正弦定理余弦定理综合应用解三角形经典例题老师
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
正弦定理、余弦定理及其应用-高考数学【解析版】
专题24 正弦定理、余弦定理及其应用近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一)正弦、余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则 定理正弦定理余弦定理内容2sin sin sin a b cR A B C=== a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B , c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C =asin A=2R cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2. 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边、或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B C a A=3.余弦定理的变式应用:公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角 (二)三角形常用面积公式 (1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).(三)常用结论 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.三角形中的大角对大边在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 5.海伦公式:()()()()1,2S p p a p b p c p a b c =---=++ 6.向量方法:()()2212S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==- ()()221cos 2S ab ab C ∴=-cos a b ab C ⋅=∴ ()()2212S a b a b =⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 7.三角形内角和A B C π++=(两角可表示另一角).()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-8.三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 BD CD ∴=ADB ADC π∠+∠= cos cos ADB ADC ∴=-∴ ①+②可得:()22222AB AC AD BD +=+(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于EBD BEDC AE∴= EDA DAC ∠=∠ BBEAD 为BAC ∠的角平分线EAD DAC ∴∠=∠ EDA EAD ∴∠=∠EAD ∴为等腰三角形 EA ED ∴= BD BE BEDC AE ED ∴==而由BED BAC 可得:BE ABED AC=AB BDAC CD ∴=(四)测量中的几个常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角,方位角θ的范围是[0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α例:(1)北偏东α:(2)南偏西α:坡角与坡度坡面与水平面所成锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平宽度之比叫坡度(坡比),即i =hl=tan θ135°的始边是指北方向线,始边顺时针方向旋转135°得到终边;方向角南偏西30°的始边是指南方向线,向西旋转30°得到终边.【典型考题解析】热点一 利用正、余弦定理解三角形【典例1】(2021·全国·高考真题(文))在ABC 中,已知120B =︒,19AC 2AB =,则BC =( ) A .1 B 2C 5D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.【典例2】(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3 B .13- C .3或13-D .-3或13【答案】A 【解析】 【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得22sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===, 2sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅=, 22sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A.【典例3】(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ;(2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】 【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出. (1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a c b b c a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.【总结提升】1.解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解 2.解三角形的常见题型及求解方法(1)已知两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =c sin C ,可先求出角C 及b ,再求出c .(2)已知两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)已知三边a ,b ,c ,由余弦定理可求出角A ,B ,C .(4)已知两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B 可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.热点二 三角形面积问题【典例4】(2022·浙江·高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知345,cos 5a c C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】5(2)22. 【解析】 【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及45a c =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积. (1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为45a c =, 由正弦定理知4sin 5A C ,则55sin A C ==(2)因为45a c =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=. 【典例5】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123313S S S B -+==. (1)求ABC 的面积; (2)若2sin sin A C =,求b .【答案】2 (2)12 【解析】 【分析】(1)先表示出123,,S S S ,再由1233S S S -+=2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.(1)由题意得222212313333,,2S a S S =⋅===,则2221233333S S S -+==即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则2122cos 13B ⎛⎫=- ⎪⎝⎭132cos ac B ==12sin 2ABCS ac B ==(2)由正弦定理得:sin sin sin b a c B A C ==,则223294sin sin sin sin sin 42b a c ac B A C A C =⋅===,则3sin 2b B =,31sin 22b B ==. 【规律方法】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 热点三 三角形的周长问题【典例6】(2022·北京·高考真题)在ABC 中,sin 23C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为3ABC 的周长. 【答案】(1)6π(2)663 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长. (1)解:因为()0,C π∈,则sin 0C >32sin cos C C C =, 可得3cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 6322ABCSab C a ===3a = 由余弦定理可得22232cos 4836243612c a b ab C =+-=+-⨯=,23c ∴= 所以,ABC 的周长为36a b c ++=.【典例7】(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14 【解析】 【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. (1)证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+; (2)解:因为255,cos 31a A ==, 由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=. 【规律方法】求边,就寻求与该边(或两边)有关联的角,利用已知条件列方程求解.【典例7】反映的“整体代换”思想,具有一定的技巧性. 热点四 判断三角形的形状【典例8】(2020·海南·高考真题)在①3ac ①sin 3c A =,①3=c b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由. 问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理 由sin 3sin AB 可得:3ab=()3,0a m b m m ==>, 则:22222232cos 323c a b ab C m m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2333ac m m m =⨯==1m ∴=,此时1c m ==. 若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-, 则:213sin 12A ⎛⎫=-- ⎪⎝⎭3sin 3c A m ==,则:23c m ==若选择条件③: 可得1c mb m==,c b =,与条件3=c b 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B ,得5sin 36B B π⎛⎫-= ⎪⎝⎭,即13cos 32B B B =, 得3tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得3a c =. 解得1,3c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得3c =23b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得36a c ==. 所以,选条件②时问题中的三角形存在,此时23c =.若选择条件③:由于3c b 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.【典例9】(2020·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若3b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出;(2)根据余弦定理可得222b c a bc +-=,将3b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=, 解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①, 又3b c -=②, 将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =, 所以3a c =, 故222b a c =+, 即ABC 是直角三角形. 【总结提升】1.判定三角形形状的两种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解. 3.确定三角形要素的条件: (1)唯一确定的三角形:① 已知三边(SSS ):可利用余弦定理求出剩余的三个角② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角 ③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个.由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C =② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个.其原因在于当使用正弦定理求B 时,sin sin sin sin a b b A B A B a =⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一.(判定是否唯一可利用三角形大角对大边的特点)热点五 正弦定理、余弦定理实际应用【典例10】(2021·全国·高考真题(理))魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A.【典例11】(2021·全国·高考真题(理))2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45ACB ∠'''=︒,60A BC ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-3 1.732≈)( )A .346B .373C .446D .473【答案】B 【解析】 【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案. 【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【典例12】(2022·上海·高考真题)如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m²) 【答案】(1)23.3m(2)当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 【解析】 【分析】(1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD ==,在直角HED △和直角FHD △中分别求出,EH HF ,从而得出答案.