八年级上数学期末专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称
14、加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人P在
马路MN上行走,问:当P到A的距离与P到B
的距离之差最大时,这个差等于______米.
15
、如图,△
ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是______
16、等腰三角形的周长为30cm,一边长是12cm,则另两边的长分别是______
17、如图,AA′、BB′分别是∠EAB、∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为
18、如图,△ABC是等边三角形,分别延长CA,AB,BC到A′,B′,C′,使AA′=BB′=CC′=AC,若△ABC的面积为1,则△A′B′C′的面积是______
(第十四题) (第十五题) (第十七题) (第十八题) 5、等边△ABC是边长为1,BD=CD,∠BDC=120°,E、F分别在AB、AC上,且∠EDF=60°,求△AEF的周长。
16、如图,△ABC是等边三角形,延长BC至E,延长BA至F,使AF=BE,连结CF、EF,过点F作直线FD⊥CE于D,试发现∠FCE与∠FEC的数量关系,并说明理由.
17、已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC
于E,求证CT=BE。
B
A
C D E
F
A
C T E B
M
D
18、如图,已知△ABC 中,AD ⊥BC 于D ,∠C=35°,且AB+BD=DC ,求∠B 度数。
19、已知△ABC 中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来。只需画图,不必说明理由,但要在图中标出相等两角的度数)
20、如图1,已知△ABC 中,AB=BC ,∠ABC=90°,把一块含30°角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转。 (1)在图1中,DE 交AB 于M ,DF 交BC 于N 。①证明DM=DN ;
②在这一旋转过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;
(2)旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM=DN 是否仍然成立?请写出结论,不用证明。
21、如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:(1)FC=AD ;(2)AB=BC+AD .
A
B
C
备用图①
A
B
C
备用图②
A
B
C
备用图③
C
A B
D A
D
C N F E
B M 图2
A
D C
F E B M 图3 A D C N F
E B M 图1
22、如图,在Rt△ABC中,∠BAC=90°,AB=3,M为BC上的点,连接AM,如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,求点M到AC的距离.
23、如图,△ABC中,AB=AC,D为BC边的中点,F为CA的延长线上一点,过点F 作FG⊥BC于G点,并交AB于E点,试说明下列结论成立的理由:
(1)AD∥FG;(2)△AEF是等腰三角形.
24、如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,求当BP的长等于多少时,点P与点Q重合?
25、已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.
A B
D
C
E .
34
2
1
D
C B A
18. 则DEB ∆的周长是( )
A. 6cm
B. 7cm
C. 8cm
D. 9 cm
19
20.求证:BF =AC ; (2)求证:CE =
2
BF ;
21.如图,已知在△ABC 中,AB =AC ,D 为BC 上一点,BF =CD ,CE =BD ,那么∠EDF 等于( ) A..90°-∠A B. 90°-
21∠A C. 180°-∠A D. 45°-2
1
∠A
22.(20XX 年绵阳市)如图,△ABC 中,E 、F 分别是AB 、AC 上的点.① AD 平分∠BAC ,② DE ⊥AB ,DF ⊥AC ,③ AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①. (1)试判断上述三个命题是否正确(直接作答); (2)请证明你认为正确的命题.
23.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE
(提示:过B 点作BH ⊥BC 交CE 的延长线于H 点)
24、在Rt △ABC 中,∠B AC =90°,AB=AC ,CE ⊥BD 的延长线于E ,∠1=∠2求证:BD =2CE . (提示:延长BA 交CE 的延长线于F)
25.(20XX 年十堰)如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值为多少?
A
B C D E F 图9 C
D E
A
2
1 A