分式方程专题
重难专题16 分式方程的解法专项训练(解析版)
专题16 分式方程的解法专项训练1.解方程:2122x x x =+--.【分析】两边同时乘以()2x -,将分式方程化为整式方程,解整式方程,然后检验,即可求出分式方程的解.【详解】解∶ 方程两边同时乘以()2x -,得:22x x =+-,解得2x =,检验∶当2x =时,20x -=,∴原方程无解.2.解方程:2123111x x x x-=+--.【分析】先去分母,把方程化为整式方程,再解整式方程并检验即可.【详解】解:2123111x x x x-=+--,去分母得:()1231x x x --=-+,整理得:22x =-,解得:=1x -,检验:把=1x -代入()()11x x +-可得()()110x x +-=,∴=1x -是增根,原方程无解.3.解分式方程13122--=--:x x x x【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】13122x x x x--=--去分母得:()123x x x---=-移项,合并同类项得:31x =-∴13x =-.经检验, 13x =-是原分式方程的解,故原方程的解是:13x =-4.解方程:11322x x x-+=---.【分析】方程两边同时乘以()2x -,化为整式方程,解方程即可求解.【详解】解:方程两边同时乘以()2x -,得()()1132x x --=--解得:2x =,当2x =时,20x -=∴2x =是原方程的增根,原方程无解.5.解分式方程26124x x x -=--【答案】1x =【详解】解:去分母得:()()()2622x x x x +-=+-,去括号得:22264x x x +-=-,解得1x =,检验:当1x =时,240x -¹∴原方程的根是1x =.6.解方程:241111x x x +=---.【答案】3x =-【详解】解:方程两边同乘()()11x x +-,得:()()()24111x x x =-+-+-,去括号,可得:224211x x x =----+,移项、合并同类项,可得;26x -=,系数化为1,可得:3x =-,检验:当3x =-时,()()110x x +-¹,∴原分式方程的解为3x =-.7.解方程:3x x -253169x x x --=-+【答案】3x =-【详解】解:2531369x x x x x --=--+,()253133x x x x --=--,方程两边都乘2(3)x -,得()()23353x x x x ---=-,解得:3x =-,检验:当3x =-时,()230x -¹,所以3x =-是原方程的解,即原方程的解是3x =-.8.解方程:43(1)1x x x x +=--【分析】方程两边同乘最简公分母(1)x x -化为整式方程,然后求解,再进行检验.【详解】解:方程两边同乘最简公分母(1)x x -,得43+=x x ,解得2x =,检验:当2x =时,(1)2(21)20x x -=´-=¹,2x \=是原方程的根,故原分式方程的解为2x =.9.解方程:22122x x x-=--.【分析】两边都乘以2x -,化为整式方程求解,求出x 的值后再检验即可.【详解】解:22122x x x-=--,两边都乘以2x -,得:222x x +=-解得4x =-,检验:当4x =-时,最简公分母20x -¹,∴4x =-是原分式方程的解.10.解分式方程:315155x x x+=--.【分析】观察可得最简公分母是5x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:由原方程可得:315155x x x -=--,方程两边同乘以5x -,得:3155x x -=-,解得:5x =,经检验:5x =是原方程的增根,所以原方程无解.11.解方程:235011x x x --=--.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:235011x x x --=--去分母得:()()3150x x +--=,整理得:280x +=,解得:4x =-,经检验4x =-是分式方程的解.12.解方程:2121x x x+=+.【分析】根据解分式方程的解法步骤求解,最后检验即可.【详解】解:去分母,得()()22121x x x x ++=+去括号,得222122x x x x++=+移项、合并同类项,得1x -=-化系数为1,得1x =检验:当1x =时,()10x x +¹∴原分式方程的解为1x =.13.解分式方程:21142x x x =---【分析】先两边同时乘以各分母的最小公分母转化为整式方程,再解这个整式方程即可.【详解】解:两边同乘以24x -得21(2)(4)x x x =+--,22124x x x =+-+解方程得3:2x =-,经检验,32x =-是原方程的解\原分式方程的解为32x =-.14.解分式方程:14322x x x--=--【分析】先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】解:14322x x x--=--,去分母得:()1432x x +-=-,去括号得:1436x x +-=-,移项得:3641x x -=-+-,合并同类项得:23x -=-,化x 系数化为1得:32x =,检验:把32x =代入2x -得:312022-=-¹,∴ 32x =是原方程的解.15.解方程:121133x x x =-++.【分析】先去分母,将分式方程转化成整式方程求解,再检验即可.【详解】解:方程两边同时乘以()31x +,得()3231x x =-+,解得:6x =-,检验:把6x =-代入()31x +得()361150-+=-¹,∴原方程的解为:6x =-.16.解方程:(1)313221x x +=--;(2)22111y y y -=--.【分析】(1)方程两边同时乘以()21x -,化为整式方程,求出方程的根并检验即可得出答案;(2)去分母()()11y y +-化为整式方程,求出方程的根并检验即可得出答案.【详解】(1)解:()313211x x -=--,()3261x -=-,67x =,76x =,检验:当76x = 时,()210x -¹,∴原分式方程的解是:76x =;(2)解:()()21111y y y y -=-+-,()()()1211y y y y +-=+-,2221y y y +-=-,1y =,检验:当1y =时,()()110y y +-=,∴原分式方程无解.17.解方程.(1)143x x =+;(2)31244x x x-=---.【分析】(1)按照解分式方程的步骤,进行计算即可解答;(2)按照解分式方程的步骤,进行计算即可解答.【详解】(1)解:143x x =+,34x x +=,解得:1x =,检验:当1x =时,(3)0x x +¹,1x \=是原方程的根;(2)解:31244x x x-=---,312(4)x x -=---,解得:4x =,检验:当4x =时,40x -=,4x \=是原方程的增根,\原方程无解.18.解分式方程:(1)143x x =+.(2)31222x x x +=+--.【分析】(1)先分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:143x x =+,方程两边都乘()3x x +,得34x x +=,整理,得33x =,解得:1x =,当1x =时,()30x x +¹,所以原方程的解是1x =.(2)解:31222x x x +=+--,方程两边都乘2x -,得()3122x x =++-,整理,得36x =,解得:2x =,当2x =时,20x -=,故2x =是原方程增根,原方程无解.19.解方程:(1)5113x x =+-(2)21233x x x-+=--【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:5113x x =+-,方程的两边同乘()()13x x +-得,()531x x -=+,解得,4x =,检验,把4x =代入最简公分母()()130x x +-¹,所以4x =是原方程的解;(2)解:21233x x x-+=--,方程的两边同乘()3x -得,()2231x x -+-=-,解得,3x =,检验,把3x =代入最简公分母30x -=,所以3x =是原方程的增根,∴原方程无解.20.解方程:(1)232x x =+;(2)11322x x x-=---.【分析】(1)方程两边都乘()2x x +得出()223x x +=,求出方程的解,再进行检验即可;(2)方程两边都乘2x -得出()()1132x x =----,求出方程的解,再进行检验即可.【详解】(1)解:方程两边都乘()2x x +,得()223x x +=,解得:4x =,检验:当4x =时,()246240x x +=´=¹,\4x =是原方程的解,\原方程的解是4x =;(2)解:方程两边都乘2x -,得()()1132x x =----,解得:2x =,检验:当2x =时,20x -=,\2x =是增根,\原方程无解.21.解方程(1)322112x x x =---(2)214111x x x +-=--【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母得到:423x x =-+,解得:13x =-,经检验13x =-是分式方程的解;(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解.22.解方程(1)132x x =-(2)21233y y y-=---【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程,然后检验即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程,然后检验即可.【详解】(1)解:132x x=-去分母得:()32x x =-,去括号得:36x x =-,移项得:36x x -=-,合并同类项得:26x -=-,系数化为1得:3x =,检验,当3x =时,()20x x -¹,∴原方程的解为3x =;(2)解:21233y y y-=---去分母得:()2231y y -=-+,去括号得:2261y y -=-+,移项得:2612y y -=-++,合并同类项得:3y -=-,系数化为1得:3y =,检验,当3y =时,30y -=,∴3y =是原方程的增根,∴原方程无解.23.解方程(1)3222x x =+-(2)29472393x x x x +-=+--【分析】(1)先去分母变为整式方程,然后再解整式方程,得出x 的值,最后进行检验;(2)先去分母,再去括号,然后移项合并同类项,将未知数系数化为1,最后进行检验即可.【详解】(1)解:去分母得:()()3222x x -=+,去括号得:3624x x -=+,移项合并同类项得:10x =,经检验10x =是原方程的解;(2)解:去分母得:()()29347233x x x +=-+´-,去括号得:291221618+=-+-x x x ,移项合并同类项得:1648-=-x ,将未知数系数化为1得:3x =,检验:把3x =代入()33x -得:()3330´-=,∴3x =是原方程的增根,∴原方程无解.24.解方程:(1)33122x x x -+=--;(2)23321x x =--.【分析】(1)根据去分母,移项,合并同类项,系数化为1求出方程的解,并检验即可;(2)根据去分母,去括号,移项,合并同类项,系数化为1求出方程的解,并检验即可.【详解】(1)解:方程两边都乘以2x -,得323x x +-=-,移项,合并,得22x =系数化为1,得1x =,检验:当1x =时,210x -=-¹,∴原分式方程的解为1x =;(2)解:方程两边都乘以()()321x x --,得()()33221x x -=-,去括号,得3942x x -=-移项,合并,得7x -=系数化为1,得7x =-,检验:当7x =-时,()()3210x x --¹,∴原分式方程的解为7x =-.25.解方程:(1)312x x x -=-.(2)2114232349x x x x -=+--.