段AB的长度,故本选项正确;D、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误.故选D.21.(2009春•常州期末)如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于()A.40°B.50°C.65°D.115°解答:解:∵∠1=120°,∠2=60°,120°+60°=180°,∴这两个角所在的两条直线平行,∴∠4=∠3=65°.故本题选C.22.(2009秋•长春校级期末)如图,已知∠1=∠2,∠3=60°,则∠4=()A.80°B.70°C.60°D.50°解答:解:∵∠1=∠2,2=∠5(对顶角相等)∴∠1=∠5,∴a∥b,(内错角相等,两直线平行)∴∠4=∠3=60°,故选C.23.(2014春•乳山市期末)如图,AC⊥CD于C,ED⊥CD于D,AB∥EF,∠CAE=25°,∠BAE=10°,则∠DEF=()A.30°B.35°C.40°D.45°解答:解:∵AC⊥CD,ED⊥CD,∴∠C=∠D=90°,∴AC∥DE,∴∠CAE=∠DEF=25°,∵AB∥EF,∠BAE=10°,∴∠BAE=∠CEF=10°,∴∠DEF=∠DEA+∠CEA=25°+10°=35°,故选B.24.(2013春•下城区期末)如图,∠1=100°,∠2=100°,且∠3:∠1=6:5,则∠4的度数为()A.100°B.110°C.120°D.130°解答:解:∵∠1=100°,∠3:∠1=6:5,∴∠3=120°.∵∠1=100°,∠2=100°,即∠1=∠2,∴a∥b,∴∠4=∠3=120°.故选C.25.(2005春•武昌区期末)如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为()A.45°B.60°C.65°D.70°解答:解:∵∠1与∠3互余,∠2与∠3的余角互补,∴∠1+∠3=90°,∠2+(90°﹣∠3)=180°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠5=180°,又∵∠5=∠4=115°,∴∠3=180°﹣115°=65°.故选C.26.(2014春•苏州期末)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=()A.40°B.50°C.60°D.70°解答:解:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠BCF,∴EB∥CF,∴∠F=∠E=50°.故选B.27.(2008秋•江苏校级期末)如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM 相等的角(不含它本身)的个数为()A.5B.6C.7D.8解答:解:∵FM平分∠EFD,∴∠EFM=∠DFM=∠CFE,∵EG平分∠AEF,∴∠AEG=∠GEF=∠AEF,∵EM平分∠BEF,∴∠BEM=∠FEM=∠BEF,∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=(∠BEF+∠CFE),∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.28.(2008春•江岸区期末)如图,AB∥CD,∠D=∠E,∠B=110°,则∠D为()A.70°B.60°C.55°D.45°解答:解:∵AB∥CD,∴∠BFD=∠B=110°.又∵∠D=∠E,∴∠D=110°÷2=55°.故选C29.(2014春•宜宾校级期末)如图,矩形纸片ABCD中,沿折痕EF折叠,得∠EFG=40°,∠AEG的度数为()A.98°B.99°C.100°D.101°解答:解:∵在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=40°由对称性可知∠GEF=∠DEF=40°.∴∠AEG=180°﹣∠GEF﹣∠DEF=100°.故选C.30.如图所示,AD∥BC,∠BCD=50°,∠B=80°,CA平分∠BCD,则∠CAD与∠BAC的度数分别为()A.25°,75°B.75°,25°C.20°,50°D.25°,65°解答:解:∵∠BCD=50°,CA平分∠BCD,∴∠BCA=∠BCD=25°,∵AD∥BC,∴∠CAD=∠BCA=25°;∵∠B=80°,∴∠BAC=180°﹣∠B﹣∠BCA=75°.故选:A.31.如图,已知AB∥CD,直线EF交AB于E,交CD于F,∠1=∠2,则下列判断不正确的是()A.FN∥EM B.∠MEB=∠NFC C.∠1+∠AEF=180°D.∠AEM=∠DFN解答:解:A、由∠1=∠2可得FN∥EM;故结论正确;B、由AB∥CD可得∠BED=∠CFE,由A证得的结论可推得:∠MEB=∠NFC;故结论正确;C、由AB∥CD可得∠AEF+∠CFE=180°,故原结论错误;D、由AB∥CD可得∠AEF=∠DFE,由A证得的结论可推得:∠AEM=∠DFC;故结论正确.故选C.32.(2006春•襄城区期末)如图,AB∥CD,OE平分∠AOC,OE⊥OF,∠C=60°,则∠BOF的度数为()A.15°B.30°C.60°D.90°解答:解:∵AB∥CD,∠C=60°,∴∠BOC=∠C=60°,∴∠AOC=180°﹣∠BOC=180°﹣60°=120°,∵OE平分∠AOC,∴∠BOC=∠AOC=×120°=60°,∵OE⊥OF,∴∠COF=90°﹣60°=30°,∴∠BOF=∠BOC﹣∠COF=60°﹣30°=30°.故选B.33.(2013•台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°解答:解:根据三角形的外角性质,∠3=∠1+∠A,∵∠1+∠2=180°,∴∠2+∠3=∠2+∠1+∠A>180°,故B选项错误;∵L∥N,∴∠3=∠5,∴∠2+∠5=∠2+∠1+∠A>180°,故A选项正确;C、∵∠6=180°﹣∠5,∴∠1+∠6=∠3﹣∠A+180°﹣∠5=180°﹣∠A<180°,故本选项错误;D、∵L∥N,∴∠3+∠4=180°,故本选项错误.故选A.34.(2014春•招远市期末)如图,直线l1,l2分别截射线AB,AC,若l1∥l2,则下列各角度数关系正确的是()A.∠5+∠1=180°B.∠4+∠2>180°C.∠6+∠3<180°D.∠4+∠6<180°解答:解:∵l1∥l2,∠3=∠1,∴∠2=∠6,∠3+∠6=180°,即∠1+∠6=180°,选项C错误;而AB与AC不平行,故∠5≠∠6,即∠5+∠1≠180°,选项A错误;∠4+∠6≠180°,即∠4+∠2>180°,选项B正确,选项D错误;故选B35.(2009春•成华区期末)如图,已知AB∥EF,则∠B+∠C+∠D+∠E的度数为()A.270°B.360°C.450°D.540°解答:解:如图,分别过点C,D作AB的平行线CG,DH,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故选D.36.(2011春•抚州校级期末)如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.110°B.115°C.125°D.130°解答:解:过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选C.37.(2013春•太仓市期末)如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°解答:解:过点E作EF∥AB∴∠α+∠AEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴EF∥CD.∴∠FED=∠EDC(两直线平行,内错角相等)∵∠β=∠AEF+∠FED又∵∠γ=∠EDC(已知)∴∠α+∠β﹣∠γ=180°.故选A.38.(2013秋•永州期末)如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.180°+α+β﹣γB.180°+γ﹣α﹣βC.β+γ﹣αD.α+γ﹣β解答:解:过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD,∴∠AEM=α,∠CFN=β,∠FEM+∠EFN=180°,∴∠EFN=γ﹣β,∴∠FEM=180°﹣∠EFN=180°﹣γ+β,∴θ=∠AEM+∠FEM=α+(180°﹣γ+β)=180°+α+β﹣γ.故选A.39.(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选:A.40.(2014•长沙二模)如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°解答:解:作CM∥AB,DN∥AB,由AB∥EF,得到AB∥CM∥DN∥EF,∴∠ABC=∠BCM=30°,∠DEF=∠GDE=45°,∠MCD=∠CDG,∵BC⊥CD,∴∠BCD=90°,∴∠MCD=∠CDG=60°,∴∠CDE=∠CDG+∠GDE=105°.故选A41.(2014春•武昌区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.42.(2013秋•招远市期末)如图,AB∥EF∥CD,连接BD,ED,则下列等式中正确的是()A.∠1﹣∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°解答:解:如图,延长CD,∵EF∥CD,∴∠4=180°﹣∠3,∵AB∥CD,∴∠1=∠2+∠4,∴∠1=∠2+180°﹣∠3,整理得,∠1﹣∠2+∠3=180°.