(2)先求出梯形AEFD 的面积的最小值,从而得出梯形FEBC 的面积的最大值. (1)设EF 与圆D 相切于对点H ,连接DH ,则DH EF ⊥,15DH AD == 则AE EH =,所以直角ADE 与直角HED △全等 所以20ADE HDE ∠=∠=︒在直角HED △中,tan2015tan20EH DH =︒=︒90250HDF ADE ∠=︒-∠=︒在直角FHD △中,tan5015tan50HF AD =︒=︒()sin 20sin5015tan 20tan5015cos20cos50EF EH HF ︒︒⎛⎫=+=︒+︒=+ ⎪︒︒⎝⎭()sin 2050sin 20cos50cos20sin501515cos20cos50cos20cos50︒+︒︒︒︒+︒︒=⨯=⨯︒︒︒︒sin 70151523.3cos 20cos50cos50︒=⨯=≈︒︒︒(2)设ADE θ∠=,902HDF θ∠=︒-,则15tan AE θ=,()15tan 902FH θ=︒- ()115151515tan 15tan 90215tan 222tan 2EFDS EF DH θθθθ⎛⎫=⨯⨯=⎡+︒-⎤=+ ⎪⎣⎦⎝⎭ 11515tan 22ADESAD AE θ=⨯⨯=⨯ 所以梯形AEFD 的面积为215152251tan 30tan 2tan 2tan 222tan ADEDEFS S Sθθθθθ⎛⎫-⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭2251225122533tan 23tan 4tan 4tan 2θθθθ⎛⎫=+≥⨯⨯= ⎪⎝⎭ 当且当13tan tan θθ=,即3tan θ=时取得等号,此时315tan 15538.7AE θ===≈ 即当3tan θ=时,梯形AEFD 2253则此时梯形FEBC 的面积有最大值22531530255.14⨯≈ 所以当8.7AE =时,梯形FEBC 的面积有最大值,最大值为255.14 热点五 平面几何中的解三角形问题【典例13】(2021·浙江·高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,23AM =AC =___________,cos MAC ∠=___________. 【答案】 13239【解析】 【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠. 【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以13AC =在AMC 中,由余弦定理得222239cos 2223213AC AM MC MAC AM AC +-∠=⋅⨯⨯. 故答案为:213239【典例14】(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C (2)2tan 11DAC ∠=.【解析】 【分析】(1)方法一:利用余弦定理求得b ,利用正弦定理求得sin C .(2)方法一:根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值. 【详解】(1)[方法一]:正余弦定理综合法由余弦定理得22222cos 922325b a c ac B =+-=+-⨯=,所以5b = 由正弦定理得sin 5sin sin sin c b c B C C B b =⇒==. [方法二]【最优解】:几何法过点A 作AE BC ⊥,垂足为E .在Rt ABE △中,由2,45c B,可得1AE BE ==,又3a =,所以2EC =.在Rt ACE 中,225AC AE EC =+5sin 5C ==(2)[方法一]:两角和的正弦公式法由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin C C =- 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅325452555⎛⎫=-= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin DAC DAC ∠=-∠=所以sin 2tan cos 11DAC DAC DAC ∠∠==∠. [方法二]【最优解】:几何法+两角差的正切公式法在(1)的方法二的图中,由4cos 5ADC ∠=-,可得4cos cos()cos 5ADE ADC ADC π∠=-∠=-∠=,从而4sin 4sin cos ,tan 5cos 3DAE DAE ADE DAE DAE ∠∠=∠=∠==∠.又由(1)可得tan 2EC EAC AE ∠==,所以tan tan 2tan tan()1tan tan 11EAC EAD DAC EAC EAD EAC EAD ∠-∠∠=∠-∠==+∠⋅∠.[方法三]:几何法+正弦定理法在(1)的方法二中可得1,2,5AE CE AC === 在Rt ADE △中,45,cos sin 3AE AD ED AD ADE ADE ===∠=∠,所以23CD CE DE =-=. 在ACD △中,由正弦定理可得25sin sin CD DAC C AD ∠=⋅=, 由此可得2tan 11DAC ∠=. [方法四]:构造直角三角形法如图,作AE BC ⊥,垂足为E ,作DG AC ⊥,垂足为点G .在(1)的方法二中可得1,2,5AE CE AC ===由4cos 5ADC ∠=-,可得243cos ,sin 1cos 55ADE ADE ADE ∠=∠=-∠.在Rt ADE △中,22542,,sin 333AE AD DE AD AE CD CE DE ADE ==-==-=∠.由(1)知5sin C =Rt CDG △中,222545sin DG CD C CG CD DG =⋅==-=,从而115AG AC CG =-=在Rt ADG 中,2tan 11DG DAG AG ∠==. 所以211DAC ∠=. 【整体点评】(1)方法一:使用余弦定理求得5b =sin C ;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得DAC ∠的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得DAC ∠的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有DAC ∠的直角三角形,进而求解,也是很优美的方法. 【典例15】(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长. 条件①:2c b =;条件②:ABC 的周长为423+ 条件③:ABC 33【答案】(1)6π;(2)答案不唯一,具体见解析. 【解析】 【分析】(1)由正弦定理化边为角即可求解; (2)若选择①:由正弦定理求解可得不存在;若选择②:由正弦定理结合周长可求得外接圆半径,即可得出各边,再由余弦定理可求; 若选择③:由面积公式可求各边长,再由余弦定理可求. 【详解】(1)2cos c b B =,则由正弦定理可得sin 2sin cos C B B =, 23sin 2sin 3B π∴==23C π=,0,3B π⎛⎫∴∈ ⎪⎝⎭,220,3B π⎛⎫∈ ⎪⎝⎭,23B π∴=,解得6B π=;(2)若选择①:由正弦定理结合(1)可得3sin 231sin 2c Cb B=== 与2c b =矛盾,故这样的ABC 不存在; 若选择②:由(1)可得6A π=,设ABC 的外接圆半径为R , 则由正弦定理可得2sin 6a b R R π===,22sin33c R R π=, 则周长23423a b c R R ++==+ 解得2R =,则2,23a c ==由余弦定理可得BC 边上的中线的长度为:()222312231cos76π+-⨯⨯⨯若选择③:由(1)可得6A π=,即a b =,则211333sin 22ABCSab C a ===,解得3a = 则由余弦定理可得BC 边上的中线的长度为:22233212cos 3322342a a b b π⎛⎫+-⨯⨯⨯++⨯= ⎪⎝⎭【总结提升】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系. 具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.【精选精练】一、单选题1.(2022·贵州贵阳·高三开学考试(文))“云楼”是白云区泉湖公园的标志性建筑,也是来到这里必打卡的项目之一,它端坐于公园的礼仪之轴,建筑外形主体木质结构,造型独特精巧,是泉湖公园的“阵眼”和“灵魂”,同时也是泉湖历史与发展变化的资料展示馆.小张同学为测量云楼的高度,如图,选取了与云楼底部D 在同一水平面上的A ,B 两点,在A 点和B 点测得C 点的仰角分别为45°和30°,测得257AB =150ADB ∠=︒,则云楼的高度CD 为( )A .20米B .25米C .7D .257【答案】B【分析】设CD x =,由锐角三角函数得到AD x =,3BD x =,再在ABD △中利用余弦定理求出x ,即可得解.【详解】解:依题意45CAD ︒∠=,30CBD ︒∠=, 设CD x =,在Rt ACD △、Rt BCD 中,tan 1CD CAD AD∠==,3tan 3CD CBD BD ∠==,所以AD x =,3BD x =,在ABD △中由余弦定理2222cos AB AD BD AD BD ADB =+-⋅∠, 即()()22232573232x x x x ⎛⎫=+-⋅⋅- ⎪ ⎪⎝⎭,解得25x =或25x =-(舍去), 所以云楼的高度CD 为25米; 故选:B2.(2022·河南·郑州四中高三阶段练习(文))在ABC 中,角,,A B C 的对边分别为,,a b c ,已知三个向量,cos 2A m a ⎛⎫= ⎪⎝⎭,,cos ,,cos 22B C n b p c ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭共线,则ABC 的形状为( )A .等边三角形B .钝角三角形C .有一个角是6π的直角三角形 D .等腰直角三角形【答案】A【分析】由向量共线的坐标运算可得cos cos 22B Aa b =,利用正弦定理化边为角,再展开二倍角公式整理可得sinsin 22A B=,结合角的范围求得A B =,同理可得B C =,则答案可求. 【详解】向量(,cos )2A m a =,(,cos )2B n b =共线,cos cos 22B A a b ∴=,由正弦定理得:sin cos sin cos 22B A A B =, 2sincos cos 2sin cos cos 222222A A B B B A ∴=,则sin sin 22A B=, 022A π<<,022B π<<,∴22A B =,即A B =.同理可得B C =.ABC ∴形状为等边三角形.故选:A .3.(2022·安徽蚌埠·一模)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即ABC ∠)约为33.65,夏至正午太阳高度角(即ADC ∠)约为80.51.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为( )(已知229tan33.65,tan80.5135≈≈)A .4.36米B .4.83米C .5.27米D .5.41米【答案】C【分析】由题意可求出35,229BC AC CD AC ==,再由BD 的长为7米,求出AC ,即可得出答案. 【详解】由图可知229tan33.65,tan80.5135AC AC BC CD =≈=≈, 所以35,229BC AC CD AC ==, 得3577587 5.272295811BD AC AC AC ⎛⎫=-==⇒=≈ ⎪⎝⎭. 故选:C. 二、多选题4.(2022·吉林·延边第一中学高一期中)下列命题错误的是( ) A .三角形中三边之比等于相应的三个内角之比 B .在ABC 中,若sin sin A B >,则A B >C .在ABC 的三边三角共6个量中,知道任意三个,均可求出剩余三个D .当2220b c a +->时,ABC 为锐角三角形;当2220b c a +-=时,ABC 为直角三角形;当2220b c a +-<时,ABC 为钝角三角形 【答案】ACD【分析】对于ACD ,举例判断,对于B ,利用正弦定理结果合三角形的性质判断.【详解】对于A ,等腰直角三角形的三边比为1:1:2,而三个内角的比为1:1:2,所以A 错误, 对于B ,在ABC 中,当sin sin A B >时,由正弦定理可得a b >,因为在三角形中大边对大角,所以A B >,所以B 正确,对于C ,在ABC 中,若三个角,,A B C 确定,则这样的三角形三边无法确定,这样的三角形有无数个,所以C 错误,对于D ,在ABC 中,2220b c a +->时,由余弦定理可知角A 为锐角,而角,B C 的大小无法判断,所以三角形的形状无法判断,所以D 错误, 故选:ACD5.(2021·黑龙江黑河·高二阶段练习)在ABC 中,已知2,3,AB AC AD ==是角A 的平分线,则AD 的长度可能为( ) A .2.1 B .2.2 C .2.3 D .2.4【答案】ABC【分析】过C 作//CE AB 交AD 延长线于E ,由题设可得3AC EC ==且ADB EDC ,进而有23AD ED =,令2AD x =并在ACE 中应用余弦定理求x 范围,即可得AD 范围. 【详解】过C 作//CE AB 交AD 延长线于E ,又AD 是角A 的平分线,得CAE BAE E ∠=∠=∠,故3AC EC ==, 而ADB EDC ,则23AD AB ED EC ==, 令2AD x =,则5AE x =,在ACE 中,22221825cos (1,1)218AC EC AE x ACE AC EC +--∠==∈-⋅, 可得605x <<,则122(0,)5AD x =∈,故A 、B 、C 满足要求.故选:ABC6.(2022·吉林·长春市第二实验中学高一期末)中国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即222222142c a b S c a ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦S 为三角形的面积,a 、b 、c 为三角形的三边).现有ABC 满足::2:7a b c =ABC 的面积63ABC S =△列结论正确的是( ) A .ABC 的最短边长是2 B .ABC 的三个内角满足2A B C +=C .ABC 221D .ABC 的中线CD 的长为32【答案】BC【分析】依题意设2a t =,3b t =,7c t =(0t >),利用面积公式求出t ,即可求出边长,从而判断A ,再由余弦定理求出C ,即可判断B ,利用正弦定理求出外接圆的半径,即可判断C ,最后由数量积的运算律求出中线CD ,即可判断D.【详解】解:由::2:3:7a b c =,设2a t =,3b t =,7c t =(0t >),因为63ABC S =△,所以2222221749637442t t t t t ⎡⎤⎛⎫+-=+-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦,解得2t =,则4a =,6b =,27c =,故A 错误;因为2221636281cos 22462a b c C ab +-+-===⨯⨯,所以π3C =,π2ππ233A B C +=-==,故B 正确; 因为π3C =,所以3sin 2C =,由正弦定理得4212sin 3c R C ==,2213R =,故C 正确; ()12CD CA CB =+,所以()22111361624619442CD CA CB ⎛⎫=+=⨯++⨯⨯⨯= ⎪⎝⎭,故19CD =,故D 错误.