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:312x x x-=-,去分母得:()()2322x x x x --=-,解得:6x =,检验:()()26620x x -=´-¹,∴方程的解为6x =;(2)2114232349x x x x -=+--,去分母得:()23234x x x --+=,解得:32x =-,检验:223494902x æö-=´--=ç÷èø,是增根,∴方程无解.26.解分式方程:(1)23211x x x +=+-;(2)21233x x x-=---.【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:由23211x x x +=+-则去分母得:()()()()2131211x x x x x -++=+-,去括号得:22223322x x x x -++=-,移项合并同类项得:5x =-,经检验:5x =-是原分式方程的解;(2)解:由21233x x x-=---,则去分母得:()()()()233233x x x x x --=----,去括号得:2265321218x x x x x -+=-+-+,移项合并同类项得:3x =,因为330-=,经检验:3x =是增根,原分式方程无解.27.解分式方程:(1)3513x x =++;(2)214111x x x +-=--.【分析】(1)先去分母,解得到的整式方程,再检验,即可得到答案;(2)先去分母,解得到的整式方程,再检验,即可得到答案.【详解】(1)3513x x =++解:两边同乘以()()13x x ++得,()()3351x x +=+,解得,2x =,当2x =时,()()130x x ++¹,∴2x =是分式方程的解;(2)214111x x x +-=--解:两边同乘以()()11x x +-得,()()()21411x x x +-=+-,解得,1x =,当1x =时,()()110x x +-=,经检验1x =是增根,∴原分式方程无解.28.解方程:(1)121x x x+-=(2)21111x x x -=++【分析】(1)方程两边都乘x 得出()12x x -+=,求出方程的解,再进行检验即可;(2)方程两边都乘1x +得出()211x x -+=,求出方程的解,再进行检验即可.【详解】(1)解:121x x x+-=,去分母得:()12x x -+=,解得:12x =-,检验:当12x =-时,0x ¹,∴12x =-是原方程的解;(2)21111x x x -=++,去分母得:()211x x -+=,解得:2x =,检验:当2x =时,10x +¹,∴2x =是原方程的解.29.解方程:(1)3211x x =+-;(2)29472393x x x x +-=+--.【分析】(1)先去分母变为整式方程,然后再解整式方程,得出x 的值,最后进行检验;(2)先去分母,再去括号,然后移项合并同类项,将未知数系数化为1,最后进行检验即可.【详解】(1)解:3211x x =+-,3322x x -=+,5x =,检验:把5x =代入()()11x x -+得:()()5151200-+=¹,∴5x =是原方程的解.(2)解:29472393x x x x +-=+--,()()29347233x x x +=-+´-,291221618+=-+-x x x ,1648-=-x ,3x =,检验:把3x =代入()33x -得:()3330´-=,∴3x =是原方程的增根,∴原方程无解.30.解分式方程:(1)100307x x =+;(2)21212339x x x -=+--.【分析】(1)两边同时乘以(7)x x +去分母,然后再整理成一元一次方程进行计算即可;(2)两边同时乘以()(33)x x +-去分母,然后再整理成一元一次方程进行计算即可.【详解】(1)方程两边都乘以(7)x x +,得100(7)30x x +=.解这个一元一次方程,得10x =-.检验:当10x =-,(7)0x x +¹.所以,10x =-是原分式方程的根.(2)方程两边都乘以()(33)x x +-,得32(3)12x x -++=.解这个一元一次方程,得3x =.检验:当3x =时,(3)(3)0x x +-=.因此,3x =是原分式方程的增根,所以,原分式方程无解.31.阅读与思考阅读下面的材料,解答后面的问题.解方程:1401x x x x --=-.解:设1x y x -=,则原方程可化为40y y -=,方程两边同时乘y 得240y -=,解得2y =±,经检验:2y =±都是方程40y y -=的解,\当2y =时,12x x-=,解得=1x -,当=2y -时,12x x-=-,解得13x =,经检验:=1x -或13x =都是原分式方程的解,\原分式方程的解为=1x -或13x =.上述这种解分式方程的方法称为“换元法”.问题:(1)若在方程中1021x x x x --=-,设1x y x -=,则原方程可化为________________.(2)模仿上述换元法解方程:1279021x x x ---=+-.【分析】(1)设1x y x-=,则111,221x x y x x y -==-,据此求解即可;(2)先把方程变形为19(2)021x x x x -+-=+-,再用换元法求解即可.【详解】(1)解:设1x y x -=,原方程可化为1102y y -=,故答案为:1102y y -=(2)解:∵12712719(2)9(9)212121x x x x x x x x x x ---+--=-+=-+-+-+-,∴原方程为19(2)021x x x x -+-=+-。
方程应用--分式方程(解析版)-中考数学重难点题型专题汇总
方程应用-中考数学重难点题型专题汇总分式方程(专题训练)1.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是()A.40030050x x=-B.30040050x x=-C.40030050x x=+D.30040050x x=+【答案】B【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,根据题意,可列方程:30040050x x=-,故选:B.【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.2.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x天,下面所列方程中错误的是()A.2x1x x3+=+B.23x x3=+C.11x221x x3x3-⎛⎫+⨯+=⎪++⎝⎭D.1x1x x3+=+【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x天,由题意可得,11x221 x x3x3-⎛⎫+⨯+=++⎝⎭,整理得2x1x x3+=+,或2x1x x3=-+或23x x3=+.则ABC选项均正确,故选:D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示()A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义.【详解】解:由50004000302x x=-可得:由50002x 表示的是足球的单价,而4000x表示的是篮球的单价,x \表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键.4.(2021·内蒙古鄂尔多斯市·中考真题)2020年疫情防控期间,鄂尔多斯市某电信公司为了满足全体员工的需要,花1万元购买了一批口罩,随着2021年疫情的缓解,以及各种抗疫物资充足的供应,每包口罩下降10元,电信公司又花6000元购买了一批口罩,购买的数量比2020年购买的数量还多100包,设2020年每包口罩为x 元,可列方程为()A .1600010010x x +=-B .10000600010010x x -=+C .10000600010010x x =--D .10000600010010x x -=-【答案】C 【分析】根据题中等量关系“2021年购买的口罩数量比2020年购买的口罩数量多100包”即可列出方程.【详解】解:设2020年每包口罩x 元,则2021年每包口罩(x -10)元.根据题意,得,60001000010010x x-=-.即:100006000=10010x x --.故选:C【点睛】本题考查了列分式方程的知识点,寻找已知量和未知量之间的等量关系是列出方程的关键.5.(山东省淄博市2021年中考数学试题)甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/hx,则下列方程中正确的是()A.1010121.2x x-=B.10100.21.2x x-=C.1010121.2x x-=D.10100.21.2x x-=【答案】D【分析】根据题意可直接进行求解.【详解】解:由题意得:10100.21.2x x-=;故选D.【点睛】本题主要考查分式方程的应用,熟练掌握分式方程的应用是解题的关键.6.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.400K30=500B.400=500r30C.400=500K30D.400r30=500【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.【解析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400=500r30.故选:B.7.(2020•福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x﹣1)=6210B.6210K1=3C.3x﹣1=6210D.6210=3【分析】根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【解析】依题意,得:3(x﹣1)=6210.故选:A.8.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000=4200K80B.3000+80=4200 C.4200=3000−80D.3000=4200r80x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【解析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:3000=4200r80.故选:D.9.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.80(1+35%)−80=40B.80(1+35%)−80=40 C.80−80(1+35%)=40D.80−80(1+35%)=40【分析】设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为1+35%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前40天完成了这一任务,即可得出关于x 的分式方程,此题得解.【解析】设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为1+35%万平方米,依题意,得:801+35%−80=40,即80(1+35%)−80=40.故选:A .10.(2020•襄阳)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?【分析】设原来每天用水量是x 吨,则现在每天用水量是45吨,根据现在120吨水比以前可多用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设原来每天用水量是x 吨,则现在每天用水量是45x 吨,依题意,得:12045−120=3,解得:x =10,经检验,x =10∴45x =8.答:现在每天用水量是8吨.11.(2021·山东东营市·中考真题)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程为________.【答案】()909030125%x x-=+【分析】原计划每天绿化的面积为x 万平方米,则实际每天绿化的面积为()125%x +万平方米,根据工作时间=工作总量÷工作效率,结合实际比原计划提前30天完成了这一任务,即可列出关于x 的分式方程.