故选A.43.(2013春•石景山区期末)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=155°,则∠BEF的度数为()A.50°B.12.5°C.25°D.15°解答:解:∵∠AFE=180°﹣∠1=180°﹣155°=25°,又∵EF∥AC,∴∠CAF=∠AFE=25°,∵AF是∠BAC的平分线,∴∠BAC=2∠CAF=50°,∵EF∥AC,∴∠BEF=∠BAC=50°.故选A.44.(2014春•招远市期末)如图,一条公路修到湖边时,需拐弯绕湖而过,第一次拐的角∠A=110°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数为()A.120°B.130°C.140°D.150°解答:解:延长FC,AB,交于点E,如图所示,∵AD∥CE,∴∠A=∠E=110°,∵∠ABC为△BCE的外角,∴∠BCE=∠ABC﹣∠E=40°,∴∠BCF=140°.故选C45.(2014春•海淀区期末)如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,EG⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠EGF=50°.A.①③④B.②③C.①②③D.①②③④解答:解:①中,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠DCA的平分线相交于点G,∴∠GAC+∠GCA=∠BAC+∠ACD=×180°=90°,∵∠GAC+∠GCA+AGC=∠180°,∴AG⊥CG;②中,根据等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;③中,根据三角形的面积公式,∵AF=CF,∴S△AFG =S△CFG;④中,根据题意,得:在四边形GECH中,∠EGH+∠ECH=180°.又∵∠EGH:∠ECH=2:7,∴∠EGH=180°×=40°,∠ECH=180°×=140°.∵CG平分∠ECH,∴∠FCG=∠ECH=70°,根据直角三角形的两个锐角互余,得∠EGC=20°.∵FG=FC,∴∠FGC=∠FCG=70°,∴∠EGF=50°.故上述四个都是正确的.故选D.二.填空题(共45小题)46.(2014春•新泰市期末)如图,已知直线CD、EF相交于点O,OA⊥OB,且OC平分∠AOF,∠BOE=2∠AOE.则∠BOD=15°.解答:解:∵OA⊥OB,∠BOE=2∠AOE.∴∠AOE=30°,∴∠AOF=180°﹣∠AOE=180°﹣30°=150°,∵OC平分∠AOF,∴∠AOC=75°,∴∠BOD=180°﹣∠BOA﹣∠AOC=180°﹣90°﹣75°=15°故答案为:15°.47.(2013春•黄山期末)如图,已知直线AD、BE、CF相交于O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE= 25°.解答:解:∵OG⊥AD,∴∠GOD=90°,∵∠EOF=∠BOC=35°,又∵∠FOG=30°,∴∠DOE=∠GOD﹣∠EOF﹣∠GOF=90°﹣35°﹣30°=25°,故答案为:25°.48.(2013秋•昌平区期末)如图,直线AB,CD相交于点O,∠AOC=60°,∠1=2∠2,则∠2=20°,∠AOE= 140°.解答:解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=60°,∵∠1=2∠2,∠1+∠2=60°,∴∠2=20°;∵∠AOC+∠BOD=180°,∴∠BOD=180°﹣∠AOC=120°,∵∠AOE=∠AOD+∠EOD=120°+20°=140°,故答案为:20,140.49.(2014春•霸州市期末)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC= 52度,∠COB=128度.解答:解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.50.(2013•河北模拟)如图,直线AB与直线CD相交于点O,射线OP平分∠AOD,若∠BOC=130°,则∠COP 的度数为115°.解答:解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∵OP平分∠AOD,∴∠POD=∠AOD=×130°=65°,∴∠COP=180°﹣∠POD=180°﹣65°=115°.故答案为:115°.51.(2010秋•江阴市期末)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=35度;若OF平分∠DOB,则∠EOF的度数是107.5度.解答:解:∵OE⊥AB,∠1=55°,∴∠AOC=90°﹣∠1=90°﹣55°=35°,又∵∠BOD=∠AOC,∴∠BOD=35°;∵OE⊥AB,∴∠EOB=90°,又∵OF平分∠DOB,∴∠BOF=∠DOB=×35°=17.5°,∠EOF=∠EOB+∠BOF=90°+17.5°=107.5°.故答案分别为:35°;107.5°.52.(2011秋•大兴区期末)如图,三条直线相交于一点,按从小到大的顺序排列∠1,∠2,∠3为∠1<∠3<∠2.解答:解:根据图形,∠1=180°﹣60°﹣70°=180°﹣130°=50°,根据对顶角相等,∠2=70°,∠3=60°,所以∠1<∠3<∠2.故答案为:∠1<∠3<∠2.53.(2014春•武昌区期末)如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=120度.解答:解:设∠α=x,则∠β=3x,根据题意得:解得:,解得:x=40°,∴∠β=3x=120°,故答案为:120.54.(2011•平塘县校级模拟)如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴过点A作河岸的垂线段,理由是垂线段最短.55.看图填空:(1)∠1和∠4是邻补角;(2)∠1和∠3是对顶角;(3)∠2和∠D是内错角;(4)∠3和∠D是同旁内角;(5)∠4和∠D是同位角;(6)∠4和∠B是同位角.解答:解:(1)∠1和∠4是邻补角,故答案为:邻补;(2)∠1和∠3是对顶角,故答案为:对顶;(3)∠2和∠D是内错角,故答案为:内错;(4)∠3和∠D是同旁内角,故答案为:同旁内;(5)∠4和∠D是同位角,故答案为:同位;(6)∠4和∠B是同位角,故答案为:同位.56.如图所示,AB与BC被AD所截得的内错角是∠1与∠3;;DE与AC被AD所截得的内错角是∠2与∠4;∠1与∠4是直线AE、ED被直线AD截得的角,图中同位角有6对.解答:解:,AB与BC被AD所截得的内错角是∠1与∠3;DE与AC被AD所截得的内错角是∠2与∠4;∠1与∠4是直线AE、ED被直线AD截得的角,图中同位角有4对,故答案为:∠1与∠3,∠2与∠4,AE、ED,AD,6.57.(2011秋•岳阳楼区校级期末)如图所示,其中共有4对对顶角.解答:解:如图,在顶点H处有2对对顶角,在顶点C处有2对对顶角,所以,共有2+2=4对对顶角.故答案为:4.58.(2014春•富顺县校级期末)如图所示,同位角一共有6对,内错角一共有4对,同旁内角一共有有4对.解答:解:同位角一共有6对,分别是∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9;内错角一共有4对,分别是∠1和∠7,∠4和∠6,∠5和∠9,∠2和∠9;同旁内角一共有4对,分别是∠1和∠6,∠1和∠9,∠4和∠7,∠6和∠9.故答案为:6,4,4.59.(2004秋•奉贤区期末)如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7中同位角有3对.解答:解:观察图形可知:∠1的同位角是∠4,∠3的同位角是,5,∠7的同位角是∠6,∴图中同位角有3个.故答案为:3.60.如图,DH∥EO∥BC,EF∥CD,则与∠BFE相等的角,不包括∠BFE有5个.。
相交线与平行线知识点总结及例题解析
相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。
1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。
例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。
2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。
3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。
【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。
(完整版)初一下学期相交线与平行线数学试题解析
