【新课标华东师大版】2014届中考基础夯实基础复习查漏补缺第一轮:第16讲 二次函数的应用(26ppt课件)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16讲┃ 归类示例
当球刚能过网,此时函数图象过点(9,2.43),y=a(x-6)2 +h的图象还过点(0,2),将两点坐标代入解析式得: 43 2.43=a(9-6)2+h, a=-2700, 解得 2=a(0-6)2+h, h=193, 75 193 8 193 8 此时球要过网则h≥ .∵ > ,∴h≥ , 75 3 75 3 故若球一定能越过球网,又不出边界,h的取值范围是: 8 h≥ . 3
第16讲┃ 归类示例
解:(1)∵h=2.6,球从O点正上方2 m的A处发出, ∴y=a(x-6)2+h过点(0,2), 1 2 ∴2=a(0-6) +2.6,解得:a=- , 60 1 故y与x的关系式为:y=- (x-6)2+2.6. 60 1 (2)当x=9时,y=- (9-6)2+2.6=2.45>2.43, 60 所以球能过球网; 1 当y=0时,- (x-6)2+2.6=0, 60 解得x1=6+2 39>18,x2=6-2 39(舍去). 故球会出界.
第16讲┃ 回归教材
解:(1)(1400-50x) (2)y=x(-50x+1400)-4800=-50x2+1400x-4800 =-50(x-14)2+5000. 当x=14时,在0≤x≤20范围内,y有最大值5000. ∴当每日租出14辆时,租赁公司日收益最大,最大值 为5000元. (3)要使租赁公司日收益不盈也不亏,即y=0. 即-50(x-14)2+5000=0,解得x1=24,x2=4. ∵x=24不合题意,舍去. ∴当每日租出4辆时,租赁公司日收益不盈也不亏.
第16讲┃ 归类示例
[2012· 无锡] 如图16-3,在边长为24 cm的正方形 纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三 角形,再沿图中的虚线折起,折成一个长方体形状的包装 盒(A、B、C、D四个顶点正好重合于上底面上一点).已知 E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两 个端点,设AE=BF=x cm. (1)若折成的包装盒恰好是个正方体,试求这个包装盒 的体积V;
第16讲┃ 回归教材
解:(1)根据题意得,y=(x-8)[100-10(x-10)], 整理得y=-10x2+280x-1600. (2)配方得y=-10(x-14)2+360,所以当x=14时有最大 值,即售价为14元时利润最大.
第16讲┃ 回归教材
[点析] 根据问题情景建立函数关系式,然后根据二 次函数的最值求最大利润时自变量的值.
第16讲┃ 归类示例
(3)当球正好过点(18,0)时,y=a(x-6)2+h还过点(0,2)点, 1 2=36a+h, a=-54, 代入解析式得: 解得: 0=144a+h, h=8, 3 1 2 8 此时二次函数解析式为:y=- (x-6) + , 54 3 8 此时球若不出边界则h≥ . 3
第16讲┃ 回归教材
中考变式
[2012· 嘉兴] 某汽车租赁公司拥有20辆汽车.据统计, 当每辆车的日租金为400元时,可全部租出;当每辆车的日 租金每增加50元,未租出的车将增加1辆;公司平均每日的 各项支出共4800元.设公司每日租出x辆时,日收益为y 元.(日收益=日租金收入-平均每日各项支出) (1)公司每日租出x辆时,每辆车的日租金为________元 (用含x的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大 是多少元? (3)当每日租出多少辆时,租赁公司日收益不盈也不 亏?
第16讲┃ 归类示例
[2012· 安徽] 如图16-1,排球运动员站在点O处练习发 球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高 度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球 网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的 水平距离为18 m. (1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值 范围); (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围.
第16讲┃ 归类示例
解:(1)根据题意,知这个正方体的底面边长a= 2 x cm, EF= 2 a=2x (cm), ∴x+2x+x=24 ,x=6,a=6 2 cm,V =a3=(6 2 )3= 432 2(cm3). (2)设包装盒的底面边长为y cm,高为h cm,则y= 2x, 24-2x h= = 2(12-x), 2 ∴S=4yh+y2 =4 2x· 2(12-x)+( 2x)2=-6x2+96x= -6(x-8)2+384, ∵0<x<12,∴当x=8时,S取得最大值384 cm2.
第16讲┃ 归类示例
[解析] (1)相等关系:甲、乙两种商品的进货单价之和 是5元;按零售价买甲商品3件和乙商品2件,共付了19元. (2)利润=(售价-进价)×件数.
解:(1)设甲商品的进货单价是x元,乙商品的进货单价 是y元.
x+y=5, 根据题意,得 3(x+1)+2(2y-1)=19, x=2, 解得 y=3
建立平面直角坐标系,把代数问题与几何问题进行互相 转化,充分结合三角函数、解直角三角形、相似、全等、圆 等知识解决问题,求二次函数的关系式是解题关键.