【详解】设原计划每天绿化的面积为x 万平方米,则实际每天绿化的面积为()125%x +万平方米,依据题意:()909030125%x x-=+故答案为:()909030125%x x-=+【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.12.(2021·辽宁本溪市·中考真题)为了弘扬我国书法艺术,培养学生良好的书写能力,某校举办了书法比赛,学校准备为获奖同学颁奖.在购买奖品时发现,A 种奖品的单价比B 种奖品的单价多10元,用300元购买A 种奖品的数量与用240元购买B 种奖品的数量相同.设B 种奖品的单价是x 元,则可列分式方程为________.【答案】30024010x x=+【分析】设B 种奖品的单价为x 元,则A 种奖品的单价为(x+10)元,利用数量=总价÷单价,结合用300元购买A 种奖品的件数与用240元购买B 种奖品的件数相同,即可得出关于x 的分式方程.【详解】解:设B 种奖品的单价为x 元,则A 种奖品的单价为(x+10)元,依题意得:30024010x x =+,故答案为:30024010x x=+【点睛】本题考查了根据实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.13.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为__________.【答案】16014010 x x=-【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得16014010x x=-.故答案为:16014010x x=-.【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.14.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,依题意,得:2020101.560x x-=,解得:x=40,经检验,x=40是所列方程的根,且符合题意,答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,根据甲、乙恰好同时到达B 地列方程求解即可.(1)解:设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,由题意得:0.5 1.20.52x x ⨯=+,解得:20x =,则1.224x =(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x 千米/时,则甲的速度为1.2x 千米/时,由题意得:301303 1.2x x-=,解得15x =,经检验15x =是分式方程的解,则1.218x =(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.16.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x 千米/小时,则汽车速度是3x 千米/小时,根据题意得:454523x x=+,解之得15x =,经检验15x =是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.17.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,根据题意,得3603603 34-=x x,解这个方程,得x=10,经检验,x=10是原方程的根,∴每个小组有学生10名.【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.18.(2021·辽宁丹东市·中考真题)为落实“乡村振兴计划”的工作要求,某区政府计划对乡镇道路进行改造,安排甲、乙两个工程队完成,已知乙队比甲队每天少改造20米,甲队改造400米的道路与乙队改造300米的道路所用时间相同,求甲、乙两个工程队每天改造的道路长度分别是多少米?【答案】甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.【分析】根据题意列出方程求解即可.【详解】解:设甲工程队每天改造的道路长度是x米,列方程得:40030020 x x=-,解得:x=80.80-20=60.答:甲工程队每天改造的道路长度是80米,乙工程队每天改造的道路长度是60米.【点睛】此题考查了分式方程应用题的解法,解题的关键是根据题意找到等量关系并列出方程.19.(2021·江苏徐州市·中考真题)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?【答案】50【分析】该商品打折卖出x件,找到等量关系即可.【详解】解:该商品打折卖出x件4008400102x x ⋅=+解得x =8经检验:8x =是原方程的解,且符合题意∴商品打折前每件400=508元答:该商品打折前每件50元.【点睛】此题考查分式方程实际问题中的销售问题,找到等量关系是解题的关键.20.(2021·江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.【分析】设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,由题意得:202052x x-=,解得:x =2,经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.21.(2021·吉林长春市·中考真题)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同,求每千克有机大米的售价为多少元?【答案】每千克有机大米的售价为7元.【分析】设每千克有机大米的售价为x 元,则每千克普通大米的售价为(x -2)元,根据“用420元购买的有机大米与用300元购买的普通大米的重量相同”,列出分式方程,即可求解.【详解】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x-2)元,根据题意得:4203002x x=-,解得:x=7,经检验:x=7是方程的解,且符合题意,答:每千克有机大米的售价为7元.【点睛】本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.22.(2021·辽宁营口市·中考真题)为增加学生阅读量,某校购买了“科普类”和“文学类”两种书籍,购买“科普类”图书花费了3600元,购买“文学类”图书花费了2700元,其中“科普类”图书的单价比“文学类”图书的单价多20%,购买“科普类”图书的数量比“文学类”图书的数量多20本.(1)求这两种图书的单价分别是多少元?(2)学校决定再次购买这两种图书共100本,且总费用不超过1600元,求最多能购买“科普类”图书多少本?【答案】(1)“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)最多能购买“科普类”图书33本.【分析】(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,根据数量=总价÷单价,结合购买“科普类”“文学类”图书的数量多20本,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设能购买“科普类”图书m本,根据总价=单价×数量,列出不等式,即可求解.【详解】解:(1)设“文学类”图书的单价为x元,则“科普类”图书的单价为1.2x元,依题意,得:3600270020 1.2x x-=,解得:x=15,经检验,x=15是所列分式方程的解,且符合题意,∴1.2x=18.答:“文学类”图书的单价为15元,则“科普类”图书的单价为18元;(2)设能购买“科普类”图书m本,根据题意得:18m+15(100-m)≤1600,解得:1003m≤,∵m为整数,∴最多能购买“科普类”图书33本.【点睛】本题考查了分式方程的应用以及不等式的应用,找准数量关系,正确列出分式方程和一元一次不等式是解题的关键.23.(2021·山东济宁市·中考真题)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?【答案】(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得:9004001005x x+=-,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,∴x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元.【点睛】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式.24.(2021·内蒙古中考真题)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.【答案】(1)小刚跑步的平均速度为150米/分;(2)小刚不能在上课前赶回学校,见解析【分析】(1)根据题意,列出分式方程即可求得小刚的跑步平均速度;(2)先求出小刚跑步和骑自行车的时间,加上取作业本和取自行车的时间,与上课时间20分钟作比较即可.【详解】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,根据题意,得180018004.51.6x x+=,解这个方程,得150x=,经检验,150x=是所列方程的根,所以小刚跑步的平均速度为150米/分.(2)由(1)得小刚跑步的平均速度为150米/分,则小刚跑步所用时间为180012150=(分),骑自行车所用时间为12 4.57.5-=(分),在家取作业本和取自行车共用了3分,++=(分).所以小刚从开始跑步回家到赶回学校需要127.5322.5>,因为22.520所以小刚不能在上课前赶回学校.【点睛】本题考查路程问题的分式方程,解题关键是明确题意,列出分式方程求解.25.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60r2=60⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.26.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?【分析】(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,根据数量=总价÷单价结合用700元购进A种书包的个数是用450元购进B种书包个数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设该商场购进m个A种书包,则购进(2m+5)个B种书包,根据购进A,B两种书包的总费用不超过5450元且A种书包不少于18个,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案;(3)设销售利润为w元,根据总利润=销售每个书包的利润×销售数量,即可得出w关于m的函数关系式,利用一次函数的性质可得出获得利润最大的进货方案,设赠送的书包中B 种书包有a个,样品中B种书包有b个,则赠送的书包中A种书包有(5﹣a)个,样品中A 种书包有(4﹣b)个,根据利润=销售收入﹣成本,即可得出关于a,b的二元一次方程,结合a,b,(5﹣a),(4﹣b)均为正整数,即可求出结论.【解析】(1)设每个A种书包的进价为x元,则每个B种书包的进价为(x+20)元,依题意,得:700=2×450r20,。
分式专题(含答案)
.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。
1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。
分式方程应用题专题
分式方程应用题专题分式方程应用题专题专题一、营销类应用性问题1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元。
求混合后的单价每千克是多少元?2、A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同。