一、选择题1.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )A .102︒B .156︒C .142︒D .141︒2.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒3.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P .以上结论正确的个数是( )A .、1个B .2个C .3个D .4个4.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒5.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º6.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100° 7.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20°B .80°C .160°D .20°或160°8.如图,△ABC 中,∠ACB =90°,AC =3,BC =4,AB =5,P 为直线AB 上一动点,连接PC ,则线段PC 的最小值是( )A .3B .2.5C .2.4D .29.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°10.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个二、填空题11.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE 固定不动,将含30角的三角尺ABC 绕顶点A 顺时针转动,使BC 与三角形ADE 的一边平行,如图②,当15BAD ∠=︒时,//BC DE ,则()90360BAD BAD ∠︒<∠<︒其他所有符合条件的度数为________.12.如图1,为巡视夜间水面情况,在笔直的河岸两侧(//PQ MN )各安置一探照灯A ,BC (A 在B 的左侧),灯A 发出的射线AC 从AM 开始以a 度/秒的速度顺时针旋转至AN 后立即回转,灯B 发出的射线BD 从BP 开始以1度/秒的速度顺时针旋转至BQ 后立即回转,两灯同时转动,经过55秒,射线AC 第一次经过点B ,此时55ABD ∠=︒,则a =________,两灯继续转动,射线AC 与射线BD 交于点E (如图2),在射线...BD ..到达..BQ..之前..,当120AEB ∠=︒,MAC ∠的度数为________.13.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E , …第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若1n E ∠=度,那BEC ∠等于__________度.14.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.15.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.16.如图①:MA 1∥NA 2,图②:MA11NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,……,则第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n+1______.(用含n 的代数式表示)17.已知:如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,若∠EOC :∠EOD =2:3,则∠BOD 的度数为________.18.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.19.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.20.一副三角板按如图所示(共定点A )叠放在一起,若固定三角板ABC ,改变三角板ADE 的位置(其中A 点位置始终不变),当∠BAD =___°时,DE ∥AB .三、解答题21.(1)如图①,若∠B +∠D =∠E ,则直线AB 与CD 有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB //CD ,又能得出什么结论?请直接写出结论 . (3)如图③,已知AB //CD ,则∠1+∠2+…+∠n -1+∠n 的度数为 .22.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系; (3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 24.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答. 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.25.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】过点P 作PQ ∥AB ,过点H 作HG ∥AB ,根据平行线的性质得到∠EPF =∠BEP +∠DFP =78°,结合角平分线的定义得到∠AEH +∠CFH ,同理可得∠EHF =∠AEH +∠CFH . 【详解】解:过点P 作PQ ∥AB ,过点H 作HG ∥AB , //AB CD ,则PQ ∥CD ,HG ∥CD , ∴∠BEP =∠QPE ,∠DFP =∠QPF , ∵∠EPF =∠QPE +∠QPF =78°, ∴∠BEP +∠DFP =78°, ∴∠AEP +∠CFP =360°-78°=282°, ∵EH 平分∠AEP ,HF 平分∠CFP , ∴∠AEH +∠CFH =282°÷2=141°, 同理可得:∠EHF =∠AEH +∠CFH =141°, 故选D .【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.2.A解析:A 【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠. 【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴,12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠,180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠,180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒,1802(24)BKC BKC ∴∠=︒-∠-︒, 76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c .3.C解析:C 【详解】①如图1,过点E 作EF ∥AB , 因为AB ∥CD ,所以AB ∥EF ∥CD , 所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误; ②如图2,过点E 作EF ∥AB , 因为AB ∥CD ,所以AB ∥EF ∥CD , 所以∠A=∠AEF ,∠C=∠CEF ,所以∠A+∠C=∠AEC+∠AEF=∠AEC ,则②正确; ③如图3,过点E 作EF ∥AB , 因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A+∠AEF=180°,∠1=∠CEF ,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P 作PF ∥AB ,因为AB ∥CD ,所以AB ∥PF ∥CD ,所以∠A=∠APF ,∠C=∠CPF ,所以∠A=∠CPF+∠APC=∠C+∠APC ,则④正确; 故选C.4.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.5.A解析:A【分析】依据∠OGD=148°,可得∠EGO=32°,根据AB∥CD,可得∠EGO =∠GOF,根据GO平分⊥,∠EOF,可得∠GOE =∠GOF,等量代换可得:∠EGO=∠GOE=∠GOF=32°,根据FH OE ∠=90°-32°-32°=26°可得:OFH【详解】解:∵∠OGD=148°,∴∠EGO=32°∵AB∥CD,∴∠EGO =∠GOF,∠的角平分线OG交CD于点G,∵EOF∴∠GOE =∠GOF,∵∠EGO=32°∠EGO =∠GOF∠GOE =∠GOF,∴∠GOE=∠GOF=32°,∵FH OE⊥,∴OFH∠=90°-32°-32°=26°故选A.【点睛】本题考查的是平行线的性质及角平分线的定义的综合运用,易构造等腰三角形,用到的知识点为:两直线平行,内错角相等.6.B解析:B【详解】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.7.D解析:D【详解】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选D.8.C解析:C【分析】当PC⊥AB时,PC的值最小,利用面积法求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,∵当PC⊥AB时,PC的值最小,此时:△ABC的面积=12•AB•PC=12•AC•BC,∴5PC=3×4,∴PC=2.4,故选:C.【点睛】本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高. 9.A解析:A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB ∥CD ,∴∠2=∠D ,∵∠1=140°,∴∠D =∠2=180°−∠1=180°−140°=40°,故选:A .【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.10.C解析:C【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确.