第16讲┃ 归类示例
归类示例
► 类型之一 利用二次函数解决抛物线形问题
命题角度: 1. 利用二次函数解决导弹、铅球、喷水池、抛球、跳 水等抛物线形问题; 2. 利用二次函数解决拱桥、护栏等问题.
答:甲商品的进货单价是2元,乙商品的进货单价是3元.
第16讲┃ 归类示例
(2)设商店每天销售甲、乙两种商品获取的利润为s元,则 m m s=(1-m)500+100× +(5-3-m)300+100× 0.1 0.1 即 s=-2000m2+2200m+1100 =-2000(m-0.55)2+1705. ∴当m=0.55时,s有最大值,最大值为1705. 答:当m定为0.55时,才能使商店每天销售甲、乙两种商 品获取的利润最大,每天的最大利润是1705元.
第16讲┃ 归类示例
(2)某广告商要求包装盒的表面积(不含下底面)S最大,试 问x应取何值?
图16-3
第16讲┃ 归类示例
[解析] (1)根据已知得出这个正方体的底面边长a= 2x cm,EF= 2 a=2x(cm),再利用AB=24 cm,求出x进而 可得出这个包装盒的体积V; (2)利用已知表示出包装盒的表面面积,进而利用函数 最值求出即可.
第16讲┃二次函数的应用
第16讲┃ 考点聚焦
考点聚焦
考点1 二次函数的应用
二次函数的应用关键在于建立二次函数的数学模型,这 就需要认真审题,理解题意,利用二次函数解决实际问题, 应用最多的是根据二次函数的最值确定最大利润、最节省方 案等问题.
第16讲┃ 考点聚焦
考点2
建立平面直角坐标系,用二次函数的图象解决实际问题
第16讲┃ 归类示例
二次函数解决销售问题是我们生活中经常遇到的问 题,这类问题通常是根据实际条件建立二次函数关系 式,然后利用二次函数的最值或自变量在实际问题中的 取值解决利润最大问题.
第16讲┃ 归类示例 ► 类型之三 二次函数在几何图形中的应用
命题角度: 1. 二次函数与三角形、圆等几何知识结合往往是涉 及最大面积,最小距离等; 2. 在写函数关系式时,要注意自变量的取值范围.
第16讲┃ 归类示例
利用二次函数解决抛物线形问题,一般是先根据实际问 题的特点建立直角坐标系,设出合适的二次函数的关系式, 把实际问题中已知条件转化为点的坐标,代入关系式求解, 最后要把求出的结果转化为实际问题的答案.
第16讲┃ 归类示例 ► 类型之二 二次函数在营销问题方面的应用
命题角度: 二次函数在销售问题方面的应用.
[2013· 淮安] 利民商店经销甲、乙两种商品.现有 如下信息:
图 16-2
第16讲┃ 归类示例
请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经 调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种 商品每天可各多销售100件.为了使每天获取更大的利润, 商店决定把甲、乙两种商品的零售单价都下降m元.在不考 虑其他因素的条件下,当m定为多少时,才能使商店每天销 售甲、乙两种商品获取的利润最大?每天的最大利润是多 少?
Hale Waihona Puke Baidu
图16-1
第16讲┃ 归类示例
[解析] (1)利用h=2.6,将(0,2)代入解析式求出即可; 1 (2)利用当x=9时,y=- (x-6)2+2.6=2.45,当y=0时, 60 1 - (x-6)2+2.6=0,分别得出即可; 60 (3)根据当球正好过点(18,0)时,y=a(x-6)2+h的图象还过 (0,2)点,以及当球刚能过网,此时函数的图象过点(9,2.43), y=a(x-6)2+h的图象还过点(0,2)分别得出h的取值范围,即可 得出答案.
第16讲┃ 回归教材
回归教材
如何定价利润最大
教材母题 华东师大版九下P27T2
某商人开始时,将进价为每件8元的某种商品按每件10 元出售,每天可销出100件.他想采用提高售价的办法来增 加利润.经试验,发现这种商品每件每提价1元,每天的销 售量就会减少10件. (1)写出每天所得的利润y (元)与售价x(元/件)之间的函 数关系式; (2)每件售价定为多少元,才能使一天所得的利润最 大?
第16讲┃ 归类示例
二次函数在几何图形中的应用,实际上是数形结合思 想的运用,融代数与几何为一体,把代数问题与几何问题 进行互相转化,充分运用三角函数解直角三角形,相似、 全等、圆等来解决问题,充分运用几何知识求关系式是关 键.二次函数与三角形、圆等几何知识结合时,往往涉及 最大面积,最小距离等问题,解决的过程中需要建立函数 关系,运用函数的性质求解.
相关文档
最新文档