其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少。
问选用谁的购货方式合算?3、某商场销售某种商品,一月份销售了若干件,共获得利润元;二月份把这种商品的单价降低了0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000元。
调价前每件商品的利润是多少元?专题二、工程类应用性问题1、甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。
已知乙队单独做所需天数是甲队单独做所需天数的倍数。
求甲乙单独做各需多少天?2、甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?3、某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务。
试求原计划一天的工作量及原计划的天数。
4、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元;甲、丙两队合做5天完成全部工程的需付甲、丙两队共5500元。
⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由。
5、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成。
现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成。
问规定日期是多少天?6、甲乙两人做某种机器零件。
已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。
专题08 分式方程(学生版)
知识点01:解分式方程【高频考点精讲】1.解分式方程的步骤(1)去分母。
方程两边同时乘以最简公分母,将分式方程化为整式方程。
(2)去括号。
系数分别乘以括号里的数。
(3)移项。
含有未知数的式子移到方程左边,常数移到方程右边。
(4)合并同类项。
(5)系数化为1。
(6)检验。
把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;如果最简公分母不等于0,这个根就是原分式方程的根;如果解出的根是增根,那么原方程无解。
2.换元法解分式方程(1)将原分式方程中含有字母的整体用另一个字母代替,从而使问题得到简化,这种方法叫做换元法。
(2)常见类型①直接换元。
例如015)1(2)1(2=----x x ,设1-=x y 。
②配方换元。
例如1)1(31222=+-+x x x x )(,原方程配方,得05)1(3)1(22=-+-+x x x x ,设x x y 1+=。
③倒数换元。
例如2232=---x x x x ,设xx y 2-=。
④变形换元。
例如1221222-=--x x x x ,可变形为1212222-=---xx x x ,设x x y 22-=。
知识点02:由实际问题抽象出分式方程 【高频考点精讲】1.利用常见数量关系确定等量关系。
例如行程问题中的相遇时间、追击时间相等。
2.利用关键词确定等量关系。
例如“倍”“多”“少”等。
检测时间:90分钟 试题满分:100分 难度系数:0.56一.选择题(共10小题,满分20分,每小题2分) 1.(2分)(2023•哈尔滨)方程=的解为( )A .x =1B .x =﹣1C .x =2D .x =﹣22.(2分)(2023•德州)某次列车平均提速v 千米/小时,用相同的时间,列车提速前行驶s 千米,相同的时间,提速后比提速前多行驶50千米,根据以上信息,下列说法正确的是( ) A .若设提速后这次列车的平均速度为x 千米/小时,则可列方程为 B .若设提速后这次列车的平均速度为x 千米/小时,则可列方程为 C .若设提速前这次列车的平均速度为y 千米/小时,则可列方程为D .若设提速前这次列车的平均速度为y 千米/小时,则可列方程为3.(2分)(2023•大连)解方程去分母,两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x4.(2分)(2023•深圳)某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x吨,则所列方程正确的是()A.=B.=C.=D.=5.(2分)(2023•聊城)若关于x的分式方程+1=的解为非负数,则m的取值范围是()A.m≤1且m≠﹣1 B.m≥﹣1且m≠1 C.m<1且m≠﹣1 D.m>﹣1且m≠16.(2分)(2023•广元)近年来,我市大力发展交通,建成多条快速通道,小张开车从家到单位有两条路线可选择,路线a为全程10千米的普通道路,路线b包含快速通道,全程7千米,走路线b比路线a 平均速度提高40%,时间节省10分钟,求走路线a和路线b的平均速度分别是多少?设走路线a的平均速度为x千米/小时,依题意,可列方程为()A.B.C.D.7.(2分)(2023•东营)为扎实推进“五育”并举工作,加强劳动教育,东营市某中学针对七年级学生开设了“跟我学面点”烹饪课程.课程开设后学校花费6000元购进第一批面粉,用完后学校又花费9600元购进了第二批面粉,第二批面粉的采购量是第一批采购量的1.5倍,但每千克面粉价格提高了0.4元.设第一批面粉采购量为x千克,依题意所列方程正确的是()A.﹣=0.4 B.﹣=0.4C.﹣=0.4 D.﹣=0.48.(2分)(2023•云南)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.9.(2分)(2023•辽宁)某校八年级学生去距离学校120km的游览区游览,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车的速度是x km/h,所列方程正确的是()A.+1=B.﹣1=C.=D.=10.(2分)(2023•黑龙江)已知关于x的分式方程+1=的解是非负数.则m的取值范围是()A.m≤2 B.m≥2 C.m≤2且m≠﹣2 D.m<2且m≠﹣2二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•青岛)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x元,则x满足的分式方程为.12.(2分)(2023•苏州)分式方程的解为x=.13.(2分)(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是.14.(2分)(2023•绵阳)随着国家提倡节能减排,新能源车将成为时代“宠儿”.端午节,君君一家驾乘新购买的新能源车,去相距180km的古镇旅行,原计划以速度v km/h匀速前行,因急事以计划速度的1.2倍匀速行驶,结果就比原计划提前了0.5h到达,则原计划的速度v为km/h.15.(2分)(2023•建华区三模)若关于x的分式方程﹣1=有正数解,求m的取值范围.16.(2分)(2023•南海区模拟)分式方程的解是.17.(2分)(2023•高新区模拟)若关于x的分式方程的解为非负数,则a的取值范围是.18.(2分)(2023•眉山)关于x的方程的解为非负数,则m的取值范围是.19.(2分)(2023•重庆)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.20.(2分)(2023•沙坪坝区校级二模)若关于x的一元一次不等式组的解集为x>2,且关于y的分式方程的解为非负整数,则所有满足条件的a的值之积为.三.解答题(共8小题,满分60分)21.(6分)(2023•镇江)(1)解方程:=+1;(2)解不等式组:.22.(6分)(2023•南通)为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:m2)每天施工费用(单位:元)甲x+300 3600乙x2200信息二甲工程队施工1800m2所需天数与乙工程队施工1200m2所需天数相等.(1)求x的值;(2)该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工22天,且完成的施工面积不少于15000m2.该段时间内体育中心至少需要支付多少施工费用?23.(8分)(2023•长春)随着中国网民规模突破10亿,博物馆美育不断向线上拓展.敦煌研究院顺势推出数字敦煌文化大使“伽瑶”,受到广大敦煌文化爱好者的好评.某工厂计划制作3000个“伽瑶”玩偶摆件,为了尽快完成任务,实际平均每天完成的数量是原计划的1.5倍,结果提前5天完成任务,问原计划平均每天制作多少个摆件?24.(8分)(2023•宁夏)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:=+30,解得x=5,经检验x=5是原方程的解.乙:=1.6×,解得x=65,经检验x=65是原方程的解.则甲所列方程中的x表示,乙所列方程中的x表示(3)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?25.(8分)(2023•黑龙江)2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A款七折优惠,B款每件让利m元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m值.26.(8分)(2023•荆州)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;。
(完整版)分式方程无解增根专题
分式方程专题一:知识梳理如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
二:例题精讲例题1:若方程﹣=1有增根,则它的增根是,m=.【解答】解:由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=±1,分式方程去分母得:6﹣m(x+1)=x2﹣1,把x=1代入整式方程得:6﹣2m=0,即m=3;把x=﹣1代入整式方程得:6=0,无解,综上,分式方程的增根是1,m=3.故答案为:1;3.反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.(2)关于x的方程+=2有增根,则m=.(3)若关于x的分式方程=﹣有增根,则k的值为.例题2:若关于x的方程的解为正数,则m的取值范围是.【解答】解:方程两边都乘以x﹣2,得:﹣2+x+m=2(x﹣2),解得:x=m+2,∵方程的解为正数,∴m+2>0,且m+2≠2,解得:m>﹣2,且m≠0,故答案为:m>﹣2且m≠0.反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.(2)关于x的方程的解是负数,则a的取值范围是.例题3:若关于x的分式方程=a无解,则a的值为.【解答】解:两边同乘以x+1,得x﹣a=ax+a移项及合并同类项,得x(a﹣1)=﹣2a,系数化为1,得x=,∵关于x的分式方程=a无解,∴x+1=0或a﹣1=0,即x=﹣1或a=1,∴﹣1=,得a=﹣1,故答案为:±1.反馈:(1)关于x的方程无解,则k的值为.(2)若关于x的分式方程无解,则m的值为.(3)若关于x的分式方程无解,则m=.三:典型错题1.在中,x的取值范围为.2.要使方式的值是非负数,则x的取值范围是.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=,B=.6.若解分式方程产生增根,则m=.7.若关于x的方程是非负数,则m的取值范围是.8.关于x的分式方程有解,则字母a的取值范围是9.已知,则的值为.10.已知a2+b2=9ab,且b>a>0,则的值为.参考答案:例题1:反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.【解答】解:去分母得:2x﹣a=x+1,由分式方程有增根,得到x+1=0,即x=﹣1,把x=﹣1代入得:﹣2﹣a=0,解得:a=﹣2,故答案为:﹣1;﹣2(2)关于x的方程+=2有增根,则m=.【解答】解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:(3)若关于x的分式方程=﹣有增根,则k的值为.