【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜∴//AB CD故①正确∵//AB CD∴∠ABE =∠CDB∵∠CDB +∠CDF =180゜∴180ABE CDF ∠+∠=︒故②正确由已知条件无法推出AC ∥BD故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2∴∠ACP =∠E∴AC ∥BD∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP∴2CAB F ∠=∠故④正确故正确的序号为①②④故选:C .【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.二、填空题11.105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC ∥AE 时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC ∥AE 时,∠EAB =∠B =60°,∴∠BAD=∠DAE +∠EAB =45°+60°=105°;当BC ∥DE 时,延长BA ,交DE 于F ,则∠AFE =∠B =60°,∴∠DAF =∠AFE -∠D =60°-45°=15°,∴∠DAB =15°+180°=195°;如图,当BC∥AD时,∠CAD=∠C=30°,∴∠BAD=360°-30°-90°=240°;如图,当BC∥AE时,∠CAE=∠C=30°,∴∠CAD=45°-30°=15°,锐角∠DAB=90°-∠CAD=75°,∴旋转角∠DAB=360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.12.或.【分析】(1)由平行线的性质,得到角之间的关系,然后列出方程,解方程即可;(2)由题意,根据旋转的性质,平行线的性质,可对运动过程分成两种情况进行分析:①射线AC没到达AN时,;②解析:120︒或60︒.【分析】(1)由平行线的性质,得到角之间的关系,然后列出方程,解方程即可;(2)由题意,根据旋转的性质,平行线的性质,可对运动过程分成两种情况进行分析:①射线AC 没到达AN 时,120AEB ∠=︒;②射线AC 到达AN 后,返回旋转的过程中,120AEB ∠=︒;分别求出答案即可.【详解】解:(1)如图,射线AC 第一次经过点B ,∵//PQ MN ,∴M AB ABP ABD DBP ∠=∠=∠+∠,∴55MAB DBP ∠=︒+∠,∴5555551a =︒+⨯︒,解得:2a =;故答案为:2.(2)①设射线AC 的转动时间为t 秒,则如图,作EF //MN //PQ ,由旋转的性质,则1802EAN t ∠=︒-︒,PBE t ∠=︒,∵EF //MN //PQ ,∴1802AEF EAN t ∠=∠=︒-︒,FEB PBE t ∠=∠=︒,∵120AEB AEF FEB ∠=∠+∠=︒,∴1802120t t ︒-︒+︒=︒,∴60t =(秒),∴260120MAC ∠=⨯=︒;②设射线AC 的转动时间为t 秒,则如图,作EF //MN //PQ , 此时AC 为达到AN 之后返回途中的图像;与①同理,∴3602MAC t ∠=︒-︒,180QBE t ∠=︒-︒,∵120AEB AEF FEB ∠=∠+∠=︒,∴3602180120t t ︒-︒+︒-︒=︒,解得:120t =(秒);∴360212060MAC ∠=︒-⨯=︒;综合上述,MAC ∠的度数为:120︒或60︒;故答案为:120︒或60︒.【点睛】本题考查了旋转的性质,平行线的性质,解题的关键是熟练掌握所学的知识,正确的分析题意,作出辅助线,运用分类讨论的思想进行解题.13.【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E 作EF ∥AB ,根据AB ∥CD ,得出AB ∥EF ∥CD ,再根据平行线的性质,得出∠B =∠1,∠C =∠2,进而得到∠BEC =∠ABE +∠DCE ;根据∠ABE 和∠DCE 的平分线交点为E 1,则可得出∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC ;同理可得∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ;根据∠ABE 2和∠DCE 2的平分线,交点为E 3,得出∠BE 3C 18=∠BEC ;…据此得到规律∠E n 12n =∠BEC ,最后求得∠BEC 的度数.【详解】如图1,过E 作EF ∥AB .∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠B =∠1,∠C =∠2.∵∠BEC =∠1+∠2,∴∠BEC =∠ABE +∠DCE ;如图2.∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 112=∠ABE 12+∠DCE 12=∠BEC . ∵∠ABE 1和∠DCE 1的平分线交点为E 2, ∴∠BE 2C =∠ABE 2+∠DCE 212=∠ABE 112+∠DCE 112=∠CE 1B 14=∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3, ∴∠BE 3C =∠ABE 3+∠DCE 312=∠ABE 212+∠DCE 212=∠CE 2B 18=∠BEC ; …以此类推,∠E n 12n=∠BEC , ∴当∠E n =1度时,∠BEC 等于2n 度.故答案为:2n .【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.14.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD ∥BC 时.∵AD ∥BC , ∴∠D =∠BCD =30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形: ①如图1中,当AD ∥BC 时.∵AD ∥BC , ∴∠D =∠BCD =30°,∵∠ACE+∠ECD =∠ECD+∠DCB =90°,∴∠ACE =∠DCB =30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.16.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A 1+∠A 2=180∘=1×180∘,如图②中,∠A 1+∠A 2+∠A 3=360∘=2×180∘,如图③中,∠A 1+∠A 2+∠A 3+∠A 4=540∘=3×180∘,…,第n 个图, ∠A 1+∠A 2+∠A 3+…+∠A n+1学会从=n 180︒,故答案为180n ︒.点睛:平行线的性质.17.36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x+3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC ∠EOC72°=36°,然后根据对顶解析:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x +3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC 12=∠EOC 12=⨯72°=36°,然后根据对顶角相等得到∠BOD =∠AOC =36°.【详解】解:设∠EOC =2x ,∠EOD =3x ,根据题意得2x +3x =180°,解得x =36°,∴∠EOC =2x =72°,∵OA 平分∠EOC ,∴∠AOC 12=∠EOC 12=⨯72°=36°, ∴∠BOD =∠AOC =36°.故答案为:36°【点睛】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等.18.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.19.131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵,∴CH ∥PQ ,∴,∵,∴,∵CH ∥MN ,∴,∴故答案为:131.解析:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵//MN PQ ,∴CH ∥PQ ,∴26HCB BGF ∠=∠=︒,∵75ACB ∠=︒,∴49ACH ∠=︒,∵CH ∥MN ,∴49CEN ACH ∠=∠=︒,∴131180CEN AEN ∠︒∠==︒-故答案为:131.【点睛】本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.20.30或150【分析】分两种情况,根据ED ∥AB ,利用平行线的性质,即可得到∠BAD 的度数.【详解】解:如图1所示:当ED ∥AB 时,∠BAD=∠D=30°;如图2所示,当ED ∥AB 时,∠D解析:30或150【分析】分两种情况,根据ED∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图1所示:当ED∥AB时,∠BAD=∠D=30°;如图2所示,当ED∥AB时,∠D=∠BAD=180°,∵∠D=30°∴∠BAD=180°-30°=150°;故答案为:30°或150°.【点睛】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.