故选:BC . 三、填空题7.(2022·贵州·贵阳乐湾国际实验学校高三开学考试(理))在ABC 中,角A ,B ,C 所对的边分别为,,a b c ,且42c =B =4π,若ABC 的面积S =2,则b =___________. 【答案】5【分析】先由面积公式计算1a =,再利用余弦定理计算5b =. 【详解】由三角形面积公式,1sin 22S ac B ==, 所以,1a =.由余弦定理,2222cos 25b a c ac B =+-=.所以,5b =. 故答案为:5.8.(2022·全国·高三专题练习)在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________. 【答案】等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】由余弦定理,222222cos 2cos 2b c a A bbc a c b B aac+-==+-,化简得22222()()0a b c a b ---=, ∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形. 故答案为:等腰三角形或直角三角形 四、解答题9.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,3sin cos 0a B b A -=.(1)求A ; (2)若3c =3a =ABC 的面积. 【答案】(1)6A π=(2)338【分析】(1)由正弦定理将已知式子统一成角的形式,然后化简可求出角A ; (2)利用余弦定理求出b ,再利用三角形的面积公式可求得结果. (1)因为3sin cos 0a B b A -=所以由正弦定理得3sin sin sin cos A B B A =, 因为()0,B π∈,所以sin 0B ≠, 所以3sin cos A A =,即3tan 3A =, 又因为()0,A π∈,所以6A π=.(2)。
专题4-3 正余弦定理与解三角形小题归类-(解析版)
专题4-3 正余弦定理与解三角形小题归类目录一、热点题型归纳【题型一】正余弦定理 .............................................................................................................................. 2 【题型二】求角 .......................................................................................................................................... 3 【题型三】判断三角形形状 ...................................................................................................................... 4 【题型四】面积与最值 .............................................................................................................................. 6 【题型五】周长与最值 .............................................................................................................................. 8 【题型六】角的最值 .................................................................................................................................. 9 【题型七】最值 ........................................................................................................................................ 11 【题型八】切弦互化求最值 .................................................................................................................... 13 【题型九】解三角形应用题 .................................................................................................................... 14 二、真题再现 ............................................................................................................................................ 17 三、模拟检测 .. (22)正余弦定理(1)正弦定理:a sin A =b sin B =csin C =2R ,其中R 为 外接圆半径 ;注意:正弦定理变式与性质:①边化正弦:a =2R sin A ,b =2R sin B ,c =2R sin C ; ②正弦化边:sin A sin B sin C =c2R ; ③a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;④a +b +csin A +sin B +sin C= 2R ;(2)余弦定理:①a 2=b 2+c 2-2bc cos_A ; ②b 2=c 2+a 2-2ca cos_B ; ③c 2=a 2+b 2-2ab cos_C 注意:变式:①cos A =b 2+c 2-a 22bc;②cos B =c 2+a 2-b 22ac;③cos C =a 2+b 2-c 22ab(3)三角形面积 :①S △ABC =12ab sin C =12bc sin A =12ac sin B =abc4R②S △ABC =12(a +b +c )·r (r 是切圆的半径) 三角形中:①sin(A +B )=sin C ,cos(A +B )=-cos C ;②sinA +B 2=cosC 2, cos A +B 2=sin C2;③三角形中,任何一个角的正弦值恒大于0;④a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .【题型一】正余弦定理【典例分析】(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤ 【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得. 【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B ,又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭, 所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b a c ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D1..(2022·江西·丰城九中高三开学考试(文))已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且656cos a c b C =+,则cos B =( )A .78B .56C .34D .23【答案】B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得cos B . 【详解】由656cos a c b C =+,边化角得6sin 5sin 6sin cos A C B C =+, 又()sin sin A B C =+,所以()6sin 5sin 6sin cos B C C B C +=+, 展开得6sin cos 6cos sin 5sin 6sin cos B C B C C B C +=+,所以6cos sin 5sin B C C =, 因为sin 0C >,所以5cos 6B =.故选:B . 2.(2023·全国·高三专题练习)在ABC 中,60,3,90C AC B ==>,则ba 的可能取值为( ) A .23B .43 C .53D .73【答案】D【分析】通过正弦定理将所求表达式表示为关于A 的三角函数,求出范围即可得结果. 【详解】因为60,3,90C AC B ==>,所以030A <<,0tan A <<1tan A >()1sin sin sin 11222sin sin sin 2tan A AA C bB a A A A A +====>,则b a 的可能取值为73,故选:D. 3.面积(无最值型)【题型二】求角【典例分析】(2022·山西吕梁·三模(文))在ABC 中,内角,,A B C 的对边分别为,,a b c ,若()(),6b c b c ac C π+-==,则B =( ) A .6πB .3π C .2π D .23π 【答案】B【分析】由22b c ac =+结合余弦定理以及正弦定理的边化角公式得出sin 2sin cos sin A C B C -=,再由内角和定理以及三角恒等变换得出B .【详解】由()()b c b c ac +-=得22b c ac =+,结合余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为()()sin 2sin cos sin 2sin cos sin A C B B C C B B C -=+-=-, 所以()sin sin B C C -=,所以B C C -=,得2B C =.因为6C π=,所以3B π=.【变式演练】1.(2022·全国·高三专题练习)已知在ABC中,30,1B a b ===,则A 等于( ) A .45 B .135C .45或135D .120 【答案】C【分析】根据正弦定理,结合三角形中的边角关系,即可求得答案.【详解】由正弦定理sin sina b A B=,得1sin 2sin 12a B Ab ===, 因为1,(0,π)a b A ==∈,故45A =或135, 故选:C2.(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A B C .2D .1【答案】A【分析】根据三角形面积公式及余弦定理化简条件求角C ,由此可求sin 4C π⎛⎫+ ⎪⎝⎭.【详解】因为()22a b c =+-,又in 12s S ab C =,所以222sin 2C ab a b c -=+-,22212a b c C ab +--=,又222cos 2a b c C ab+-=cos 1C C -=,所以1sin 62C π⎛⎫-= ⎪⎝⎭,又()0,C π∈,所以3C π=,所以sin =sin sin cos cos sin 4343434C πππππππ⎛⎫⎛⎫++=+= ⎪ ⎪⎭⎝⎭所以sin 44C π⎛⎫+= ⎪⎝⎭A.3.(2023·全国·高三专题练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,设22(sin sin )sin (2sin B C A B C +=+2sin 0A B -=,则sin C = ( )A .12B C D 【答案】C【分析】根据给定条件利用正弦定理角化边,求出角A ,再求出角B 即可计算作答.【详解】在ABC 中,由22(sin sin )sin (2sin B C A B C +=+及正弦定理得:22()(2b c a bc +=+,即222b c a +-=,由余弦定理得:222cos 2b c a A bc +-==0180A <<,解得135A =,2sin 0A B -=得1sin 2B A ==,显然090B <<,则30B =,15C =,所以6sin sin(6045)sin 60cos 45cos 60sin 454C -=-=-=. 故选:C【题型三】判断三角形形状【典例分析】(2023·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若222a b c -=且cos sin =b C a B ,则ABC 是( ) A .等腰直角三角形 B .等边三角形 C .等腰三角形D .直角三角形【答案】A【分析】由222a b c -=结合余弦定理可求得π4A =,由cos sin =b C a B 结合正弦定理可求得π4C =,从而可判断出三角形的形状【详解】由222a b c -=,得222b c a +-,所以由余弦定理得222cos 2b c a A bc +-===, 因为(0,π)A ∈,所以π4A =,因为cos sin =b C a B ,所以由正弦定理得sin cos sin sin B C A B =,因为sin 0B ≠,所以πcos sin sin 4C A ===,因为(0,π)C ∈,所以π4C =,所以πππππ442B AC =--=--=,所以ABC 为等腰直角三角形, 故选:A【变式演练】1..(2021·广东·高三阶段练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【分析】先依据条件222b c a bc +=+求得π3A =,再利用2sin sin sinBC A =可以求得b c =,从而判断△ABC 的形状是等边三角形【详解】△ABC 中,222b c a bc +=+,则2221cos 222b c a bc A bc bc +-=== 又0πA <<,则π3A =由2sin sin sin B C A =,可得2a bc =,代入222b c a bc +=+则有222b c bc bc bc +=+=,则()20b c -=,则b c = 又π3A =,则△ABC 的形状是等边三角形故选:C2.(2023·全国·高三专题练习)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bA B=,222c a b ab =+-,则ABC ∆是( )A .钝角三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】B【分析】利用正余弦定理可确定边角关系,进而可判定三角形形状.【详解】在ABC ∆中,由正弦定理得sin sin a bA B =,而cos cos a b A B =,△ sin sin cos cos A B A B=,即tan tan A B =,又△A 、B 为ABC ∆的内角,△A B =,又△222c a b ab =+-,△222ab a b c =+-,△由余弦定理得:2221cos 22a b c C ab +-==,△3C π=,△ABC ∆为等边三角形.故选:B.3.