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣例题2:反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.(2)关于x的方程的解是负数,则a的取值范围是.【解答】解:把方程移项通分得,∴方程的解为x=a﹣6,∵方程的解是负数,∴x=a﹣6<0,∴a<6,当x=﹣2时,2×(﹣2)+a=0,∴a=4,∴a的取值范围是:a<6且a≠4.故答案为:a<6且a≠4.例题3:反馈:(1)关于x的方程无解,则k的值为.【解答】解:去分母得:2x+4+kx=3x﹣6,当k=1时,方程化简得:4=﹣6,无解,符合题意;由分式方程无解,得到x2﹣4=0,即x=2或x=﹣2,把x=2代入整式方程得:4+4+2k=0,即k=﹣4;把x=﹣2代入整式方程得:﹣4+4﹣2k=﹣12,即k=6,故答案为:﹣4或6或1(2)若关于x的分式方程无解,则m的值为.【解答】解:两边都乘以(x﹣2),得x﹣1=m+3(x﹣2).m=﹣2x+5.分式方程的增根是x=2,将x=2代入,得m=﹣2×2=5=1,故答案为:1.(3)若关于x的分式方程无解,则m=.【解答】解:方程两边都乘以(x+1)(x﹣1),得:m﹣(x﹣1)=0,即m=x﹣1,∵关于x的分式方程无解,∴x=1或x=﹣1,当x=1时,m=0,当x=﹣1时,m=﹣2,故答案为:0或﹣2.典型错题:1.在中,x的取值范围为0<x≤1.2.要使方式的值是非负数,则x的取值范围是x≥1或x<﹣2.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=﹣12,B=17.6.若解分式方程产生增根,则m=﹣2或1..7.若关于x的方程是非负数,则m的取值范围是m≥﹣2且m≠﹣1 .8.关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0.9.已知,求的值.【解答】解:将两边同时乘以x,得x2+1=3x,===.10.已知a2+b2=9ab,且b>a>0,求的值.【解答】解:∵a2+b2=9ab,∴a2+b2+2ab=11ab,a2+b2﹣2ab=7ab,即(a+b)2=11ab,(a﹣b)2=7ab,∵b>a>0,即b﹣a>0,∴a+b=,b﹣a=,则原式=﹣=﹣=﹣.。
分式方程规律题专题训练含答案
8.先阅读下面的材料,然后解答问题:通过观察,发现方程
的解为 ;
的解为 ;
的解为 ;
…………………………
(1)观察上述方程的解,猜想关于x的方程 的解是________________;
(2)根据上面的规律,猜想关于x的方程 的解是___________________;
分式方程规律题专题训练含答案
学校:___________姓名:___________班级:___________考号:___________
一、解答题
1.阅读材料:关于x的方程:
的解
(可变形为 )的解为:
的解为
的解为:
……….
根据以上材料解答下列问题:
(1)①方程 的解为 =_______, =__________;
方程 (即 )的解是 , ;
方程 的解是 , ;
方程 的解是 , ;
……
(1)结论:猜想方程 (m≠0)的解是.
(2)应用:利用这个结论,解关于x的方程: .
4.① 的解 .
② 的解 .
③ 的解 .
④ 的解 .…
(1)根据你发现的规律直接写出第⑤,⑥个方程及它们的解.
⑤
⑥
(2)请根据你发现的规律直接写出第 个方程及它的解,并通过计算判断这个结论是否正确.
(3)把关于x的方程 变形为方程 的形式是______,方程的解是___________.
9.阅读下列材料,回答问题.
关于x的方程 的解是 ; 的解是 ; 的解是 ; (即 )的解是 .
(1)请观察上述方程与其解的特征,x的方程 与上述方程有什么关系?猜想它的解是什么,并利用“方程的解”的概念进行验证.
(完整版)分式方程应用题专题(含答案)
1分式方程 应用题专题1、我国“八纵八横”铁路骨干网的第八纵通道温(州)福(州)——铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高(污水处理率).40% 污水处理量污水排放量(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加,按照国家要求“2010年省会城市的污水处理20%率不低于”,那么我市2010年每天污水处理量在2007年每70%天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?24、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天B.4天C.3天D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .B .C .D .66602x x =-66602x x =-66602x x =+66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜kg ,根据x 题意,可得方程( )A .B .9001500300x x =+9001500300xx =-C .D .9001500300x x =+9001500300x x=-a38、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?4510、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤m ,则得x 方程为 .通过这段对话,请你求出该地驻军原来每天加固的米数.411、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了,但售价未变,从而使超市销售这种计算器的利4%润提高了.这种计算器原来每个进价是多少元?(利润售5%=价进价,利润率)-100%=⨯利润进价12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修m ,则根据题意可得方程 x .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用小871时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用220为元、乙队每天的工作费用为元.根据以上信息,从节1000550约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?517、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.672007分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为小时.1分x 依题意,得. 5分29833122xx =⨯+解这个方程,得. 8分14991x =经检验是原方程的解. 9分14991x =.148 1.6491x =≈答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50(50)×5350 4分-x2400-=化简得x 210x 12000 5分--=解方程得x 140,x 230(不合题意舍去) 6分==-经检验,x 140,x 230都是原方程的解,==-但x 230不合题意,舍去. 7分=-答: 每盒粽子的进价为40元. 8分3、解:(1)设年平均每天的污水排放量为万吨,2006x 则2007年平均每天的污水排放量为1.05x 万吨,依题意得:1分341040%1.05xx-=4分解得56x ≈5分经检验,是原方程的解56x ≈6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.87分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为万吨)1.05x (2)解: 8分59(120%)70.8⨯+= 9分70.870%49.56⨯= 49.563415.56-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加万吨.15.56 10分4、D5、D6、解:设张明平均每分钟清点图书本,则李强平均每分钟清点x 本,(10)x +依题意,得. 3分20030010x x =+解得.20x =经检验是原方程的解.20x =答:张明平均每分钟清点图书20本. 5分注:此题将方程列为或其变式,同样得分.30020020010x x -=⨯7、C8、解:设原来每天加固x 米,根据题意,得 1分. 3分926004800600=-+xx 去分母,得 1200+4200=18x (或18x =5400) 5分解得 . 6分300x =检验:当时,(或分母不等于0).300x =20x ≠∴是原方程的解. 7分300x =答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需x 天, 45……………………1分9根据题意,得 +=1 10x 1245x………………………………… 4分解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,x =20 45…………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天. ……………10分10、22402240220x x-=-11、解:设这种计算器原来每个的进价为元, 1分x 根据题意,得.5分4848(14)1005100(14)x xxx---⨯+=⨯-%%%%%解这个方程,得. 8分40x =经检验,是原方程的根. 9分40x =答:这种计算器原来每个的进价是40元.10分12、240024008(120)xx-=+%13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:-=,……………………………………2分x1500401500+x 815去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.10…………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为元,则第二次购书的进价为x 元.根据题意得:(1)x +1200150010 1.2xx+=4分解得:5x =经检验是原方程的解5x =6分所以第一次购书为(本).12002405=第二次购书为(本)24010250+=第一次赚钱为(元)240(75)480⨯-=第二次赚钱为(元)200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=所以两次共赚钱(元) 848040520+=分答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为千米/时,则提速后的速度为x 千米/时,根据题意,得. 3.2x 12801280113.2xx-=4分解这个方程,得.80x =5分经检验,是所列方程的根.80x =6分(千米/时).80 3.2256∴⨯=所以,列车提速后的速度为256千米/时.7分解法二: 设列车提速后从甲站到乙站所需时间为小时,x 则提速前列车从甲站到乙站所需时间为小时,根据题(11)x +意,得..128012803.211x x⨯=+5x ∴=则 列车提速后的速度为=256(千米/时)11 答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需天,则乙队单独完成需要天.根据题x 2x 意得1分 , 111220x x +=3分 解得 .30x = 经检验是原方程的解,且,都符合题意.530x =30x =260x =分 应付甲队(元).∴30100030000⨯= 应付乙队(元).30255033000⨯⨯= 公司应选择甲工程队,应付工程总费用元. 8∴30000分17、解:设甲工程队每周铺设管道公里,x 则乙工程队每周铺设管道()公里 1+x ………………………1分根据题意, 得 311818=+-x x………………………4分解得, 21=x 32-=x ………………………6分经检验,都是原方程的根 21=x 32-=x 但不符合题意,舍去 32-=x ………………………7分∴31=+x 答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里. ………………………8分18、 20。