三、解答题21.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF ∥GH ,∴∠EMN +∠MNG =180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n -1+∠n =(n -1)•180°.故答案为:(n -1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E 点作AB (或CD )的平行线,把复杂的图形化归为基本图形.22.(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPEαβ∠=∠+∠=∠+∠;②当点P在BA延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=β,∠EPD=α,∴CPDβα∠=∠-∠;当P在BO之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=α,∠CPE=β,∴CPDαβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n-. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.24.(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析 【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.25.(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.。
七年级初一数学 第五章 相交线与平行线(讲义及答案)附解析
七年级初一数学第五章相交线与平行线(讲义及答案)附解析一、选择题1.如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角2.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短3.如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是()A.105°B.95°C.85°D.75°4.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是()A.先右转30,后左转60︒B.先右转30后左转60︒C.先右转30后左转150︒D.先右转30,后左转305.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线 B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短6.下列命题中,属于真命题的是()A.同位角相等B.任意三角形的外角一定大于内角C.多边形的内角和等于180°D.同角或等角的余角相等7.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是()A.1个B.2个C.3个D.4个8.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41° 9.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线10.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行二、填空题11.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.12.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).13.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .14.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.15.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.16.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)17.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.19.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.20.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.三、解答题21.已知AB∥CD(1)如图1,求证:∠ABE+∠DCE-∠BEC=180°(2)如图2,∠DCE的平分线CG的反向延长线交∠ABE的平分线BF于F①若BF∥CE,∠BEC=26°,求∠BFC②若∠BFC-∠BEC=74°,则∠BEC=________°22.已知:直线//AB CD,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).23.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.24.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量25.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.26.直线AB ∥CD ,点M ,N 分别在直线AB ,CD 上,点E 为平面内一点.(1)如图①,探究∠AME,∠MEN,∠ENC的数量关系,并说明理由;(2)如图②,∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求∠FEQ的度数;(3)如图③,点G为CD上一点,∠AMN=m∠EMN,∠GEK=m∠GEM,EH∥MN交AB于点H,直接写出∠GEK,∠BMN,∠GEH之间的数量关系(用含m的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据同位角、内错角以及同旁内角的概念解答即可.【详解】解:A.∠B与∠2是BC、DE被BD所截而成的同旁内角,故本选项正确;B.∠A与∠1不是同位角,故本选项错误;C.∠3与∠A是AE、DE被AD所截而成的同旁内角,故本选项正确;D.∠3与∠4是内错角AD、CE被ED所截而成的内错角,故本选项正确;故选:B.【点睛】本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.2.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.3.C解析:C【分析】直接作出BF∥AD,再利用平行线的性质分析得出答案.【详解】解:作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°①,∵∠3+∠4=95°,∴∠1+∠4=95°②,①-②,得∠2-∠1=85°.故选C.【点睛】此题主要考查了平行线的性质,正确得出∠1+∠4=95°,∠2+∠4=180°是解题关键.4.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.5.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.D解析:D【解析】根据平行线的性质,两直线平行,同位角相等,可知A不正确;根据三角形的外角的概念,可知当内角为钝角时,外角即为锐角,故B不正确;根据多边形的内角和为(n-2)·180°,故C不正确;根据同角或等角的余角相等的性质,可知D正确.故选D.7.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.8.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.二、填空题11.65°【分析】由AB//CD可得∠HFD=130︒,再由FE平分∠HFD可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.12.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.13.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 解析:7513【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.14.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 的距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.15.【分析】条直线相交只有一个交点,条直线相交,交点数是,条直线相交,交点数是,即,可写出, 的解.【详解】解:求平面内不过同一点的条直线两两相交的交点个数,可由简入繁, 当2条直线相交时,交点解析:1n -【分析】2条直线相交只有一个交点,3条直线相交,交点数是12+,n 条直线相交,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-,可写出2a , 1n n a a --的解.