(2023·全国·高三专题练习)已知三角形ABC ,则“222cos cos cos 1A B C +->”是“三角形ABC 为钝角三角形”的( )条件.A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 【答案】A【分析】利用同角的三角函数的基本关系式、正余弦定理可判断两个条件之间的推出关系,从而可得正确的选项.【详解】因为222cos cos cos 1A B C +->,故2221sin 1sin 1sin 1A B C -+--+>, 故222sin sin sin C A B >+,故222c a b >+,故222cos 02a b c C ab+-=<,而C 为三角形内角,故C 为钝角,但若三角形ABC 为钝角三角形,比如取2,63C B A ππ===,此时2221cos cos cos 14A B C +-=<,故222cos cos cos 1A B C +->不成立,故选:A.【题型四】面积与最值【典例分析】(2021·江苏·高三课时练习)在锐角三角形ABC 中,cos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C +=,则ABC ∆的面积的最大值为( )AB .C .D .【答案】Ccos 2B B +=结合同角三角函数基本关系,可求出B ,根据正余弦定理由cos cos sin sin 3sin B C A Bb c C +=可得b ,再利用余弦定理及均值不等式求ac 最大值,代入面积公式即可.cos 2B B +=得cos 2B B =,所以2221cos sin 44sin B B B B =+=+-,即2(2sin 0B =,解得sin B =由锐角三角形知3B π=,cos cos sin sin 3sin B C A Bb c C+=, 22222222a c b a b c abc abc +-+-∴+=,即222a abc =b =2222126cos 122a c b ac B ac ac ac+--∴=≥=-,当且仅当a c =时等号成立,解得12ac ≤,11sin 1222ABC S ac B ∆=≤⨯=当且仅当a c =时等号成立,故选:C【变式演练】1.(2020·全国·高三课时练习)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c,b =且ABC ∆面积为222)S b a c --,则ABC ∆面积S 的最大值为( ) A.2 B.4-C.8-D.16-【答案】B【解析】由已知利用三角形的面积公式可求tan B ,可得cos B ,sin B 的值,由余弦定理,基本不等式可求8(23)ac -,根据三角形的面积公式即可求解其最大值. 【详解】解:222331()(2cos )sin12122S b a c ac B ac B =--=-=,tan B ∴=,56B π=,cos B=,1sin 2B =, 又22b =228(23)a c ac =++,88(223ac∴=+, 当且仅当a c =时取等号,111sin 8(24222ABC S ac B ∆∴=⨯⨯=- ∴面积S 的最大值为4-B .2.(2023·全国·高三专题练习)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a bkab +=,则△ABC的面积为22c 时,k 的最大值是( )A .2BC .4D .【答案】B【分析】由三角形的面积公式,可得2sin c ab C =, 根据余弦定理,可得22sin 2cos a b ab C ab C +=+,则整理出以k 为函数值的三角函数,根据三角函数的性质,可得k 的最值.【详解】由题意得21sin 22ABC c S ab C ==,所以2sin c ab C =,又因为2222cos c a b ab C =+-,所以2222cos sin 2cos a b c ab C ab C ab C +=+=+,所以()22sin 2cos a b k C CC abϕ+==++,其中tan 2ϕ=,且0k >, 所以k 的取值范围为(,故选:B. 3.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .4 【答案】C【分析】根据sin 2sin cos 0B C A +=利用三角恒等变换和正余弦定理得到2222b a c =-,再根据余弦定理和基本不等式可得cos B 的范围,由此得B 的范围,从而得到sin B 的最大值,从而根据1sin 2ABC S ac B =可求△ABC 面积的最大值.【详解】sin 2sin cos 0B C A +=,()sin 2sin cos 0A C C A ∴++=,即sin cos cos sin 2sin cos 0A C A C C A ++=, 即sin cos 3cos sin 0A C A C +=,则2222223022b a c b c a a c ab bc+-+-⋅+⨯⨯=,理得2222b a c =-, △2222222223232cos 2244a ca c a cb ac ac B ac ac ac ac -+-+-+====当且仅当a 2=3c 2⇔c =√√3a =√8√3时取等号,π10sin 62B B ⎛⎤∴∈∴ ⎥⎝⎦,,, 则111sin 82222ABCS ac B =⨯⨯=.故选:C .【题型五】周长与最值【典例分析】(2022·全国·高三专题练习)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sin cos 6A A π⎛⎫++ ⎪⎝⎭4b c +=,则ABC ∆周长的取值范围是( )A .[)6,8B .[]6,8C .[)4,6D .[]4,6【答案】A【分析】利用三角函数恒等变换的应用化简已知可得3sin A π+=(),结合A 的范围可求A ,再由余弦定理求得2163a bc =- ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围.【详解】△ sin 6A cos A π⎛⎫++ ⎪⎝⎭12sinA sinA ∴-=可得:3sin A π+=()40333A A ππππ∈+∈(,),(,),2 33A ππ∴+=,解得3A π=,△4b c +=, △由余弦定理可得222222163a bccosA b c bc bc bc =-=+--=-(),△由4b c +=,b c +≥,得04bc ≤<,△2416a ≤<,即24a ≤<.△ABC 周长4[68L a b c a =++=+∈,) .故选:A .【变式演练】1.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sinA +cos(A +π6)=√32,b +c =4,则ABC ∆周长的取值范围是 A .[6,8) B .[6,8] C .[4,6) D .(4,6]【答案】A 【分析】利用三角函数恒等变换的应用化简已知可得sin (A +π3)=√32,结合A 的范围可求A ,再由余弦定理求得a 2=16−3bc ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围. 【详解】△sinA +cos(A +π6)=√32,∴sinA +√32cosA −12sinA =√32,可得:sin (A +π3)=√32,∵A ∈(0,π),A +π3∈(π3,4π3),∴A +π3=2π3,解得A =π3,△b +c =4,△由余弦定理可得a 2=b 2+c 2−2bccosA =(b +c )2−2bc −bc =16−3bc ,△由b +c =4,b +c ≥2√bc ,得0<bc ≤4,△4≤a 2<16,即2≤a <4. △ABC 周长L =a +b +c =a +4∈[6,8) .故选A .2.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinsin 2B Cb a B +=,a =△ABC 周长的最大值为________.【答案】【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故b c +≤b c ==.故△ABC 周长的最大值为a b c ++故答案为:3.(2022·全国·高三专题练习)在三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin Aa ==,则该三角形周长的最大值为___________.【分析】利用正弦定理化简式子,求出tan B 的值,进而求出B 的大小,由余弦定理结合基本不等式即可求出a c +≤.【详解】由正弦定理变形有:sin sin A B a b =,又因为sin A a ==sin B B =,则tan 3B B π=2=1b ===又因为()()()()222222212cos 3344a cb ac ac B a c ac a c a c +=+-=+-≥+-⋅=+,所以()2264464a cb ac +≤=⨯=⇒+≤ “a c =”时取等.则该三角形周长的最大值为a b c ++==.【题型六】角的最值【典例分析】(2022·全国·高三专题练习(理)(文))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2c sin C =(a +b )(sin B -sin A ),则当角C 取得最大值时,B =( ) A .3π B .6πC .2π D .23π【答案】D 【分析】利用正弦定理化简已知条件,结合余弦定理与基本不等式求得C 的最大值,再通过三角形的形状,即可求得此时对应的B .【详解】由正弦定理得2c 2=(a +b )(b -a ),即b 2-a 2=2c 2.又cos C =2222a b c ab +-=2234a b ab +当且仅当3a 2=b 2,即b 时,cos C C 取到最大值6π.当b 时,3a 2-a 2=2c 2,则a =c .所以A =C =6π,从而B =π-A -C =23π.故选:D .【变式演练】1.(2022·安徽淮南·一模(文))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()322213f x x bx a c x =+++无极值点,则角B 的最大值是( )A .34πB .2πC .4π D .6π【答案】A【分析】由题知()()22220f x x bx a c '=+++=无解或有两个相等的解,即()()222240b a c ∆=-+≤,再由余弦定理得角B 的范围.【详解】解:因为()()322213f x x bx a c x =+++无极值点,所以()()22220f x x bx a c '=+++=无解或有两个相等的解,所以()()222240b a c ∆=-+≤,所以222cos 2a c b B ac +-=≥,因为()0,B π∈,所以304B π<≤.故选:A2. 2.(2022·全国·江西师大附中模拟预测(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2sin sin sin a A c C b B +=,则角A 的最大值为( )A .π6B .π4C .π3D .2π3【答案】A【分析】根据正弦定理先将角化边,再运用余弦定理和基本不等式得到cos A 的范围进而得到最后的结果 【详解】因为2sin sin sin a A c C b B += 所以2222a c b +=,进而可得2222a b c =-2222222221()32cos 224b c b c b c a b c A bc bc bc+--+-+===因为223b c +≥=,当且仅当b =时等号成立所以cos A ≥=又因为(0,)A π∈所以角A 的最大值为6π故选:A3.已知锐角△ABC 中,角、、A B C 对应的边分别为a b c 、、,△ABC的面积)222S a b c =+-,若24)tan bc a b B -=(, 则c 的最小值是ABCD【答案】C 【详解】分析:利用余弦定理列出关系式,代入已知等式中,并利用三角形面积公式化简求出C 的度数,再对24)tan bc a b B -=(进行化简整理,最后利用基本不等式求得.详解:)2221cos sin 2S a b c C ab C =+-==,即tan C =,6C π∴=.又A B C π++=,56A B π∴+=,又△ABC 为锐角三角形,∴025062B B πππ<<<-<,解得32B ππ<<, ∴)tan B ∈+∞,又24)tan bc a b B -=(,5sin 24246tan 242424242424sin sin B bc a a sinA B c c c b b B Bπ⎛⎫- ⎪-⎝⎭∴==-=-=-, 即1tan 24242tan B c B ⎛=- ⎝⎭1224tan tan c B B ∴-+≥=,当且仅当12tan tan B B =,即tan B =.24c ∴-≥c ≥故选C.【题型七】最值【典例分析】在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则22a cca c ac a +++的最小值为( )A .12B .2C .14D .4 四川省成都市成都市石室中学2020-2021学年高三下学期期中数学试题 【答案】A【分析】由1sin 2ABC S ac B =△可解得4ac =,结合基本不等式,知24a c ac +=;经过变形化简可将原式整理为222()2()a c a c ac ca c ac a ac a c +-+=+++,令t a c =+,则[4t ∈,)+∞,2818()()44t f t t t t-==-,结合函数的单调性即可得解.【详解】由1sin 2ABC S ac B =△可知,11122ac =⨯,解得4ac =,由基本不等式得,24a c ac +=.22222()2()()()()a c a c a c a c acca c ac a c a c a c a ac a c ac a c ++-+=+==++++++, 令t a c =+,则[4t ∈,)+∞,∴222818()()44a c t f t t ca c ac a t t-+===-++,在[4,)+∞上单调递增, ()min f t f ∴=(4)12=,即22a c ca c ac a +++的最小值为12. 故选:A .【变式演练】1..锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2sinA(acosC +ccosA)=√3a ,则cb 的取值范围是( ) A .(12,2)B .(√33,2√33)C .(1,2)D .(√32,1)【答案】B【分析】根据正弦定理,结合2sinA(acosC +ccosA)=√3a 可求得角B .又由三角形为锐角三角形,求得角C 的取值范围,即可求解.【详解】由正弦定理得,2sinA(sinAcosC +sinCcosA)=√3sinA ⇒sin(A +C)=√32⇒B =π3又∵A,C ∈(0,π2)∴π6<C <π2⇒12<sinC <1⇒c b=sinC sinB=2√33sinC ∈(√33,2√33) 故选B.2.在锐角ABC ∆中,A =2B ,则ABAC 的取值范围是A .(−1,3)B .(1,3)C .(√2,√3)D .(1,2)【答案】D【分析】根据在锐角ABC ∆中,每个角都是锐角确定B 的范围,利用正弦定理以及三倍角的正弦公式,化简表达式,求出范围即可.【详解】在锐角ABC ∆中,{0<2∠B <π20<∠B <π20<π−3∠B <π2可得π6<∠B <π4,cosB ∈(√22,√32),cos 2B ∈(12,34),所以由正弦定理可知AB AC=cb =sinC sinB=sin3B sinB=3sinB−4sin 3BsinB=3−4sin 2B =4cos 2B −1∈(1,2),故选D.3.