重难专题16 分式方程的解法专项训练(原卷版)
专题16 分式方程的解法专项训练1.解方程:2122x x x =+--.2.解方程:2123111x x x x-=+--.3.解分式方程13122--=--:x x x x4.解方程:11322x x x-+=---.5.解分式方程26124x x x -=--6.解方程:241111x x x +=---.7.解方程:3x x -253169x x x --=-+8.解方程:43(1)1x x x x +=--9.解方程:22122x x x-=--.10.解分式方程:315155x x x +=--.11.解方程:235011x x x --=--.12.解方程:2121x x x+=+.13.解分式方程:21142x x x =---14.解分式方程:14322x x x --=--15.解方程:121133x x x =-++.16.解方程:(1)313221x x +=--;(2)22111y y y -=--.17.解方程.(1)143x x =+;(2)31244x x x-=---.(1)143x x =+.(2)31222x x x +=+--.19.解方程:(1)5113x x =+-(2)21233x x x-+=--20.解方程:(1)232x x =+;(2)11322x x x-=---.21.解方程(1)322112x x x =---(2)214111x x x +-=--22.解方程(1)132x x =-(2)21233y y y-=---23.解方程(1)3222x x =+-(2)29472393x x x x +-=+--24.解方程:(1)33122x x x -+=--;(2)23321x x =--.25.解方程:(1)312x x x -=-.(2)2114232349x x x x -=+--.(1)23211x x x +=+-;(2)21233x x x-=---.27.解分式方程:(1)3513x x =++;(2)214111x x x +-=--.28.解方程:(1)121x x x+-=(2)21111x x x -=++29.解方程:(1)3211x x =+-;(2)29472393x x x x +-=+--.30.解分式方程:(1)100307x x =+;(2)21212339x x x -=+--.31.阅读与思考阅读下面的材料,解答后面的问题.解方程:1401x x x x --=-.解:设1x y x -=,则原方程可化为40y y -=,方程两边同时乘y 得240y -=,解得2y =±,经检验:2y =±都是方程40y y -=的解,\当2y =时,12x x-=,解得=1x -,当=2y -时,12x x-=-,解得13x =,经检验:=1x -或13x =都是原分式方程的解,\原分式方程的解为=1x -或13x =.上述这种解分式方程的方法称为“换元法”.问题:(1)若在方程中1021x x x x --=-,设1x y x -=,则原方程可化为________________.(2)模仿上述换元法解方程:1279021x x x ---=+-.32.观察下列方程及其解的特征:①12x x +=的解为121x x ==.②152x x +=的解为12x =,212x =.③1103x x +=的解为13x =,213x =; ...解答下列问题:(1)请猜想:方程1265x x +=的解为______;(2)请猜想:关于x 的方程1x x +=______的解为1x a =,21x a=(3)利用(2)的结论解方程:①11143x a x a +=-+++;②2112322234a a x x a+++=-.33.请阅读材料并求解:要使恒()122A B x x x x =-++成立,我们可以把1x =,=1x -分别代入上式,得方程组11211112A B A A B ì-=ïï+íï-=-ï--+î,解得1212A B ì=ïïíï=ïî,即()()1112222x x x x =-++.(1)请用上述方法将()()1221x x -+写成()()1221221A B x x x x =--+-+的形;(2)如何求解下面的分式方程:()()()11112242x x x x x+-=+++.34.阅读:解方程组:233114x y x y ì-=ïïíï+=ïî解:设1a x =,1b y =,则原方程组可变形为关于a b ,的方程组2334a b a b -=ìí+=î,∴解这个方程组得31a b =ìí=î,∴13x=,11y =,所以原方程组的解为 .(1)把上面的解答过程补充完整: .(2)仿照上述方法解方程组:2143213x y x yì-=ïïíï+=ïî.35.类比推理是一种推理方法,即根据两种事物在某些特征上的相似,作出它们在其他特征上也可能相似的结论.触类旁通,即用类比的方法提出问题及寻求解决问题中的途径和方法.观察下列计算过程:111112233445+++´´´´1111111112233445æöæöæöæö=-+-+-+-ç÷ç÷ç÷ç÷èøèøèøèø14155=-=这就是解稍复杂的计算中常用到的裂项相消法,即把每项恰当拆分,使得其中部分分数相互抵消,简化计算.阅读下面一道例题的解答过程:因式分解:232x x ++解:我们可以将3x 拆成x 和2x 即原式222x x x =+++()()22x x x =+++()()21x x =++在因式分解中,我们有时需要对多项式的某一项拆成两项或多项,其目的是使多项式能进行因式分解,像这样的方法称为拆项法.请用类比的方法,解决以下问题:(1)①已知111111111,,,12223233434=-=-=-××××××´´´,则依据此规律()11n n =+____;②请你利用拆项法进行因式分解:256x x ++=_____;(2)若,a b 满足22120a a a b -++-=,求()()()()()()()()1111111223320212021a b a b a b a b a b +++++×+×++×++×++×+L 的值;(3)受此启发,解方程222221111492011301342155628x x x x x x x x x +++=+++++++++.。
分式方程专题
分式方程专题一、分式通分六大技巧例1、逐步通分-J例3、分组通分: 例5、裂项相消X- 1 x+ 1 X2+丄m+14X4 + 1例2、整体通分a-3十(丄_a_2)2a-4 a-21 x3—X 2-—— -------- 例4、分解简化通分:——m -1 m +2 X -X丄+:+:a-1(a—^a—2)(a-2 [a-3)(a -99 l a -100)+ ^x'X +1X +2X2—4 1变式训练:化简二X1 1+--------- + -------- + 3x +2 X2+5x + 6 X2+4x +3例6、活用乘法公式(丄1 \z 2 , 1 4 , 1 , . 8 . 1 , . 16:(X 中-)(X +p)(X 中一)(x +-8)(XX X X X+2)(X2T)(X H 1)X分式方程专题二、解分式方程例1、去分母法解分式方程6- 3=1(x+1)(x T) xT2X -2 16X X +2例2、整体换元与倒数型换元:x +1 丄 5x Q + = 6x +12确2X -4 丄 X2 — ~2+ ~2X +4x +4 X -4x +4 X -4变式训练: 1、 X +2_ X +2 x 2-4 _ X -22-x x +3 “ X +2— =1+ 26 —X X +2 12+4 x-xX -5 X -2 -- + ---- X -7 X -4X-3 X _4 =----- + -----x_5 x-6变式练习:(上海)用换元法解分式方程 x —1 3x x —1 -—— +1=0时,如果设 —— =y ,将原方程化为关于 y 的 xT X整式方程,那么这个整式方程是( + y-3=0B. y 2-3y+1=0c.3y2-y+1 =0 D . 3y2-y-1=0 A . y 2 分式方程的特殊解法例1、交叉相乘法: 例2、化归法:丄-二^ =0xT X -1(1)X(2) —+2=匕2—X X —1变式训练:1、 已知关于X 的方程X 21 1 +飞+ 2(X + -) =-3,求 X X+丄+1的值 X2、6X+12x-8 X -7 "7例3、左边通分法:1'=8例4、分子对等法-X b(a 工 b)X(b H2a)例5、观察法: =27例6、分离常数法:5x-24x 4x +1 + x +2 x +9x + 2 丄 x + 7 = ----- + ----- x +3 x +8x 变式训练:(1)xx+2 x + 2 丄 x + 5 = + x+3x 丄 X —9+ = -2 x-7X +1 + x-8 x-1 x-6例7、分组通分法x+2 +丄 x +5 =丄+丄X +3 x +4 1 变式训练:(1)—— -——=0 X —2 X —8 X —4 X —6 ⑵=x +1 x +5丄十丄x+2 x+4例8、裂项相消法: 匕+口二口^ +匚6x+6x+8 x+9x+51 1 1 3 21变式训练:解方程一'一 +x(x+1)(X + 1I X +2) (二)无理方程拓展训练例 4、 J x 2+丄+2+J X 2+1-2 =2x V X K Xx 2 +x -5j x(x +1) +28 +22 = 0 , 求代数式戸倖-茫的值J x +1 -v x v x +1 + J x课后练习题例 1、(X —3)2+ J x 2—6x+16 =13例 2、芳〉心+3 = 0\2x +11、解方程: 5(1)— X —2 (2)二xT x1-3x 2 3x —1⑸一002—-10.03X —0.010.3 0.6x —0.2+…+(2x-12x8例3、卜十2变式训练:已知x>0且满足x+22、( 1) 2 -X X —3 3 -x=1(4) 2x+2 x+2X 223、( 1) X +1 -3 2x-61 -X 4x 2—12x +14x-2X -33x-6X —2例1、在解方程数字为x-22X -2xx-2-1-1 4x-8+1X 2—4X —1 x-2(5)2x-4X 2—4 x-8x-77-=1x-21+x 1-X 分式方程专题-1(7)X —1+ x-2-1=0时,“®”表示一个数,但已模糊不清,已知该方程无解,则“2ax +3 _2 -x 1例2、在解分式方程=-2时,小亮的解法如下: x-33—x解:方程两边都乘以 X -3,得2 - X = -1 -2移项,得—x = -1—2-2 解得:x=5(1) 你认为小亮在哪一步出现了错误?错误的原因是什么? (2) 小亮的解题步骤完整吗?如果不完整,缺少哪一步? (3) 请你解这个方程分式方程专题三、定义新运算1 11、 对于非零实数 a 、b ,规定a ®b =—•若2轻(2x-1)=1,贝U x 的值为b a1 1 22、 规定 a*b 若 x*(x +2)=—,则 X 为a b x分式方程四、方程中的参数2x + a例1、若关于x 的方程竺上 x-2变式练习:152、若x=5是分式方程〜-=0的根,求a 的取值范围X —2 x=_1的解是最小的正整数,求a 的值1、已知x =1是分式方程1x +13k=的根,求k 的值x__ 33、关于x的方程"= 的解为x=1,则a =a —x 42ax +3 _X + k k例2、已知关于X 的分式方程X +1 - =+1的解为负数,求k 的取值范围 X-1变式训练: X —4 1、已知关于X 的分式方程——_m-4=^^无解,求m 的值X —3 3-xX _ a 2、若分式方程=a 无解,求a 的值x +14、已知关于X 的分式方程L - 2 =— 有一个正数解,求 m 的取值范围X-3 X -35、已知关于X 的分式方程x+k x +1k—=1的解为负数,求k 的取值范围 X-16、若关于X 的分式方程 2m +x—1 =2无解,求m 的值X若关于X 的分式方程 X —1 -m 一无解,求m 的值 X —5 10—2x8、若关于X 的分式方程2x +m =3的解是正数,求 m 的取值范X —29、若关于x的分式方程k X +k+X +1 x-1=1的解为负数,求k的取值范围10、若k是正整数,关于x的分式方程X + k k=1的解为非负数,求k的值x+2 2-x11、若关于x的分式方程2- ---- 总无解,求a的值。