【详解】解:求平面内不过同一点的n 条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点数只有一个;当3条直线相交时,交点数为两条时的数量+第3条直线与前两条的交点2个,即交点数是12+;同理,可以推导当n 条直线相交时,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-, 212(21)12a ∴=⨯⨯-=, 111(1)(1)(2)122n n a a n n n n n -∴-=----=-, 本题的答案为:1,1n -.【点睛】本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.16.【解析】【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB ∥CD所以,AB ∥CD ∥ IF ∥GK ∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.17.2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=12n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋解析:2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n (n +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n ≤10,设n =7+t (t =1,2,3)代入可得, n (n +1)﹣7p =7m +12t (t +1), 由此可知,停棋的情形与n =t 时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 18.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,,∠2=50°,∴∠1=∠2,∵,∠2=50°,∴α+10°=50°,∴α=4解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.20.48°【分析】将BE 与CD 交点记为点F ,由两直线平行同位角相等得出∠EFC 度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE 与CD 交点记为点F ,∵AB∥CD,∠B=75°解析:48°【分析】将BE 与CD 交点记为点F ,由两直线平行同位角相等得出∠EFC 度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE 与CD 交点记为点F ,∵AB ∥CD ,∠B =75°,∴∠EFC =∠B =75°,又∵∠EFC =∠D +∠E ,且∠E =27°,∴∠D =∠EFC ﹣∠E =75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.三、解答题21.(1)详见解析;(2)①103°;②32°【分析】(1)过E作EF∥AB,根据平行线的性质可求∠B=∠BEF,∠C+∠CEF=180°,进而可证明结论;(2)①易求∠ABE=52°,根据(1)的结论可求解∠DCE=154°,根据角平分线的定义可得∠DCG=77°,过点F作FN∥AB,结合平行线的性质利用∠BFC=∠BFN+∠NFC可求解;②根据平行线的性质即角平分线的定义可求解∠BFC=∠FCE=180°-∠ECG=180°-(90°12∠BEC)=90°+12∠BEC,结合已知条件∠BFC-∠BEC=74°可求解∠BEC的度数.【详解】(1)证明:如图1,过E作EF∥AB,∵AB∥CD,∴DC∥EF,∴∠B=∠BEF,∠C+∠CEF=180°,∴∠C+∠B-∠BEC=180°,即:∠ABE+∠DCE-∠BEC=180°;(2)解:①∵FB∥CE,∴∠FBE=∠BEC=26°,∵BF平分∠ABE,∴∠ABE=2∠FBE=52°,由(1)得:∠DCE=180°-∠ABE+∠BEC=180°-52°+26°=154°,∵CG平分∠ECD,∴∠DCG=77°,过点F作FN∥AB,如图2,∵AB∥CD,∴FN∥CD,∴∠BFN=∠ABF=26°,∠NFC=∠DCG=77°,∴∠BFC=∠BFN+∠NFC=103°;②∵BF∥CE,∴∠BFC=∠ECF,∠FBE=∠BEC,∵BF平分∠ABE,∴∠ABE=2∠FBE=2∠BEC,由(1)知:∠ABE+∠DCE-∠BEC=180°,∴2∠BEC+∠DCE-∠BEC=180°,∴∠DCE=180°-∠BEC,∵CG平分∠DCE,∴∠ECG=12∠DCE=12(180°-∠BEC )=90°-12∠BEC , ∴∠BFC=∠FCE=180°-∠ECG=180°-(90°-12∠BEC )=90°+12∠BEC , ∵∠BFC-∠BEC=74°,∴∠BFC=74°+∠BEC ,即74°+∠BEC=90°+12∠BEC , 解得∠BEC=32°.故答案为:32°.【点睛】 本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 22.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.23.(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【分析】(1)过点P 作PE ∥AD 交CD 于点E ,根据题意得出AD ∥PE ∥BC ,从而利用平行线性质可知α∠=∠DPE ,β∠=∠CPE ,据此进一步证明即可;(2)根据题意分当点P 在A 、M 两点之间时以及当点P 在B 、O 两点之间时两种情况逐一分析讨论即可.【详解】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.24.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°. 【分析】(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP ,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,即得到13∠FNP=180°-∠PMH ,即13∠N+∠PMH=180°. 【详解】(1)证明:∵∠1=∠BEF ,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.25.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=12∠ABC,∠PDC=12∠ADC,∴∠BPD=12∠ABC+12∠ADC=12∠BCD+12∠A.【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.26.(1)∠MEN=∠AME+∠ENC,见解析;(2)∠FEQ=15°;(3)∠BMN+∠GEK-m∠GEH=180°.【分析】(1)过点E作l∥AB,利用平行线的性质可得∠1=∠BME,∠2=∠DNE,由∠MEN=∠1+∠2,等量代换可得结论;(2)利用角平分线的性质可得∠NEF=12∠MEN,∠ENP=12∠END,由EQ∥NP,可得∠QEN=∠ENP=12∠ENC,由(1)的结论可得∠MEN=∠AME+∠ENC,等量代换得出结论;(3)由已知可得∠EMN=1m∠BMN,∠GEN=1m∠GEK,由EH∥MN,可得∠HEM=∠ENM=1m∠AMN,因为∠GEH=∠GEM-∠HEM,等量代换得出结论.【详解】解:(1)过点E作l∥AB,∵AB∥CD,∴l∥AB∥CD∴∠1=∠AME,∠2=∠CNE.∵∠MEN=∠1+∠2,∴∠MEN=∠AME+∠ENC;(2)∵EF平分∠MEN,NP平分∠ENC,∴∠NEF=12∠MEN,∠ENP=12∠ENC.∵EQ∥NP,∴∠QEN=∠ENP=12∠ENC.由(1)可得∠MEN=∠AME+∠ENC,∴∠MEN-∠ENC=∠AME=30°.∴∠FEQ=∠NEF-∠NEQ=12(∠MEN-∠ENC)=12×30°=15°;(3)∠BMN+∠GEK-m∠GEH=180°.理由如下:∵∠AMN=m∠EMN,∠GEK=m∠GEM,∴∠EMN=1m∠AMN,∠GEM=1m∠GEK.∵EH∥MN,∴∠HEM=∠EMN=1m∠AMN.∵∠GEH=∠GEM-∠HEM=1m∠GEK-1m∠AMN,∴m∠GEH=∠GEK-∠AMN.∵∠BMN+∠AMN=180°,∴∠BMN+∠GEK-m∠GEH=180°.【点睛】本题主要考查了平行线的性质,平行公理以及角平分线的定义等知识点,作出适当的辅助线,结合图形等量代换是解答此题的关键.。
初中数学相交线与平行线全集汇编附解析(1)