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S,若222c a b S --b a 的取值范围为A .(0,+∞)B .(1,+∞) C .(0D.)+∞【答案】A 【分析】根据222c a b S --=2222a b c C ab +-=,可得cos C C =,可得tan C =可得23C π=,再利用正弦定理可得sin sin b B a A =,12,根据A 的范围可得答案.【详解】由222c a b S --=得2221sin2a b c ab C +-= ,所以2222a b c C ab +-=,所以cos C C =,所以tan C =又0C π<<,所以23C π=, 所以sin()sin cos cos sin )sin 333sin sin sin A A A b B a A A A πππ--===1sin 122sin 2A AA -=,因为03A π<<,所以0tan A <<所以1tan A >所以102b a >=, 所以ba 的取值范围为(0,)+∞.故选:A【题型八】切弦互化求最值【典例分析】ABC 中,角,,A B C 的对边长分别为a,b,c ,若acosB −bcosA=35c ,则tan (A −B )的 最大值为 ( )A .43B .1C .34D 【全国百强校】黑龙江省鹤岗市第一中学2019届高三上学期第二次月考数学(理)试题 【答案】C 【分析】利用正弦定理,将已知等式化简整理得sinAcosB =4sinBcosA ,两边同除以cosAcosB ,得到tanA =4tanB ,利用两角差的正切公式,得tan (A −B )=31tanB+4tanB,最后利用基本不等式求最值 . 【详解】∵acosB −bcosA =35c ,∴结合正弦定理与sinC =sin (A +B ),可得sinAcosB −sinBcosA =35(sinAcosB +cosAsinB ),整理得sinAcosB =4sinBcosA , 同除以cosAcosB ,得tanA =4tanB ,由此可得tan (A −B )=tanA−tanB 1+tanAtanB =3tanB 1+4tan 2B =31tanB+4tanB ,∵A,B 是三角形内角,且tan A 与tan B 同号,∴A,B 都是锐角,即tanA >0,tanB >0,∴tan (A −B )=31tanB+4tanB ≤34,当且仅当1tanB=4tanB ,即tanB =12时,tan (A −B )的最大值为34,故选C.【变式演练】1.在ABC ∆中,若111tan tan tan B C A+=,则cos A 的取值范围为 A .20,3⎛⎤ ⎥⎝⎦B .2,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,13⎡⎫⎪⎢⎣⎭【答案】B 【详解】分析:由已知等式正切化为弦,可得2sin cos sin sin AA B C=,结合正弦定理、余弦定理以及基本不等式求得cos A的最小值,从而可得结果.详解:111tan tan tan B C A +=,cos cos cos sin sin sin B C A B C A ∴+=,可得sin cos cos sin sin cos sin sin sin sin sin C B C B A A B C B C A +==, 2sin cos sin sin A A B C ∴=,又22,cos sin sin sin a b c a R A A B C bc ====,22222b c a a bc bc+-∴=,可得2223a b c =+,222222222223cos 22333b c b c b c a b c bc A bc bc bc bc ++-+-+∴===≥=,cos A ∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选B. 2.在ABC 中,,,a b c 分别是角,,A B C 的对边,若a 2+b 2=2014c 2,则2tanA⋅tanBtanC(tanA+tanB)的值为A .2013B .1C .0D .2014【答案】A 【分析】由a 2+b 2=2014c 2,利用余弦定理可得a 2+b 2﹣c 2=2013c 2=2abcosC .利用三角函数基本关系式和两角和的正弦公式、正弦定理可得2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2即可得出.【详解】△a 2+b 2=2014c 2,△a 2+b 2﹣c 2=2013c 2=2abcosC . △2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2=2013.故答案为:A3.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若ABC ∆为锐角三角形,且满足22b a ac -=,则1tanA−1的取值范围是A .⎛ ⎝⎭B .(1,√2)C .(2√33,√2) D .(1,+∞)【答案】A根据余弦定理以及正弦定理化简条件得A 、B 关系,再根据二倍角正切公式以及函数单调性求范围. 【详解】因为b 2−a 2=ac ,所以c 2−2accosB =ac ∴c −2acosB =a ∴sinC −2sinAcosB =sinA,sin(A +B)−2sinAcosB =sinA,∴sin(B −A)=sinA ∴B −A =A,B =2A因此1tanA−1tanB=1tanA−1tan2A=1tanA−1−tan 2A 2tanA=1+tan 2A 2tanA=12(tanA +1tanA), 因为ΔABC 为锐角三角形,所以0<A <π2,0<B =2A <π2,0<C =π−B −A =π−3A <π2∴π6<A <π4,√33<tanA <1因为y =12(x +1x )在(√33,1)上单调递减,所以1tanA−1tanB∈(1,2√33),选A.【题型九】解三角形应用题【典例分析】(2022·江苏·高三课时练习)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 【答案】D【分析】由题可得,20BC =,过P 作PP BC '⊥,交BC 于P ',连接'AP ,则tan PP AP θ'=',设(0)BP x x '=>,分类讨论,若P '在线段BC 上,则20CP x '=-,可求出PP '和'AP ,从而可得出2320tan 225xx θ-=+,利用函数的单调性,可得出0x =时,取得最大值;若P '在CB 的延长线上,同理求出PP '和'AP ,可得出220tan 225x x θ+=+454x =时,函数取得最大值;结合两种情况的结果,即可得出结论.【详解】解:15,25AB cm AC cm ==,AB BC ⊥,由勾股定理知,20BC =,过点P 作PP BC '⊥交BC 于P ',连结'AP ,则tan PP AP θ'=',设(0)BP x x '=>,若P '在线段BC 上,则20CP x '=-,由30BCM ∠=︒,得tan30)PP CP x ''=︒-,在直角ABP '△中,AP '220tan 225x x θ-∴+令y =,则函数在[0x ∈,20]单调递减,0x ∴=时,;若P '在CB 的延长线上,tan30)PP CP x ''=︒+,在直角ABP '△中,AP '220tan 225xx θ+∴+22(20)225x y x +=+,则0y '=可得454x =. 故答案为:539.【变式演练】1.(2022·全国·高三课时练习)如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .)201千米B .)401千米C .)201D .)401【答案】D【分析】使用余弦定理及基本不等式,得到(22AB ab ≥,使用正弦定理及三角恒等变换得到ab ≥AB 的最短距离. 【详解】在ABC 中,135AOB ∠=︒,设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα=︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.在一座尖塔的正南方地面某点A ,测得塔顶的仰角为2230'︒,又在此尖塔正东方地面某点B ,测得塔顶的仰角为6730︒',且A ,B 两点距离为540m ,在线段AB 上的点C 处测得塔顶的仰角为最大,则C 点到塔底O 的距离为( ) A .90m B .100m C .110m D .270m 【答案】A 【分析】作出图示,根据正切的二倍角公式和解直角三角形求得塔的高度,再运用等面积法可求得选项. 【详解】如下图所示,设,,OC z OA x OB y ===,则222540x y +=,22.5,67.5OAP OBP ∠=∠=,则22tan 22.5tan 4511tan 22.5==-,解得tan 22.521=,22tan 67.5tan13511tan 67.5==--,解得tan 67.52+1=,所以222540+=,解得z =所以1x ==)y ==要使点C 处测得塔顶的仰角为最大,则需tan PCO ∠最大,也即需OC 最小,所以OC AB ⊥,又1122ABOSOA OB AB OC =⨯⨯=⨯⨯,即(90540OA OB OC AB ⨯===, 所以C 点到塔底O 的距离为90m ,故选:A.3..某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4米,沿AC 折叠使B 到B′位置,AB′交DC 于P ,研究发现,当ΔADP 的面积最大时最节能,则最节能时ABCD 的面积为A .3−2√2B .C .2(√2−1)D .2【答案】C 【分析】本题可以先通过设AB 、DP 分别为x 、y ,再通过题目所给信息以及AD 2+DP 2=PA 2得出x 、y 之间的关系,然后通过ΔADP 的面积列出算式,当其最大时求出AB 的值,最后得出结果. 【详解】设AB 为x ,DP 为y ,因为四边形ABCD 是周长为4的长方形,AB 为x 所以AD 为2−x ,DC 为x , 因为DP 为y ,所以PC 为x −y , 由题意可知,PC =PA ,所以有AD 2+DP 2=PA 2,即(2−x )2+y 2=(x −y )2,化简得y =2−2x , 所以S ΔADP =12(2−x )(2−2x ),化简得S ΔADP =3−(2x +2),所以当x =√2时ΔADP 面积最大,此时S ABCD =√2(2−√2)=2(√2−1),故选C .1.(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos c B A =,则tan A 等于( )A .3B .13-C .3或13- D .-3或13【答案】A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案;【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===,sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅,sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A.1 B C D .3 【答案】D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.3.(2020·全国·高考真题(文))在△ABC 中,cos C =2,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C4.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B AA-的值为( )A .19B .13 C .1 D .72【答案】D【分析】根据正弦定理边化角求解即可.【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D5.(2020·全国·高考真题(理))在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23【答案】A【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =.故选:A.6.(2019·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A .6B .5C .4D .3 【答案】A【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,46422422b c a c c c b A bc bc c +---==∴=-∴=∴=⨯=,故选A .7.·湖南·高考真题(文))在△ABC 中,,BC=2,B =60°,则BC 边上的高等于A B C D 【答案】B2sin 60sin A A A =⇒==所以sin sin()sin cos cos sin C A B A B A B =+=+=则BC 边上的高h C ===,应选答案B .点睛:解答本题的思路是先运用正弦定理求出cos A ,再运用两角和的正弦公式求得sin C =,再解直角三角形可求得三角形的高h C =,从而使得问题获解.8.(2018·全国·高考真题(理))ABC 的内角A B C ,,的对边分别为a ,b ,c ,若ABC 的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π6【答案】C【详解】分析:利用面积公式12ABC S absinC =和余弦定理2222a b c abcosC +-=进行计算可得.详解:由题可知222124ABC a b c S absinC +-==所以2222absinC a b c +-=由余弦定理2222a b c abcosC +-=所以sinC cosC =()C 0,π∈C 4π∴=故选C.9.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =a ,b ,c 是三角形的三边,S是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【分析】根据题中所给的公式代值解出.【详解】因为S =S10.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1##-【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44≥=- 当且仅当311m m+=+即1m =时,等号成立,所以当ACAB取最小值时,31m =-.故答案为:31-.11.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________【分析】运用正弦定理及余弦定理可得解.【详解】根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,得BC =△ABC 3sin 3=.故答案为 12.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 60B =︒,223a c +=,则b =________. 【答案】【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,1sin 2ABC S ac B ==,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =.故答案为:13.