《分式方程的应用》专题复习
《分式方程的应用》专题复习1.为了做好防疫工作,保障员工安全健康,某公司用4000元购进一批某种型号的口罩.由于质量较好,公司又用6400元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜5元.问第一批口罩每包的价格是多少元?公司前后两批一共购进多少包口罩?2.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个.3. 某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?4. (2021年5月21日,漾濞县发生6.4级地震,某市派出两个抢险救灾工程队赶到该县支援,甲工程队承担了2400米修道路任务,乙工程队比甲工程队多承担了600米的道路抢修任务,甲工程队施工速度比乙工程队每小时少修40米,结果两工程队同时完成任务.问甲、乙两工程队每小时各抢修道路多少米?5. 2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?6. 星期天,小明和小芳从同一小区门口同时出发,沿同一路线去距该小区1800米的少年宫参加活动.为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达.求小芳的速度.7. 某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?8. 端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?9. 泗水县为了落实中央的”强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?10. 某工程队接到了修建3000米道路的施工任务,修到一半的时候,由于采用新的施工技术,修建效率提高为原来的1.5倍,结果提前5天完成了施工任务,问原来每天修多少米道路?11. 随着网购的日益盛行,物流行业已逐渐成为运输业的主力,已知某大型物流公司有A、B 两种型号的货车,A型货车的满载量是B型货车满载量的2倍多4吨,在两车满载的情况下,用A型货车载1400吨货物与用B型货车载560吨货物的用车数量相同.(1)1辆A型货车和1辆B型货车的满载量分别是多少?(2)该物流公司现有120吨货物,可以选择上述两种货车运送,在满载的情况下,有几种方案可以一次性运完?12. 某服装厂准备加工380套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高10%,结果共用了18天完成任务,问原计划每天加工服装多少套?13. 两个工程队共同参与一项筑路工程,甲队单独做需要3个月完成,当甲队单独施工1个月后,乙队加入共同施工,又工作了半个月,总工程全部完成,求乙队单独施工多少个月能完成全部工程.14. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.甲、乙两种图书每本的价格分别为多少元?15. 节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?16. 某区在进行雨水、污水管道改造工程招标时,有甲、乙两个工程队投标,经测算,甲工程队单独完成这项工程需要120天,若先由乙队单独做20天,余下的工程由甲、乙两队合做,36天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付1.5万元工程费,乙队施工一天,需付2.6万元工程费,若该工程计划在90天内完成,在不超过工程计划天数的前提下,该工程是由甲队或乙队单独完成省钱,还是由甲、乙两队全程共同完成省钱?说明理由.17. 受疫情影响,某品牌洗手液市场需求量猛增,某商场用7000元购进一批洗手液后很快销售一空,随后商场又用2.4万元购进第二批这种洗手液,所购数量是第一批的3倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为15元,最后200瓶按8折售出.问这两笔生意中商场共获利多少元?18. 在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.19. 用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.20. 某超市购进A和B两种商品,已知每件A商品的进货价格比每件B商品的进货价格贵2元,用200元购买A商品的数量恰好与用150元购买B商品的数量相等.(1)求A商品的进货价格;(2)计划购进这两种商品共30件,且投入的成本不超过200元,那么最多购进多少件A商品?21. 星期天,小明和小军在同一小区门口同时出发,沿相同路线去离该小区1800米的青少年宫参加羽毛球训练,为响应“节能环保,绿色出行”的号召,两人都步行前往.已知小明的速度是小军的速度的1.2倍,小明比小军提前6分钟到达,求两人的速度.22. 某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2700元购买了一批给班级使用的小号垃圾桶,再用3600元购买了一批放在户久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求每个小号垃圾桶的价格是多少元?23. 某校九年级(2)班的师生步行到距离10km的山区植树,出发1.5ℎ后,李明同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.假设李明同学骑车速度是队伍步行速度的2.5倍.(1)求李明同学骑车速度与队伍步行速度各是多少;(2)如果李明同学要提前10min到达植树地点,那么他骑车速度应是多少?24. 一辆汽车开往距离出发地180km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地.求汽车前1小时的行驶速度.25. 为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?26. 某工厂现有甲、乙两种机器同时开工制造口罩.甲种机器加工90个口罩所用的时间与乙种机器加工120个口罩所用的时间相等,已知甲、乙两种机器每秒共加工35个口罩,那么甲、乙两种机器每秒各加工多少个口罩?27. 某县发生6.4级地震,某市派出甲、乙两个抢险救灾工程队赶到该县支援,甲工程队承担了2400m抢修道路的任务,乙工程队比甲工程队多承担了600m的任务,甲工程队比乙工程队每小时少修40m,结果两工程队同时完成任务.甲、乙两工程队每小时各抢修道路多少米?28. 某商家用价值为100元的甲种涂料与价值为240元的乙种涂料配制成一种新涂料,总价值不变.新涂料每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元.求这种新涂料每千克的售价.29. 俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校计划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.(1)求甲、乙两种品牌的足球的单价各是多少元?(2)学校准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?30. 某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.求A,B两种型号的机器人每小时分别搬运多少材料.31. 甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.32. 某公司会计欲查询乙商品的进价(如下表),发现进货单已被墨水污染.商品进价(元/件)数量(件)总金额(元)甲7200乙3200李师傅:我记得甲商品进价比乙商品进价每件高50%.王师傅:我记得甲商品比乙商品的数量多40件.(1)乙商品的进价是多少?(2)请你帮会计算出甲商品的进价及甲,乙商品的进货数量.33. 已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?34. 倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?35. 2022年10月16日,习总书记在第二十次全国代表大会上的报告中提出:“积极稳妥推进碳达峰碳中和”.某公司积极响应节能减排号召,决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用3000万元购进A型汽车的数量比2400万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元?(2)该公司决定用不多于3600万元购进A型和B型汽车共150辆,最多可以购买多少辆A型汽车?36. 某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?37. 某厂街道在规定时间内加工1500顶帐篷支援灾区。
分式方程应用题专题
分式方程应用题专题一、行程问题1、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.2、轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度.3、一辆汽车开往距离出发地180千米的目的地,出发后第1小时内按原计划的速度行使,1小时后加速为原来速度的1.5倍,并比原计划提前40分到达目的地,求前1小时的平均行使速度。
二、营销类应用性问题1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每0.5kg 少3元,比乙种原料每0.5kg 多1元,问混合后的单价每0.5kg 是多少元?2、先阅读下列文字,再解答下列问题:初中数学课本中有这样一段叙述:“要比较与的大小,可先求出与的差,再看这个差是正数、a b a b 负数还是零。
”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以了。
试问:甲乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购粮用去100元。
(1)假设、分别表示两次购粮的单价(单位:元/千克)。
试用含、的代数式表示:甲两次x y x y 购买粮食共需付款 元;乙两次共购买 千克的粮食;若甲两次购粮的平均单价为每千克元,乙两次购粮的平均单价为每千克元,则= ;= 。
1Q 2Q 1Q 2Q (2)规定:谁两次购粮的平均单价低,谁的购粮方式就更合算,请你判断甲乙两人的购粮方式哪一个更合算些?并说明理由。
3、A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?三、工程问题1、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两45个施工队单独完成此项工程各需多少天?2、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用为元、乙队2201000每天的工作费用为元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队550费用多少元?3、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天? 4、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
专题10 分式方程(解析版)
专题10分式方程【考查题型】【知识要点】解分式方程的一般步骤:1)去分母(方程两边同乘最简公分母,约去分母,把分式方程化成整式方程)。
2)解整式方程。
3)验根(把整式方程的解代入最简公分母,情况一:最简公分母为0,则该根不是分式方程的解,这个根叫原分式方程的增根;情况二:若最简公分母不为0,则该根是分式方程的解。
分式的化简求值:1)分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0;2)灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式;3)化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义。