初中数学相交线与平行线全集汇编附解析(1)一、选择题1.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.2.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D 、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意; 故选:B .【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.3.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.4.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A .80°B .50°C .30°D .20°【答案】D【解析】【分析】【详解】 试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.6.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到根据平行线的性质求出∠3=170∠2的度数.【详解】∵a∥b,∠=︒,∴∠3=170∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55︒,故选:B.【点睛】此题考查平行线的性质,折叠的性质.7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.8.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=o,则1244α-A.14o B.16o C.90α-o D.44o【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.9.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤【答案】D【解析】如图,①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;②∠3和∠5是直线BC 和直线AB 被直线AC 截得的内错角,所以②正确;③∠2和∠6是直线AB 和直线AC 被直线CB 截得的内错角,所以③错误;④∠5和∠2是直线AC 和直线BC 被直线AB 截得的同位角,所以④正确;⑤∠1和∠3是直线BC 和直线AB 被直线AC 截得的同旁内角,所以⑤正确.故答案选D.点睛:(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.10.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30°B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;11.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .【答案】B【解析】略12.如图,直线AB,AB相交于点O,OE,OF为射线,则对顶角有()A.1对B.2对C.3对D.4对【答案】B【解析】【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【详解】图中对顶角有:∠AOC与∠BOD、∠AOD与∠BOC,共2对.故选B.【点睛】本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可13.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.14.A 、B 、C 是直线L 上三点,P 为直线外一点,若PA =2cm ,PB =3cm ,PC =5cm ,则P 到直线L 的距离是( )A .等于2cmB .大于2cmC .不小于2cmD .不大于2cm【答案】D【解析】【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】∵PA=2cm ,PB=3cm ,PC=5cm ,∴PA <PB <PC .∴①当PA ⊥L 时,点P 到直线L 的距离等于2cm ;②当PA 与直线L 不垂直时,点P 到直线L 的距离小于2cm ;综上所述,则P 到直线L 的距离是不大于2cm .故选:D .【点睛】本题考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.15.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.16.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴∴S △ODE =12DE·2∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵2348=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 336a =12a∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】 此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.17.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.18.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.19.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.20.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.。
最新初中数学相交线与平行线难题汇编及解析(1)
最新初中数学相交线与平行线难题汇编及解析(1)一、选择题1.如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠DAE=56°,则∠E的度数为()A.56°B.36°C.26°D.28°【答案】D【解析】分析:根据平行线的性质,可得∠DBC=56°,∠E=∠EBC,根据角平分线的定义,可得∠EBC=12∠DBC=28°,进而得到∠E=28°.详解:∵AE∥BC,∠DAE=56°,∴∠DBC=56°,∠E=∠EBC,∵BE平分∠DBC,∴∠EBC=12∠DBC=28°,∴∠E=28°,故选D.点睛:本题主要考查了角平分线的定义和平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题的关键.2.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A.50°B.55°C.65°D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.3.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D.4.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A .80°B .50°C .30°D .20°【答案】D【解析】【分析】【详解】 试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.5.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.6.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.7.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.8.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.9.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.11.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .12.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.13.如图,直线AB ,AB 相交于点O ,OE ,OF 为射线,则对顶角有( )A.1对B.2对C.3对D.4对【答案】B【解析】【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【详解】图中对顶角有:∠AOC与∠BOD、∠AOD与∠BOC,共2对.故选B.【点睛】本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的反向延长线形成的夹角即可14.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.15.如图,11,,33AB EF ABP ABC EFP EFC∠=∠∠=∠∥,已知60FCD∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.16.如图,△ABC 中,∠C=90°,则点B 到直线AC 的距离是 ( )A .线段ABB .线段AC C .线段BCD .无法确定【答案】C【解析】【分析】直接利用点到直线的距离定义得出答案.【详解】解:如图,三角形ABC 中,∠C=90°,则点B 到直线AC 的距离是:线段BC .故选:C .【点睛】本题考查点到之间的距离,正确把握相关定义是解题关键.17.下列说法中不正确的是( )①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点A .①B .②C .③D .④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .18.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.19.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.20.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.。
初中数学|部编版七下数学-相交线与平行线的知识梳理及例题解析!