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185或0 【分析】根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+- ⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】△,,A D P 三点共线,△可设()0PA PD λλ=>,△32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,△32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线,△321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=,△9AP =,△3AD =,△4AB =,3AC =,90BAC ∠=︒,△5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.△根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,△()cos cos 0θπθ+-=,△()()2570665x x x --+=-,解得185x =,△CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185. 14.(2020·全国·高考真题(理))如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB △AC ,AB △AD ,△CAE =30°,则cos△FCB =______________.【答案】14-【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC ,同理得BD BF BD ∴==ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.15.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】34π.【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D .【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.(2019·全国·高考真题(理))ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC的面积为__________.【答案】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得c c ==-2a c ==11sin 22ABC S ac B ∆==⨯=1.(2022·江西·模拟预测(文))在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足1cos A A +=,sin 6cos sin A B C =,则bc的值为( )A .1B .1+C .1+D .1+【答案】A【分析】由题设化简1cos A A +=可得120A =︒,余弦定理结合sin 6cos sin A B C =可得(1b c =,即可得出答案.【详解】由题设可得22sin cos 222A A A =,即tan 2A ,则120A =︒,故由余弦定理可得222a b c bc =++;。
解三角形经典例题及解答
知识回顾:4、理解定理(1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ;(2)」 b J 等价于 ______________________sin A sin B sin C(3) 正弦定理的基本作用为:正弦、余弦定理1、直角三角形中,角与边的等式关系:在Rt ABC 中,设 BC=a ,AG=b , AB=c ,根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 cc c 角形ABC 中,-?-sin A b sin Bc si nC2、当ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义,有 CD=asinB bsinA ,则 一-b,同理可得一sin A sin B sin Cb sin B从而」-sin A b sin Bc sin C3、正弦定理:在一个三角形中,各边和它所对角的____ 的比相等,即旦sin A b sin Bc sin Cc b a csin C sin B ' sin A sin C① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; bsin B② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 sin A a sin B ; sinC.b(4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形•5、知识拓展6、 勾股定理: ___________________________________7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 ___________________________ 的两倍,即a 2b 2 8、余弦定理的推论:cosC ____________________________ 。
正弦定理和余弦定理综合应用
BC
a sin
a sin
sin 180o ( ) sin( )
α
δ
β
γ
D
C
计算出AC和BC后,再在ABC中,应用余弦定理计
算出AB两点间的距离
AB AC2 BC2 2AC BC cos
测量垂直高度
1、底部可以到达的
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
借助于余弦定理可以计算出A、B两点间的距离。
C
解:测量者可以在河岸边选定两点C、D,测得CD=a, 并且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
B
a sin( )
a sin( ) A
AC
sin 180o ( ) sin( )
故sin B AC sin A 5 3 B 38o
BC 14
故我舰航行的方向为北偏东 50o 38o 12o
变式训练1:若在河岸选取相距40米的C、D两
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
注:阅读教材P12,了解基线的概念
1.2.1 应用举例
公式、定理
正弦定理:a b c 2R sin A sinB sinC
余弦定理:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
三角形边与角的关系:
cos A b2 c2 a2 , 2bc
cos B c2 a2 b2 , 2ca
即sin9A0C°-α=sinBαC-β,∴AC=sBinCαco-s βα=sihncαo-s αβ. 在Rt△ACD中,CD=ACsin∠CAD=ACsin β=hscionsαα-sinββ.
(完整版)正弦定理、余弦定理综合应用典型例题
正弦定理、余弦定理综合应用例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭. 3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.例2.已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-= 22()2122AC BC AC BC AB AC BC +--==, 所以60C =.例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.例4.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求ac的值;解:由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-= 故3a c =例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 . 612例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________________.3例7.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则b =【解析】0000000sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得sin 2sin a b B A =⋅=, 例8.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 2 ,AC 的取值范围为 (2,3) .解: 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈例9.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。
解三角形经典例题
解三角形1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在ABC中,已知A:B:C=1:2:3,求a :b :c.【点拨】本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC中,已知c=+,C=30°,求a+b的取值范围。
【点拨】此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。
解:∵C=30°,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150°-A).∴a+b=2(+)[sinA+sin(150°-A)]= 2(+)·2sin75°·cos(75°-A)=cos(75°-A)1 当75°-A=0°,即A=75°时,a+b取得最大值=8+4;2 ∵A=180°-(C+B)=150°-B,∴A<150°,∴0°<A<150°,∴-75°<75°-A<75°,∴cos75°<cos(75°-A)≤1,∴>cos75°=×=+.综合①②可得a+b的取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,·tanB=·tanA,判断三角形ABC的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,.∴为等腰三角形或直角三角形。
【解题策略】“在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。
解三角形 正弦定理和余弦定理复习学案教师版
第 1 页解三角形正弦定理和余弦定理复习学案一、正、余弦定理解三角形的基本问题例1 在△ABC 中,(1)已知a =3,b =2,B =45°,求A 、C 、c ;(2)已知sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10,求最大角.点拨 (1)已知两边及其中一边对角,先利用正弦定理求出角A ,再求其余的量. (2)先由sin A ∶sin B ∶sin C =a ∶b ∶c ,求出a ∶b ∶c ,再由余弦定理求出最大角.解 (1)由正弦定理及已知条件有3sin A =2sin 45°,得sin A =32,∵a >b ,∴A >B =45°,∴A =60°或120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =2sin 75°sin 45°=6+22,当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =2sin 15°sin 45°=6-22(2)根据正弦定理可知a ∶b ∶c =sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10, ∴边c 最大,即角C 最大.设a =(3+1)k ,b =(3-1)k ,c =10k ,则cos C =a 2+b 2-c 22ab =(3+1)2+(3-1)2-(10)22(3+1)(3-1)=-12.∵C ∈(0,π),∴C =2π3回顾归纳 已知三角形的两边和其中一边的对角,应用正弦定理解三角形时,有时可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.►变式训练1 (1)△ABC 中,AB =1,AC =3,∠C =30°,求△ABC 的面积;(2)已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积.若a =4,b =5,S =53,求c 的长度.解 (1)1sin 30°=3sin B ,∴sin B =32,∴B =60°或120°,当B =60°时,A =90°,∴BC =2,此时,S △ABC =32.当B =120°时,A =30°,∴S △ABC =12×3×1×sin 30°=34.综上,△ABC 的面积为32或34.(2)∵S =12ab sin C ,∴sin C =32,于是C =60°或C =120°.当C =60°时,c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =21,∴c =21;当C =120°时,c 2=a 2+b 2-2ab cos C =a 2+b 2+ab =61, ∴c =61.∴c 的长度为21或61. 二、正、余弦定理在三角形中的应用例2 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长.已知b 2=ac 且a 2-c 2=ac -bc .第 2 页(1)求∠A 的大;(2)求b sin Bc 的值.点拨 (1)利用cos A =b 2+c 2-a22bc 求解;(2)利用正弦定理对代数式b sin Bc进行转化.解 (1)∵b 2=ac 且a 2-c 2=ac -bc ,∴a 2-c 2=b 2-bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12,∴A =60°.(2)方法一 在△ABC 中,由正弦定理得:sin B =b sin A a ,∵b 2=ac ,∴b a =cb.∴sin B =b sin A a =c ·sin A b ,∴b sin B c =sin A =sin 60°=32.方法二 在△ABC 中,由面积公式得:12bc sin A =12ac sin B∵b 2=ac ,∴bc sin A =b 2sin B ,∴b sin B c =sin A =sin 60°=32.回顾归纳 (1)在三角形的三角变换中,正、余弦定理及勾股定理是解题的基础.如果题目中同时出现角及边的关系,往往要利用正、余弦定理化成仅含边或仅含角的关系.(2)要注意利用△ABC 中A +B +C =π,以及由此推得的一些基本关系式:sin(B +C )=sinA ,cos(B +C )=-cos A ,tan(B +C )=-tan A ,sin B +C 2=cos A2等,进行三角变换的运算.►变式训练2 在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求∠A 的度数;(2)若a =3,b +c =3,求b 、c 的值.解 (1)∵B +C =180°-A ,∴B +C 2=90°-A2.