分式方程解决实际问题的步骤:1)根据题意找等量关系2)设未知数3)列出方程4)解方程,并验根(对解分式方程尤为重要)5)写答案考查题型一解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是()A .2x =B .6x =-C .6x =D .2x =-【答案】C【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.题型1-1.(2022·海南·中考真题)分式方程101x -=-的解是()A .1x =B .2x =-C .3x =D .3x =-题型1-2.(2022·山东济南·中考真题)代数式2x +与代数式1x -的值相等,则x =______.()()3122x x -=+,去括号号3324x x -=+,解得7x =,检验:当7x =时,()()210x x +-≠,∴分式方程的解为7x =.故答案为:7.【名师点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.题型1-3.(2022·四川内江·中考真题)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x的值为_____.题型1-4.(2022·湖南永州·中考真题)解分式方程01x x -=去分母时,方程两边同乘的最简公分母是______.故答案为:x (x +1).【名师点拨】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键.题型1-5.(2022·湖南常德·中考真题)方程()21522xx x x+=-的解为________.【答案】4x =【提示】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解故答案为:4x =【名师点拨】本题考查了解分式方程,解分式方程一定要注意检验.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________.【答案】12-##0.5-题型1-9.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【名师点拨】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=题型1-11.(2022·青海·中考真题)解分式方程:21244x x x -=.方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x =4,检验:当x =4时,220x ≠(﹣).所以原方程的解为x =4.【名师点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.考查题型二根据分式方程解的情况求值题型2.(2022·四川德阳·中考真题)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是()A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:222x x--=--的解为正数,则k 的取值范围为()A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠∴2k <,∵分母不能为0,∴2x ≠,∴22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【名师点拨】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是()A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠题型2-3.(2022·重庆·中考真题)关于x 的分式方程133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【答案】A【提示】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-13题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程1(1)x ax x x x +=++的解为负数,则a 的取值范围是__________.考查题型三分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x 的方程221mx x =+无解,则m 的值为()A .0B .4或6C .6D .0或4【答案】D【提示】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=,题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x 的分式方程233x x++=--无解,则a 的值为()A .3B .0C .1-D .0或3题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x x -=--有增根,则m 的值是()A .1B .﹣1C .2D .﹣2【答案】C【提示】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.题型3-3.(2021·西藏·中考真题)若关于x的分式方程1x-﹣1=1x-无解,则m=___.考查题型四列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是()A.3030201.2x x-=B.3030 1.220x x-=-C.3030201.2x x-=D.3030 1.220x x-=-【答案】A1.2题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x元,则下列方程中正确的是()A.2000020000(115%)10x x⨯-=-B.2000020000(115%)10x x⨯-=-C.2000020000(115%)10x x⨯-=D.2000020000(115%)10x x⨯-=题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是()A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=30【答案】A,根据基地距学校题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为()A .363024x x=⨯B .363024x x=⨯C .363024x x =⨯D .363024x x =⨯题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是()A .4271100%14.0%4271x -⨯=-B .4271100%14.0%4271x-⨯=-C .4271100%14.0%x x-⨯=-D .4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是()A .144963030v v =+-B .1449630v v=-C .144963030v v=D .1449630v v=题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程()A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+【答案】D(2.4+2题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h....,则依题意可列方程为()A.6110334x x+=B.6102034x x+=C.6101343x x-=D.6102034x x-=题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是()A.960010x-=1600xB.960010x+=1600xC.9600x=160010x-D.9600x=1600x+10【答案】B【提示】设该药店购进的一次性医用外科口罩的单价是x元,则购进N95口罩的单价是(x+10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x的分式方程.【详解】解:设该药店购进的一次性医用外科口罩的单价是x元,则购进N95口罩的单价是(x+10)元,题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为()A .0.9850.75x ⨯=B .0.9850.755x ⨯=+C .0.7550.98x ⨯=D .0.7550.985x⨯=-题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示()A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?解得:x=10,经检验:x=10是原方程的解,故笔记本的单价为:10+2=12(元),答:笔记本每本12元,钢笔每支10元.(2)设购买y本笔记本,则购买钢笔(50﹣y)支,依题意得:12y+10(50﹣y)≤540,解得:y≤20,故最多购买笔记本20本.【名师点拨】本题考查了用分式方程和一元一次不等式解决问题,找到题目中的等量关系并列出关于未知数的方程或不等式,仔细计算是本题的解题关键.题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?题型5-3.(2022·山东东营·中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【名师点拨】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.题型5-4.(2022·贵州安顺·中考真题)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A 块种植杂交水稻,B 块种植普通水稻,A 块试验田比B 块试验田少4亩.(1)A 块试验田收获水稻9600千克、B 块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B 块试验田的一部分改种杂交水稻,使总产量不低于17700题型5-5.(2022·贵州铜仁·中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?题型5-6.(2022·湖南益阳·中考真题)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?题型5-7.(2022·吉林长春·中考真题)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【名师点拨】本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键.题型5-8.(2022·山东聊城·中考真题)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?题型5-9.(2022·重庆·中考真题)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.题型5-10.(2022·山西·中考真题)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.【答案】这款电动汽车平均每公里的充电费为0.2元.元,则燃油车平均每公里的充电费为题型5-11.(2022·四川自贡·中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.。
专题09 分式方程(归纳与讲解)(解析版)
专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。
4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。