初中数学|部编版七下数学-相交线与平行线的知识梳理及例题解析!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为 O⑵垂线性质 1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同 P 到直线 AB 的距离是 PO 的长。
PO 是垂线段。
PO 是点 P 到直线 AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
分析它们的联系与区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.115°B.120°
C.145°D.135°
【答案】D
【解析】
【分析】
由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.
【详解】
在Rt△ABC中,∠A=90°,
【详解】
因为 ,所有AD∥BC,故(1)错误.
因为 ,所以 ∥ ,故(2)正确.
因为 ,所以 ∥ ,故(3)正确.
因为 ,所以 ∥ ,故(4)正确.
所以共有3个正确条件.
故选B
【点睛】
本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.
5.如图,点 分别在 的边 上,点 在 的内部,若 ,则 的度数是()
14.如图,△ABC中,∠C=90°,则点B到直线AC的距离是( )
A.线段ABB.线段ACC.线段BCD.无法确定
【答案】C
【解析】
【分析】
直接利用点到直线的距离定义得出答案.
【详解】
解:如图,三角形ABC中,∠C=90°,则点B到直线AC的距离是:线段BC.
故选:C.
【点睛】
本题考查点到之间的距离,正确把握相关定义是解题关键.
【详解】
解:∵
∴∠ABE+∠CEB=180°,∠BED=
∴∠CEB=130°
∵
∴
设 =k,则∠CEF=6k,∠FEB=7k,
∴6k+7k=130°
∴∠FEB=7k=70°
∴∠DEF=∠FEB+∠BED=120°
∵
∴ =∠DEF=120°
故答案为B.
【解答本题的关键.
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;
B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;
C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;
D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.
故选:D.
【详解】
解:A、平行四边形的对角线互相平分,正确;
B、两直线平行,内错角相等,正确;
C、等腰三角形的两个底角相等,正确;
D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
3.如图,能判定EB∥AC的条件是( )
A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE
【答案】D
【解析】
【分析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
∴∠BOD=∠COE
在△ODB和△OEC中
∴△ODB≌△OEC
∴OD=OE
∴△ODE是顶角为120°的等腰三角形,
∴ 形状不变,故①正确;
过点O作OH⊥DE,则DH=EH
∵△ODE是顶角为120°的等腰三角形
∴∠ODE=∠OED= (180°-120°)=30°
∴OH=OE·sin∠OED= OE,EH= OE·cos∠OED= OE
【详解】
∵a∥b,
∴∠3= ,
∴∠2+∠4=110°,
由折叠得∠2=∠4,
∴∠2= ,
故选:B.
【点睛】
此题考查平行线的性质,折叠的性质.
8.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()
A.2B.4C.5D.7
【答案】A
【解析】
试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.
∴∠2=64°.
故选:A.
【点睛】
本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.
7.如图,将一张矩形纸片折叠,若 ,则 的度数是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据平行线的性质求出∠3= ,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.
∴DE=2EH= OE
∴S△ODE= DE·OH= OE2
∴OE最小时,S△ODE最小,
过点O作OE′⊥BC于E′,根据垂线段最短,OE′即为OE的最小值
∴BE′= BC=
在Rt△OBE′中
OE′=BE′·tan∠OBE′= × =
∴S△ODE的最小值为 OE′2=
∵△ODB≌△OEC
∴S四边形ODBE=S△ODB+S△OBE= S△OEC+S△OBE=S△OBC= BC·OE′=
15.如图, ,点 在 上,点 在 上,如果 , ,那么 的度数为()
A. B. C. D.
【答案】B
【解析】
【分析】
由 可得∠ABE+∠CEB=180°,∠BED= ,即∠CEB=130°,由 可得 ,设 =k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由 可得 =∠DEF即可解答.
考点:垂线段最短.
9.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()
A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°
C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°
【答案】D
【解析】
试题解析:如图,作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∵EF∥AB,
∴∠α+∠AEF=180°,
而OE的最小值为OE′=
∴DE的最小值为 × =
∴ 的周长的最小值为a+ = ,故④正确;
综上:4个结论都正确,
故选A.
【点睛】
此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.
∵ = ×
∴S△ODE≤ S四边形ODBE
即 的面积最小不会小于四边形 的面积的四分之一,故②正确;
∵S四边形ODBE=
∴四边形 的面积始终不变,故③正确;
∵△ODB≌△OEC
∴DB=EC
∴ 的周长=DB+BE+DE= EC+BE+DE=BC+DE=a+DE
∴DE最小时 的周长最小
∵DE= OE
∴OE最小时,DE最小
∵EF∥CD,
∴∠γ=∠DEF,
而∠AEF+∠DEF=∠β,
∴∠α+∠β=180°+∠γ,
即∠α+∠β-∠γ=180°.
故选:D.
10.下列结论中:①若a=b,则 = ;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④| -2|=2- ,正确的个数有( )
【答案】B
【解析】
【分析】
根据平行线的性质和判定,平行线公理及推论逐个判断即可.
【详解】
A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;
B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;
C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;
D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;
∵∠2-∠1=15°,
∴∠2=15°+∠1=65°;
故答案为D.
【点睛】
本题考查角的运算,邻补角的性质,比较简单.
13.下列命题错误的是()
A.平行四边形的对角线互相平分
B.两直线平行,内错角相等
C.等腰三角形的两个底角相等
D.若两实数的平方相等,则这两个实数相等
【答案】D
【解析】
【分析】
根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.
【答案】B
【解析】
略
12.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()
A.37.5°B.75°C.50°D.65°
【答案】D
【解析】
【分析】
先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.
【详解】
)∵∠3=130°,∠1+∠3=180°,
∴∠1=180°-∠3=50°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
A. B. C. D.
【答案】A
【解析】
【分析】
利用平行线定理即可解答.
【详解】
解:根据∠1=∠F,
可得AB//EF,
故∠2=∠A=50°.
故选A.
【点睛】
本题考查平行线定理:内错角相等,两直线平行.
6.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()