由4sin 2B +C 2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2 A -1)=72.整理得4cos 2A -4cos A +1=0.∴cos A =120°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理得cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12.∴b 2+c 2-a 2=bc ,∵a =3,∴b 2+c 2-bc =3.又b +c =3,∴b 2+c 2+2bc =9,∴bc =2.由⎩⎪⎨⎪⎧ b +c =3bc =2,解得⎩⎪⎨⎪⎧ b =1c =2或⎩⎪⎨⎪⎧b =2c =1. 三、正、余弦定理在实际问题中的应用例3 A 、B 、C 是一条直路上的三点,AB =BC =1 km ,从这三点分别遥望一座电视发射塔P ,A 见塔在东北方向,B 见塔在正东方向,C 见塔在南偏东60°方向.求塔到直路的距离.解如图所示,过C、B、P分别作CM⊥l,BN⊥l,PQ⊥l,垂足分别为M、N 、Q.设BN=x,则PQ=x,PA=2x.∵AB=BC,∴CM=2BN=2x,PC=2x.在△PAC中,由余弦定理得AC2=PA2+PC2-2PA·PC·cos 75°,即4=2x2+4x2-42x2·624-,解得x2=2(43)13+,过P作PD⊥AC,垂足为D,则线段PD的长为塔到直路的距离.在△PAC中,由于12AC·PD=12PA·PC·sin 75°,得PD020sin7522sin752P A P C xAC⋅⋅⋅==,=2(43)62753213413+++⋅⋅=(km).答塔到直路的距离为75313+km.回顾归纳(1)解斜三角形应用题的程序是:①准确地理解题意;②正确地作出图形(或准确地理解图形);③把已知和要求的量尽量集中在有关三角形中,利用正弦定理和余弦定理有顺序地解这些三角形;④根据实际意义和精确度的要求给出答案.(2)利用解斜三角形解决有关测量的问题时,其关键在于透彻理解题目中的有关测量术语.►变式训练3如图所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,设乙船按方位角为θ的方向沿直线前往B处救援,求sin θ的值.解在△ABC中,AB=20,AC=10,∠BAC=120°,由余弦定理知:BC2=AB2+AC2-2AB·AC·cos 120°=202+102-2×20×10×12⎛⎫-⎪⎝⎭=700.∴BC=107第3 页第 4 页由正弦定理得sin sin A B B C A C B B A C=∠∠,∴sin ∠ACB=A B B C·sin ∠BAC=·sin 120°=7.∴cos ∠ACB=7.∴sin θ=sin(∠ACB+30°)=sin ∠ACB ·cos 30°+cos ∠ACB ·sin 30°=7×2+7×12=14,.课堂小结:1.正弦定理揭示了三角形的两边和对角的关系,因此,可解决两类问题: (1)已知两角和其中任一边,求其他两边和一角,此时有一组解. (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他解,其解不确定. 2.余弦定理揭示了三角形中两边及其夹角与对应边的关系,是勾股定理的推广,它能解决以下两个问题:(1)已知三边,求其他三角,其解是唯一的.(2)已知两边及它们的夹角,求第三边及其他两角,此时也只有一解.3.正、余弦定理将三角形的边和角有机地联系起来,从而使三角形与几何产生了联系,为求与三角形有关的量(如面积、外接圆、内切圆)提供了理论基础,也是判断三角形形状、证明三角形中有关等式的重要依据.课后作业一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45° D .以上答案都不对答案 C 解析 sin B =b ·sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 答案 C 解析 cos A cos B >sin A sin B ⇔cos(A +B )>0,∴A +B <90°,∴C >90°,C 为钝角.3.(2008·福建)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3答案 D 解析 ∵(a 2+c 2-b 2)tan B =3ac , ∴a 2+c 2-b 22ac ·tan B =32,即cos B ·tan B =sin B =32.∵0<B <π,∴角B 的值为π3或2π3.4.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49第 5 页答案 D 解析 S △ABC =12AC ×AB ×sin 60°=12×16×AB ×32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ×AC cos 60°=552+162-2×16×55×12=2 401∴BC =49.5.(2012·广东东莞模拟)△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3.其中正确的个数为( )A .1B .2C .3D .4答案 A 解析 ①由a 2>b 2+c 2知A 为钝角,①正确;②由a 2=b 2+c 2+bc 知A =120°,②错;③由a 2+b 2>c 2,仅能判断C 为锐角,A 、B 未知,③错;④由A ∶B ∶C =1∶2∶3,知A =π6,B =π3,C =π2,∴sin A ∶sin B ∶sin C =12∶32∶1=1∶3∶2,④错.所以仅①正确.二、填空题6.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦是方程5x 2-7x -6=0的根,则此三角形的面积是________.答案 6 cm 2解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35得sin θ=45,∴S =12×3×5×45=6 (cm 2).7.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A=______.答案 2393.解析 由S =12sin A =121×c ×32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2×1×4cos 60°=13.∴a sin A =13sin 60°=2393. 8.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________.解析 如图所示,sin 45sin 30BCAC =,∴BC=sin 30A C ×sin 45°=20122⨯, (km).9.(2012·广东广州一模)已知△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,且a =2,第 6 页cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45由正弦定理得a sin A =b sin B ,sin A =a sin B b =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×3517,∴b =17.10.在△ABC 中,已知AB =463,cos B =66,AC 上的中线BD =5,求sin A 的值.解 设E 为BC 的中点.连接DE ,则DE ∥AB ,且DE =12AB =263,设BE =x .在△BDE 中利用余弦定理可得:BD 2=BE 2+ED 2-2BE ·ED cos ∠BED ,5=x 2+83+2×263×66x ,解得x =1,x =-73(舍去).故BC =2,从而AC 2=AB 2+BC 2-2AB ·BC ·cos B =283AC =2213.又sin B =306,故2sin A =2213306,sin A =7014.11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B2-cos 2C =72.(1)求角C 的大小; (2)求△ABC 的面积.解 (1)∵A +B +C =180°,由4sin 2A +B 2-cos 2C =72,得4cos 2C 2-cos 2C =72, ∴4·1+cos C 2-(2cos 2C -1)=72,整理,得4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C , 即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =12ab sin C =12×6×32=332.。
正余弦定理知识点+经典题(有答案)
正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。
即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。
正弦定理余弦定理综合应用_解三角形经典例题(老师)
222cos 2b c a A bc +-= 222c o s 2a c b B ac +-= 222c o s 2a b c C ab +-=二、方法归纳(1) (1)已知两角已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c .(2) (2)已知两边已知两边b 、c 与其夹角A ,由a 22=b 22+c 22-2b c cosA ,求出a ,再由余弦定理,求出角B 、C .(3) (3)已知三边已知三边a 、b 、c,由余弦定理可求出角A 、B 、C .(4) (4)已知两边已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B =,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解的情况时,可能出一解,两解或无解的情况a =b sinA 有一解有一解 b >a >b sinA 有两解有两解 a ≥b 有一解有一解 a >b 有一解三、课堂精讲例题问题一:利用正弦定理解三角形 【例1】在ABC D 中,若5b =,4B pÐ=,1sin 3A =,则a = .523一、知识梳理1.内角和定理:在ABC D 中,A B C ++=p ;sin()A B +=sin C ;cos()A B +=cos C -面积公式:111sin sin sin 222ABCSab Cbc Aac BD ===在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所各边和它的所对角对角的正弦的比相等. 形式一:RCc Bb Aa2sin sin sin ===(解三角形的重要工具) 形式二:ïîïíì===CR c B R b AR a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四:sin ,sin ,sin 222abc A B C RRR ===3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 2222c o s b c a c a B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二:sinA=b B a sin =245sin 3°=23, 则A 为6060°或°或120120°°.①当A=60A=60°时,°时,°时,C=180C=180C=180°°-(A+B)=75-(A+B)=75°°,c=B Cb sin sin =°°45sin 75sin 2=°°+°45sin )3045sin(2=226+.②当A=120A=120°时,°时,°时,C=180C=180C=180°°-(A+B)=15-(A+B)=15°°,c=B C b sin sin =°°45sin 15sin 2=°°-°45sin )3045sin(2=226-. 故在△故在△ABC ABC 中,中,A=60A=60A=60°°,C=75,C=75°°,c=226+或A=120A=120°°,C=15,C=15°°, c =226-. 【思考】从所得到式子看,为什么会有两解:sinA 只有2x p=一解。
(完整版)正弦定理和余弦定理典型例题
《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。
【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
(完整版)正弦定理和余弦定理典型例题(最新整理)
【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)
;
根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .
5.6正弦定理、余弦定理和解斜三角形
小结(ASA,SAS,SSS)
已知两角一边ASA (内角和之和为180度,算出三角,然后利用正弦定理, 算出其它两边) 已知一角两边,
(a)可分为两边一夹角SAS
用余弦定理求出角所对的边,然后利用三边求角
(b) 两边一邻角
已知三边 SSS
利用余弦定理求出角的余弦,然后求角
(3)判断解的个数的方法:(已知A,b,a) 方案1:正弦定理
b sin A (a)若 sin B 1, 无解。 a b sin A 1, 有唯一解。 b 若 sin B a b sin A 1, 在(0,)上有两解,但其中 c 若 sin B a 与已知角A(或B)的和小于,才合
5.6正弦定理、余弦定理 和解斜三角形
解斜三角形(1)
一、复习正、余弦定理
正弦定理
a b c sin A sin B sin C
余弦定理
a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC
b2 c2 a 2 cos A 2bc a 2 c2 b2 cos B 2ac b2 a2 c2 cosC 2ab
0 , c 8, a 5, 求C、B和b 例4: 1 在 ABC 中,已知 A 30
2 在ABC中,已知A 30 , c 3, a 5, 求C、B和b.
0
(保留两位小数)
练习: 在 ABC 中已知 b 6, c 9, B 45, 求C、A和边a.
留两个有效数字).
解:∵
b c 且 B 180 ( A C ) 105 sin B sin C
解三角形经典例题及解答
例 3、在 ABC中,b 3, B 600 , c 1,求a和A,C
解:∵ b c , sin C c sin B 1 sin 600 1
sin B sin C
b
3
2
b c, B 600 ,C B,C为锐角,C 300 , B 900
∴a b2 c2 2 例 4、 ABC中,c 6, A 450 , a 2,求b和B,C
正弦、余弦定理
知识回顾:
1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a,AC=b,AB=c,
根据锐角三角函数中正弦函数的定义,有 a sin A , b sin B ,又 sin C 1 c ,从
c
c
c
而在直角三角形 ABC 中, a b c .
sin A sin B sin C
2、当 ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的定义,
有 CD= a sin B bsin A ,则 a b ,同理可得 c b ,
sin A sin B
sin C sin B
从而 a b c .
sin A sin B sin C
3、正弦定理:在一个三角形中,各边和它所对角的 c.
2
22
证明:∵ a cos2 C c cos2 A 3b
2
22
∴ sin A1 cos C sin C 1 cos A 3sin B
2
2
2
即 sin A sin Acos C sin C sin C cos A 3sin B
sin C sin B sin A sin C
(3)正弦定理的基本作用为:
① 已 知 三 角 形 的 任 意 两 角 及 其 一 边 可 以 求 其 他 边 , 如 a bsin A ;
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识梳理1.内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆=== 在三角形中大边对大角,反之亦然.2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)形式三:::sin :sin :sin a b c A B C = 形式四:sin ,sin ,sin 222a b c A B C R R R ===3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+- 2222cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具)形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222cos 2a b c C ab +-=二、方法归纳(1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c .(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2b c cosA ,求出a ,再由余弦定理,求出角B 、C .(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C .(4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B =,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解的情况a =b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解三、课堂精讲例题问题一:利用正弦定理解三角形【例1】在ABC ∆中,若5b =,4B π∠=,1sin 3A =,则a =.3【例2】在△ABC 中,已知a =3,b =2,B=45°,求A 、C 和c .【解析】 ∵B=45°<90°且a sinB <b <a ,∴△ABC 有两解.由正弦定理得sinA=b Ba sin =245sin 3︒ =23,则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°,c=BC b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°,c=BCb sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A=60°,C=75°,c=226+或A=120°,C=15°, c =226-. 【思考】从所得到式子看,为什么会有两解:sinA =23,在(0,)π上显然有两个解。
sin y x =在(0,)π上的值域为(0,1】,sin 1x =在(0,)π只有2x π=一解。
【适时导练】1.(1)△ABC 中,a =8,B=60°,C=75°,求b ; (2)△ABC 中,B=30°, b =4,c=8,求C 、A 、a. 【解析】(1)由正弦定理得B b A a sin sin =.∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1.又∵30°<C <150°,∴C=90°. ∴A=180°-(B+C)=60°, a =22b c -=43.问题二:利用余弦定理解三角形【例3】设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长;(Ⅱ)求()C A -cos 的值.【解题思路】本小题主要考查三角函数的基本公式和余弦定理,同时考查基本运算能力 【解析】(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c ∴ABC ∆的周长为5221=++=++c b a . (Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C ,∴8152415sin sin ===c C a A ∵c a <,∴C A <,故A 为锐角,∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. 【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-m m 【例4】(2010重庆文数) 设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c ,且32b +32c -32a =42bc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.【适时导练】2 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.【解析】 (1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b +2得:ac b c a 2222-+·2222c b a ab -+=-c a b +2整理得: a 2+c 2-b 2=-a c ∴cosB=ac b c a 2222-+=ac ac 2- =-21∵B 为三角形的内角,∴B=32π. (2)将b =13,a +c =4,B=32π代入b 2=a 2+c 2-2a c cosB,得b 2=(a +c )2-2a c -2a c cosB∴b 2=16-2a c ⎪⎭⎫ ⎝⎛-211,∴a c =3.∴S △ABC =21a c sinB=433. 问题三:正弦定理余弦定理综合应用【例5】(2011山东文数)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b. (I )求sin sin C A的值; (II )若cosB =14,∆ABC 的周长为5,求b 的长。
【解题思路】通过正弦定理将边化成正弦,在通过和角公式进行化简。
【解析】(I )由正弦定理,设,sin sin sin a b c k A B C ===则22sin sin 2sin sin ,sin sin c a k C k A C A b k B B---== 所以cos 2cos 2sin sin .cos sin A C C A B B--=即(cos 2cos )sin (2sin sin )cos A C B C A B -=-,化简可得sin()2sin().A B B C +=+又A B C π++=,所以sin 2sin C A =因此sin 2.sin CA= (II )由sin 2sin C A =得2.c a =由余弦定得及1cos 4B =得 22222222cos 14444.b ac ac B a a a a =+-=+-⨯=所以2.b a =又5,a b c ++=从而1,a =因此b=2。
【思考】到底“具体什么情况下边化角,什么情况下角化边”【例6】(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b【解题思路】对已知条件(1)222a c b -=左侧是二次的右侧是一次的,可以考虑余弦定理;而对已知条件(2)sin cos 3cos sin ,A C A C =化角化边都可以。
【解析】解法一:在ABC ∆中sin cos 3cos sin ,A C A C =Q 则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc +-+-=gg 化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠. 所以2cos 2b c A =+①又sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=sin()4cos sin A C A C +=,即sin 4cos sin B A C =由正弦定理得sin sin bB C c=,故4cos b c A = ②由①,②解得4b =.【思考】面对解三角形,可以考虑正弦定理,也可以考虑余弦定理,两种方法只是计算量上的差别。
【适时导练】3. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且8 sin 22B C+-2 cos 2A =7. (1)求角A 的大小;(2)若a 3b +c =3,求b 和c 的值.解:(1)∵ A +B +C =180°,∴2B C +=90°-2A .∴ sin 2B C+=cos 2A .由8sin22B C +-2cos 2A =7,得8cos 22A -2cos 2A =7.∴ 4(1+cos A )-2(2 cos 2A -1)=7,即(2cos A -1)2=0.∴ cos A =12∵ 0°<A <180°,∴ A =60°. (2)∵ a 3A =60°,由余弦定理知a 2=b 2+c 2-2bc cos A ,∴ 3=b 2+c 2-bc =(b +c )2-3bc =9-3bc . ∴ bc =2.又b +c =3,∴ b =1,c =2或b =2,c =1. 问题四:三角恒等变形【例7】(08重庆) 设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A=60o,c=3b.求:(Ⅰ)ac 的值;(Ⅱ)cotB +cot C 的值.【解题思路】求ac 的值需要消去角和;b 三角求值问题一般先考虑寻找角之间的关系【解析】(Ⅰ)由余弦定理得A bc c b a cos 2222-+==222972131231c c c c c =⨯⨯⨯-+⎪⎭⎫ ⎝⎛故7.a c =(Ⅱ)解法一:cot cot B C +=cos sin cos sin sin sin B C C B B C +=sin()sin ,sin sin sin sin B C A B C B C +=由正弦定理和(Ⅰ)的结论得227sin 11439··.1sin sin sin 333·3cA aBC A bc c c ====故143cot cot .9B C +=解法二:由余弦定理及(Ⅰ)的结论有725372)31(972cos 222222=⨯⨯-+=-+=cc c c c ac b c a B故2253sin 1cos 1.2827B B =-=-=同理可得7213137291972cos 222222-=⨯⨯-+=-+=cc c c c ab c b a C 2133sin 1cos 1.2827C C =-=-= 从而cos cos 51143cot cot 33.sin sin 399B C B C B C +=+=-=【思考】在解三角形的背景下一般见“切割化弦”, 同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αααααα== 【适时导练】4.(2009江西卷理)△ABC 中,,,A B C 所对的边分别为,,a b c ,sin sin tan cos cos A BC A B+=+,sin()cos B A C -=.(1)求,A C ;(2)若33ABC S ∆=+,求,a c . 【解析】(1) 因为sin sin tan cos cos A B C A B+=+,即sin sin sin cos cos cos C A BC A B +=+,所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. 所以C A B C -=-,或()C A B C π-=--(不成立). 即 2C A B =+, 得3C π=,所以.23B A π+=又因为1sin()cos 2B A C -==,则6B A π-=,或56B A π-=(舍去) 得5,412A B ππ==(2)162sin 332ABC S ac B ac ∆+===+, 又sin sin a c A C =, 即 23=, 得22,2 3.a c == 问题五:判断三角形形状【例8】在△ABC 中,在ABC ∆中,a,b,c 分别是角A 、B 、C 所对的边,bcosA =a cosB ,试判断ABC ∆三角形的形状. 【解题思路】判定三角形形状时,一般考虑两个方向进行变形:(1)一个方向是边,走代数变形之路,通常是正、余弦定理结合使用;(2)另一个方向是角,走三角变形之路.通常是运用正弦定理 【解析】方法1:利用余弦定理将角化为边.∵bcosA =a cosB ∴22222222b c a a c b b a bc ac +-+-⋅=⋅∴222222b c a a c b +-=+- ∴22a b = ∴a b =故此三角形是等腰三角形.方法2:利用正弦定理将边转化为角.∵bcosA =a cosB 又b =2RsinB ,a =2RsinA ∴2RsinBcosA =2RsinAcosB ∴sinAcosB -cosAsinB =0 ∴sin (A -B )=0 ∵0<A ,B <π,∴-π<A -B <π ∴A -B =0,即A =B 故三角形是等腰三角形.【思考】判断三角形形状时一般从角入手,利用三角形内角和定理,实施关于三角形内角的一些变形公式. 【例9】. 在△ABC 中,在ABC ∆中,a,b,c 分别是角A 、B 、C 所对的边,若cosA cosB =ba ,试判断ABC ∆三角形的形状.【解析】:方法1:利用余弦定理将角化为边由已知cosA cosB =b a 及正弦定理得cosA cosB =sinBsinA ∴sin2A=sin2B ∴2A =2B 或2A +2B =π,即A =B 或A +B =π2 , 故△ABC 为等腰三角形或直角三角形. 方法2:利用正弦定理将边转化为角.∵acosA =bcosB ∴22222222b c a a c b a b bc ac +-+-=∴22222()()0a b a b c -+-= ∴a=b 或者2220a b c +-=故△ABC 为等腰三角形或直角三角形.【适时导练】5.在△ABC 中,若2cosBsinA =sinC ,则△ABC 的形状一定是( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形【解析】2sinAcosB =sin (A +B )+sin (A -B )又∵2sinAcosB =sinC ,∴sin (A -B )=0,∴A =B6.在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.【解析】方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin (A -B )]∴2a 2cosAsinB =2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB =sin 2BcosBsinA ∴sinAsinB (sinAcosA -sinBcosB )=0∴sin 2A =sin 2B ,由0<2A ,2B <2π 得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB =2b 2sinAcosB 由正、余弦定理,可得a2b bc a c b 2222-+= b 2a acb c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)( a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形. 问题六:与其他知识综合【例10】已知向量(,),(,),0a c b a c b a =+=--⋅=且m n m n ,其中A ,B ,C 是△ABC 的内角,a ,b ,c 分别是角A ,B ,C 的对边.(1)求角C 的大小;(2)求sin sin A B +的取值范围. 【解题思路】向量的数量积运算法则。